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1. Introduction 

The aim of this paper is to describe tbe SWOV- program WPM. 'Weighted 
Poisson Methods', developed by De Leeuw and Opp~. De Leeuw, (1975), 
De Leeuw & Oppe (1976), and Oppe (1981,1992, 1993), to compare it with 
the weU-known SAS-GENMOD (SAS/STAT Software, 1993) procedure and to 
define WPM in terms of a SAS GENMOD procedure. Issues are raised that have 
to do with methodologicaI differences between tbe two procedures. Data, 
caIculations, resuIts and SAS-setups are given in Appendices. 

WPM was inspired by Goodman's (1970) hierarchical analysis of cross­
c1assified data, it was new with respect to the possibility of differentially 
weighting Poisson distributed data and is similar to Andersen (1977, 1981). It 
has a very simple input with user defined orthogonaI contrast vectors, and 
provides significance tests for every contrast specified. In practice, evaluation 
of the model fit to the data is done using the modified chi-squared method, 
but there is a1so a maximum Iikelihood (ML) version available. 

1. 1 Minimum Modified Chi-Squared Statistic 

A comparison of chi-squared statistics is given in Agresti (1990, Chapters 12-
13). The minimum modified chi- squared statistic is discussed in § 13.5.1: 

Neyman, in 1949, introduced minimum modified chi-squared statistics and 
showed that they are best asymptotically nonnal estimators. Bhapkar, in 1966, 
showed that minimum modified chi-squared estimators are identical to WLS­
estimators. This statistic is then identical to the WLS residual r-statistic for 
testing the fit of the model. When the model does not hold, estimators 
obtained by different models can be quite different (see Agresti, 1990). 

Comparison of WPM- and SAS-results wiJl be done using the ML versionand 
the minimum modified chi-squared method. Both methods are different from 
the default procedures for loglinear analysis in SAS, in more respects. 
GENMOD is primarily designed for generalised linear modelling (Poisson 
regression). To be able to define the WPM program in terms of a SAS 
procedure, we have to go through some theory first. The model, its roots, and 
the differences with respect to the SAS-GENMOD procedure for Poisson 
regression are treated in Section 2, together with differences due to using 
different chi-squared test statistics, the Likelihood Ratio (LR), Pearson's X2 or 
the related Wald statistic. Orthogonal contrasts are given in Section 3, test 
statistics using orthogonal contrasts in WPM are given in Section 4. The 
Generalised Li~r Model, with concepts as 'Iink'- function and 'offset', is 
described in section 5. Section 6 describes the differences between types of 
sums of squares (Type 1 - 4), because SAS distinguishes between these and the 
distinction is relevant. Moreover, to mimic WPM in SAS we need Type 3 sums 
of squares, whereas Type 1 analysis is the default with SAS. Section 7 gives two 
different ways of restricting the number of parameters, these are the p-model 
and the ANOVA-model (Freund & Littell, 1981). ANOVA restrlctions mimic 
those in well-known model equations for analysis of variance: parameter 
estimates are departures from the grand mean p. In the MEANS- or p-model, 
the last level of each variabie is set zero. 
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1.2. Examples 

For illustrafIon of the procedures, more examples are presented The data 
are given in Appendix 1. Examples 1- 4 serve to ilIustrate computation of 
parameter estimates using either form of parametrisation (Appendices 2-6). 
Example 4 also iIIustrates the conversion from one parametrisation into 
another one (Appendix 7). WPM estimates are different from those obtained 
from SAS. GENMOD. This is because SAS-GENMOD is a procedure for 
generalised linear modelling (Poisson regression), whereas Goodman's 
procedure is a hierarchical decomposition of the logarithm of the 
probability that an observation will fall in eell (i.)) of an cros~ classification. 
The decomposition is into main effects and interaction effects, in the same 
way as ANOV A is a hierarchical decomposition into main and interaction 
effects. In order to correct for small sample bias, Goodman (1970) and De 
Leeuw & Oppe (1976) added 0.5 to each eell count. This is not possible 
with SAS-GENMOD, because SAS. GENMOD only accepts integer& WPM results 
can be obtained from SAS-GENMOD by specifying orthogonal contrast 
vectors for the desired effects. 
Computation of the Goodman parameters is exemplified in Appendix 6 
(Example 4, ANOV A-model, without adding the 0.5) and in Appendix 9 
(Goodman's data, including the 0.5). Orthogonal contrasts are given with 
the setups for the examples. Their orthonormal equivalents constitute the 
WPM-designmatrix. Clarifying comments are given with the text. Results are 
slightly different, because the procedures are not identical and because with 
WPM, 0.5 is added to each observation (see above). Using Goodman's 
'Knowledge of Caneer data', we mimic WPM in SAS and compare results 
with those from WPM and from Goodman (1970). Setups and results are 
presented in Appendix 9. For Oppe's (1993) BAG-data we compare the 
results of Poisson regression using orthogonal contrasts, Type 3 analysis 
and Wald statistics, with the results obtained using WPM (Appendix 10). 

The discussion is iIIustrated in the following examples (Appendix 1): 
- Example 1: a 2x2 cross-classification, unweighted; 
- Example 2: a 2x2 cross-c1assification, weighted (very simpie); 
- Example 3: Example 1, differentially weighted; 
- Example 4: a 2x4 cross-classification, unweighted; 
- Example 5: Oppe's BAG-data 2x2x4 cross-c1assification, weighted; 
- Example 6: Goodman's data: the 'Knowledge of Caneer Data' 

Nearlyall examples are analyzed using WPM-ML. Only one set of data, 
Oppe's BAG data, is analyzed using the modified chi-squared method. The 
data are given in Appendix 1, the sAs-setups in Appendix 8. 
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2. Weighted Poisson Model & Loglinear Analysis 

The use of the Poisson model for contingency tables goes back to Sir 
RonaId Fisher. When the parameter of interest is the ratio of Poisson means 
or the value of a Poisson meao as a fraction of the total, it is usually 
appropriate to condition on the observed total. Conditioning on the total 
leads to multinomial or binomial response models of the log-linear type 
(McCullagh et al. , 1989, p. 213). The connection between the two sterns 
from the fact that the binomial and multinomial distributions can be derived 
from a set of independent Poisson random variables conditionallyon their 
total being fixed. 

Dyke and Patterson (1952) analyzed cross-classified survey data coneeming 
the proportion of subjects who have a good knowledge of cancer. The 
recorded explanatory variables were exposures to various information 
sourees, newspapers, radio, solid reading, lectures. A factorial model was 
postulated in which the logit of success, log{p/(l-p)}, is expressed Iinearly as 
a combination of the four information sourees and interactions among 
them. Suceess in this context is interpreted as 'good knowledge of cancer'. 
This data is the running example in Goodman (1970). 

WPM was designed for the analysis of Poisson distributed data in cros~ 
classifications (cf. Andersen, 1977), with the possibility of differentially 
weighting the eells of the cross-c1assification. It is also referred to as a 
'multiplicative Poisson model', which means that main effects and 
interaction effects are multiplicative instead of additive (as in the ANOVA­
model). Under Poisson sampling, eell eounts are independent Poisson 
variables. The eell count is denoted mij (i = 1, ... , r; j = 1, ... cl, has 
expected value PIJ and the probability function for Pij has the Poisson 
form. 

WPM is similar to Goodman's (1970) direct approach, it is a weighted 
version of Goodman's model. It is an ANOV A-Iike decomposition of the 
expectation of the logarithm of the eell count into main effects and 
interaction effects. The analysis is symmetrie in all variables. 

6 



2. I. The SAS-GENMOD Approach to WPM 

To simulate a weighted Poisson anaIysis such as WPM in SAS-GENMOD, we 
specify a Type 3 analysis (see Section 6) for the orthogonal contrasts 
defined on the serial numbers ('No') of the observations,. This is because 
aIl effects are defined as orthogonaI contrasts. We use 'No' as a 
'hypervariabie' , subsuming aIl effects. We ask for 'WaId' statistics to obtain 
Pearson's x2-statistic for each effect (see Appendix 8), because WPM only 
presents Pearson's statistic. With SAS, default options are Type 1 sums of 
squares and the Like)ihood-Ratio (LR) test statistic. The advantage of the 
LR-statistic is that it can be additively decomposed into contributions of 
constituting effects. Differences between LR-ratios are aIso chi~ squared 
distributed (Goodman, 1970; McCullagh et ai. , 1989). 

Parameter estimates are obtained uslng \E ('estimates'). [Note that 
specifying a log link function results in a natural log ('In') transformation 
of the data.] A Goodman anaIysis may be characterised as a '-x,2-
decomposition' , which means that the totaI sum of squares is decomposed 
'mto all possi\::4,e main effects and interaction effectsI. Each effect can be 
further decomposed into independent standard normal distributed z-values 
(or cbi-squared distributed variables with one degree of freedom). Using 
SAS-GENMOD, data can be analysed with different link functions. For a 
weighted Poisson analysis corresponding to WPM we specify: 
~ the link function as log (see section 5), 
- offset var: the variabie containing In(weight) for each observation; 
- Type 3 anaIysis (partiaIised effects); 
- WALD statistics (yielding Pearson's X2- statistic); 
- \E for parameter estimates; 
- orthogonal contrasts as in WPM, with additional options: \E W ALD. 

The Pearson -x,2-values for the orthogonal contrasts in SAS-GENMOD each 
have one degree of freedom, hence the square roots of these values are 
N(O,I) effects. The GoodmanlwPM standardised effects are obtained from 
the Pearson -x,2-values under Type 3 SS by taking the square root. 

SAS-GENMOD only accepts counts. In Goodman 's approach, the problem of 
sparse data is handled by adding 0.5 to each cell count. In transforming 
each observed value by j(vaIue) = 10 x (value + 0.5), we have counts, but a 
factor 10 too large, wbich can be down-weighted again using the offset­
option. The compensation of j(value) is to divide each observation by 
In(10). This is done by adding a weighting variabie 'varl' to the data set. 
The new variabie, 'varl' has a constant value, In(10), for each observation. 
In the GENMOD-setup we specify 'offset = var! '. In doing so, each (Iog­
transformed) expectation is divided by In(IO), see Appendix 9. Goodness­
of~fit chi-squared values must be divided by 10. 

1 For ease of comparison with related techniques, and because of tbe advantage of decomposability of effects, 
the Likelihood~ratio test statistic might he implemented in WPM 
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2.2. Theory and Fonnulae for Loglinear Analysis 

Theory and fonmtae are taken from Goodman (1970), Fienberg (1980), 
Agresti (1984, 1990), McCuilagh and Nelder (1989). The expected vaIue 
for an observation (i,J) in a two-way cross-classification under the 
hypothesis of independenee of row and column effects is 
E(Yl) = mIJ = (xl+x+j)IN, where i: 1, ... , r,j= 1, ... , c; .t;+ and x+J are 
marginaIs and N is total observed 

For the logarithmic model: log ~) = log xi+ + log x+) -log N. 

In shorthand notation' log ~) = p + ~ + p)' 

and p is the grand mean of the logarithms of the expected frequencies 
under the model of independenee: 

p = lIIJ l:/l-- l l:J}-- I log mij' and 

p + ~ = liJ l:Jj=1 log mij 

is the mean of the logarithms of the expected frequencies in the J eelIs at 
the zth level of the first variabie. Mutatis mutandis, 

P + fJj = 111 l:li=1 log mij' 

and Cl, and lJ.jare deviations from the grand mean, p: l:ll=llog ai = l:J):"1 
log lJ.j = O. From this, parameter estimates for unsaturated models follow 
inunediately. Below, row and column effects for Example I, a 2x.2-tabel 
(seeAppendix 1, Table 1.1, and Appendix 2, Tables 2a - 2d) are given: 

p = 1/4l:~Il:f=1 log mij = 114 x 19.015 = 4.7539 

p + al = 1/2 ~:l log mI} = 1/2 x 8.799 = 4.400 

p + ~ = 1I2l:~1 log m2j = 1/2 x 10.216 = 5.108 

jJ. + PI = 1I2l:1=1 log mil = 1/2 x 9.830 = 4.915 
p + IJ,. = 1/2l:1: 1 log mi2 = 112 x 9.185 = 4.592 

Therefore, 
p = 4.7539 
al = 4.4000 - 4.7539 = - 0.3541 
~ = 5.1080 - 4.7539 = + 0.3541 
PI = 4.9153 - 4.7539 = + 0.1614 
IJ,. = 4.5925 - 4.7539 = - 0.1614 

8 



2.3. SAS: Last Level Estimates Absorbed in Intercept 

2.3. 1. 

2.3.2. 

In SAS, the intercept is estimated from the last level within each factor. The 
parameters for every last level are set zero in view of the number of 
parameters that can he uniquely estimated from the data. This is called the 
Means Model or ~ Model. Another strategy to restrict the number of 
parameters in the model is the ANOV A-mode~ in which the sum of 
parameter values within an effect must he zero. In the A NOVA-model , the 
grand meao determines the intercept, in the Jl-Model, the grand meao plus 
the parameters of the last level of each variabie determine the intercept This 
is accomplished by subtracting the last level value from each separate 
variabie level. Thus, the intercept depends on the model. However, the 
resulting model equations wIII he the same. lust fill in the parameter 
estimates provided by the program. In Appendix 7, it will be shown how to 
translate parameter estimates from one model to the other on~ 

Intercepts in JL-model 

Example I, continued 
Using the above equations, we find intercept estimates for the Jl-Model: 
1) Jl = 4.7539 (mean only); 
2) Jl + a:z = 4.7539 + .3541 = 5.1080 (meao + rows); 
3) Jl + fh = 4.7539 - .1614 = 4.5925 (meao + columns); 
4) Jl + a2 + fh = 4.7539 + .3541 - .1614 = 4.9466 (all effects); 

These estimates are obtained using SAS by performing different analyses, 
one for each model. The intercept depends on the model and includes the 
last levels of all specified effects . Further estimates in the JL-model are: 
- row effect: al - a2 = - 0.7082 
- column effect: f31 - f32 = 0.3228 

Estimates are obtained by performing analyses for each model. For each 
row, column, or interaction effect, the last-level value is subtracted. 

Parameter estimates in Jl-model 

Example I, continued 
(1) row effect: from each row, the last level value (.3541) is subtracted: 
Row 1: al - a2 = -.3541 - (+.3541) = - .7082; 
Row 2: a2 - a2 = 0; 

(2) column effect: from each column, the value (-.1614) is subtracted: 
Column 1: f31 - f32 = .1614 - (-.1614) = .3228; 
Column 2: f32 - f32 = 0; 

These values are obtained with SAS. ANOVA-model estimates are: 
row 1 (}l + al): 5.1080 -.7082 = 4.3998, row 2 (}l + a2): 5.1080; 
column 1: 4.5925 + .3228 = 4.9153 (}l +f3I)' column 2 (JJ +(32): 4.5925. 
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3. Orthogonal Contrast Vectors: Hierarchical Analysis 

There is an intimate connection between analysis of variance and the 
technique of planned orthogonal comparisons Ccontrasts'). Each degree of 
freedom associated with treatments in a fixed-effects analysis of varianee 
corresponds to a possible comparison of means. The Dumber of degrees of 
freedom for the meao square between treatments is the number of 
independent comparisons to be made on the means. Any analysis of 
variance is equivalent to a breakdown of the data into hierarchically ordered 
sets of orthogonal comparisons (Hays, 1988, Ch. 11.9, Ch. 16). There are as 
much contrasts to be tested as there are physical features to be examined. A 
contrast is a linear function such that the elements of the coefficient vector 
sum to zero for each effect. The elements constituting a contrast constitute a 
set of weights, C(l), such that l:j C(l) = O. For example, for the 2x4 table of 
Example 4, we can form one contrast between rows and three contrasts 
between columns. In general, we can define (r-1) independent contrasts for 
rows, (c.I) independent contrasts for columns, and (r-l)(c-l) interaction 
contrasts. All contrasts must be orthogonal, that is, the sum of the products 
of corresponding elements of the contrast vectors must be zero. 

3. I Row contrasts: R 

Contrast R:. + I - I first row, second row 
sum is zero 

There are two rows, the first row is multiplied by +1, the second row by -1. 
With four columns, there are severaJ possibilities. We may test the first two 
columns against the last two (Contrast Al. see below). Altematively, we may 
test the first column against the last three columns, the second column 
against the last two columns and the third column against the fourth (4-1 = 
3 independent contrasts). Contrast AI may be foUowed by A2 and A3, two 
contrasts nested within the two levels of Al. An interaction contrast is a test 
(contrast) fort he interaction, e.g., between Rand A; an interaction contrast 
is the product of two main effect contrasts over all eeUs, e.g., RxAI, RxA2, 
and RxA3, and RxBI, RxB2, and RxB3: 

3.2. Column Contrasts 
Altemative Column Contrasts: A, B 
Contrast A I : + I + I - I -1 
Contrast A2: + I -I 0 0 
Contrast A3: 0 0 + 1 -1 

or: 

Contrast B 1: +3 -1 -1 - 1 
Contrast B2: 0 +2 - 1 -1 
Contrast B3: 0 0 + 1 -1 
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3.3. Interaction Contrasts 

Contrast RxA 1·. + 1 +1 - 1 -1 first row of contrast matrix 
- 1 -1 +1 +1 second row contrast matrix 

Contrast RxA2: + 1 -1 0 0 id. 
- 1 +1 0 0 

Contrast RxA3: 0 0 +1 - 1 id. 
0 0 - 1 +1 

or: 

Contrast RxBI: +3 -1 -1 -1 id. 
-3 +1 +1 +1 

Contrast RxB2: 0 +2 -1 -1 id. 
0 - 2 +1 +1 

Contrast RxB3: 0 0 +1 -1 id. 
0 0 -1 +1 

The test for contrast Al and the tests of the differences between the levels 
nested within Al (contrasts A2 and A3) are independent because the 
contrasts are independent: I jAI(l)xA2(z) = 0, I jAl(l)xA3(z) = 0, and 
I j A2(l)xA3(l) = O. The same is true for the B-contrasts (BI, B2, and B3 are 
independent). Note that the A- and B-contrasts are not independent. A and 
B represent different hypotheses conceming the differences hetween the 
levels of the column factor and, hence, cannot both he used in one analysis. 
Note that the presented weights are correct up to a normalising constant. 
The correct weights are 

for the g'hcontrast (Hays, 1988). 
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4. Test Statistics in WPM 

WPM is siIlllar to Goodman's (1970) direct estimation method and 
Andersen's (1977) method for Poisson analysis in cross-classifications (see 
above). Apart from differences in estimation procedures, hierarchical 
parameter estimates generally will differ from their loglinear analogues, 
because of the correction for small sample bias, mij + 0.5 (see section 1). 
Resulting test statistics have smaller bias and smaller mean square error 
(Goodman, 1970; Agresti, 1984, 1990). 
In Appendices 9 and 10, WPM is defined in terms of SAS-GENMOP 

Goodman's 'Knowledge-of-Cancer' data illustrate the decomposition when 
adding 0.5 to each mij. GENMOD only accepts counts. Adding '5', 
downweighting by ln(IO), and dividing the x2-statistic by 10 (variances of 
counts are squared), gives the desired result. The setup for Oppe's BAG-data 
illustrates the procedure with and without adding 0.5 to each mij. Results are 
compared with those obtained by GENMOD. 
Main effects and interactions are defined in terms of odds ratios, test 
statistics are based on the log-odds ratios. In principle, there are DO 

dependent ('response') variables in Goodman's model. The analysis is a 
decomposition of the cell counts into main effects and interactions, as is 
ANOV A for normally distributed data. All effects have one degree of 
freedom and the resulting test statistic can he referred to percentage points 
of the standard normal distribution. If there are more categories for one 
variabie, log-odds ratios become 'continuation odds-ratios' (Goodman, 
1970; Agresti, 1990) with a fixed reference category (the first one). The 
corresponding contrast vectors are contrasts with respect to the first one. 
WPM also contains 'nested' contrasts, levels nested in a hierarchically higher 
ordered effect 

4.1. Odds Ratios aod Cross-Product Ratios 

Let ~j denote population probabilities in a 2x2 tabie. Within row 1 the odds 
that the response is in column 2 instead of column 1 is defined to he 

where a] is called the odds, the ratio of the chances for.1lü against the 
chances for .1t'11. Within row 2, the corresponding odds equals 

Each Di is nonnegative, with value greater than 1.0 if response 2 is more 
likely than response 1. The ratio of these odds, 

8 _ a2 = (.11:221 .1t'2l) = (.1t' 11.1t'22) 
- 11ï (.1t'12/.1t'11) (.1t'12.11:21) 

12 



is referred to as 'the odds ratio'. An altemative name is the cross -product 
rano sinee 8 equaIs the ratio of the products 1f11 1f22 and 1f121f21 of 
proportions of eells that are diagonally opposite. The variables are 
independent if and only if the two odds are identicaI (Dl =~ ). In this case 
the odds ratio 8 =1. In practiee, the population proportions {.?ri]} are 
unknown parameters, and hence so is 8. For sample eell frequencies {mlj} a 

sample analog of 8, b , is given below, together with 8, which has smaller 
bias and smaller mean square error (see Agresti, 1984): 

. - (mil + 0.5)(m22 + 0.5) 
preferred estJmator 8 = (mI2+ 0.5)(m21 + 0.5) 

4. 2 Log-Odds Ratios, Goodness of Fit, Adding 0.5 

The odds ratio is a multiplicative function of the eell proportions. lts 
logarithm is an additive function, namely, log 8 = log 1f11 - log 1f12 - log 

1f21 + log 1f22. Log b converges faster than does b to its asymptotic 
distribution. The asymptotic standard deviation of log ~,denoted by 
cr (log ~), can be estimated by 

An approximate l00(l-p) percent confidenee interval for log 8 is given by 

log ó' ± Zp/2 b (log ~) 

where Zp/2 is 1h e percentage point from the standard normal distribution 
corresponding to a two-tail probability equal to p. The corresponding 
confidence interval for 8 can be obtained by exponentiating endpoints of 
the confidence interval for log (J. One should not form confidence intervaIs 
for (J directly using ~ and its standard error because of its slow er 
convergence to normality and because this one is not equivalent to the one 
obtained using 11 b and its standard error (Agresti, 1984, p. 17). Again, the 
estimates of (J and of cr (log B) have smaller asymptotic bias and mean 
square error if the {mij} are replaced by {ml)+ O.S}. 
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5. Generalised Linear Models 

Loglinear models of ten are written in tenns of the Generalised Linear 
Model (GLM. cf. McCullagh & Nelder, 1989). The classical linear model is 
of the fonn 

E(Y) = .... where .... = X/l 

The components of Y are independent normal variables with constant 
variance al. The model has three components". 

(1) 

1. The random component: the components of Y have independent Normal 
distributions with E(Y) = .... and constant variance al ; 

2. The systematic component: covariates Xl. X2' ... , Xp produce a linear 
predictor '1 given by 

'1 = Xp; 
3. The link between the random and systematic components is the identity 

link: 
.... = '1. 

The generalisation introduces a link function between the linear predictor '1 
and the expected value .... of the random component. In the classicaI !inear 
model '1 is identical to .... , but in the generalised model '1 is a function of .... : 

'1i = g(Jli) 

and g(.) is called the link function. 

In this fonnulation, classicaI linear models have a Nonnal distribution in 
component 1 and the identity function for the link in component 3. 

In a univariate 'generalised lineair model', Y is a non-lineair function of X 
and '11 is a non-lineair transfonnation, which is needed e.g. if Y is a sum of 
discrete events with 0 ~ I" = E(Y) s 00. In using the logarithmic 
transformation logO,) for Poisson distributed variables and the logistic 
transfonnation log p/(l-p) for binomial distributed variables, the range of 
the function will be (-00, +00). Some well-known link functions are: 

1. log 
2.logit 
3. probit 
4. identity 

'11 = log(p.); 
'11 = log{ 1"/( l-Jl)}; 
'11 = cJ>-l(Jl). 

'11= '" 

With each link function, a different error structure (random component) is 
associated. The link function maps the argument on the real line. 
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6. Orthogonality: Partial and Sequential Sums of Squares 

In order to find out what contributions particular explanatory variables have 
to a model (e.g., what their maximum contribution is or their unique 
contribution), four types of sums of squares (Type 1 - Type 4) are 
distinguished. As Freund & Littell (1981, p. 103) note, these approaches 
relate to: (1) the orthogonality of effects and (2) the involvement of the cell 
sample sizes in the linear function of the parameters tested: 

SS aod Associated Hypotheses for the With-Ioteraction Model 

Effect 

A 
B 
AxB 

Type 1 

R(alp) 
R(fJ lp, a) 
R(afJ lp, a, IJ) 

Type 2 

R( al p, IJ) 
R(fJ lp, a) 
R( afJ lp, a, IJ) 

Type 3 = Type 4 

R( al p, fJ, alJ) 
R(fJ lp, a, alJ) 
R( afJ I p, a, IJ) 

Type 1 functions correspond to adding each factor sequentially to the 
model in the order listed. Type 1 SS are the ANOV A-sequence of sums of 
squares. It reflects differences between unadjusted means of a factor as if 
the data consists of a one-way structure. 

Type 3 analysis is associated with 'partial' sums of squares, like in 
regression analysis, where each regression coefficient is a 'partial' 
regression coefficient reflecting the influence of one variabie corrected for 
the influence of allothers. lts principal use is in situations which require a 
comparlson of main effects even in the presence of interaction. 

Type 2 functions are neither just sequential, neither completely partial. 
There is partialising of other effects unless they are contained in the first 
effect Thus, with A, B, and AxB as effects, testing A means partialising B, 
but not partialising AxB, because AxB is contained in A (part of A). 

Type 4 functions are designed primarily for situations where there are 
empty cells; it is based on 'estimable' functions (linear functions of the 
parameters). Type 4 SS and estimable functions are identical to those 
provided by Type 3 when there are no empty cells. 

With SAS-GENMOD, Type 1 and Type 3 sums of squares cao he obtained. 

Tbe djfference between models and their associated sums of squares ('SS') 
is more easily explained using 'reduction notation ' (see Freund and Littell, 
1981; Searle, 1987). Also, the situations in which they should be used is 
treated. 
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Denote by Model SSt the sum of squares ('SS') fq- a regression model 
with m = 5 x- vari abl es: 

and by Model SS2 the SS for a reduced model not containing x4 and Xs: 

Reduction notation is used to represent the difference between regression SS 
for the two modeis. The difference R(P4' 1351 f3o. PI' 132, !3J> indicates the 
increase in sum of squares due to the addition of 134, and Ps to the reduced 
model: 

R(P4' Ps 1 130. Pl' 132, f3:3) = Model SS t - Model SS2 . 

The expression R(P4> Ps 1 Po. 131,132, f3:3) is also referred to as: 
(1) the sums of squares due to P4' and Ps (or x4 and xs) adjusted for 

(corrected for) 130, PI' 132, f3:3 (or the intercept and xl ' x2' and x3) 
(2) SS due to fitting x4 and Xs af ter fitting the intercept and Xl' x2' x3 
(3) the effects of x4 and Xs above anti beyond or partia/ of the intercept and 

Xl' x2' x3· 

16 



7. Parametrisation: Jl-Model or ANOVA-Model 

Any model for ANalysis-Of-V Ariance (ANOV A) or regression analysis can 
be formulated in terms of the product of a design matrix (in the case of 
ANOV A and loglinear analysis) or data matrix (in the case of regression 
analysis) X and a vector p of parameters: 

y= Xp, 

wh ere Y is the vector of observations for the dependent variabie. In 
regression analysis. X may be the matrix containing the independent 
variables. In the analysis of variance, X is a designmatrix. each column of 
which corresponds to one parameter. The number of parameters to be 
estimated has to be restricted in accordance with the number of 
independent observations. To do this, there are at least two approaches' 

- I'-model: the parameter for the last level of each variabie is set zero, 
- ANOVA-model: the sum of the deviations from the mean is zero. 

SAS uses the Jl-model pararnetrisation. The conversion from one 
parametrisation to the other is exemplified in Appendix 7. 

7.1. ANOV A-Parametrisation: Deviations from 1'. 

The notation for the ANOV A-model is: 

YIj = J.l + ai + EiJ and al = Jll - Jl ' and 

Yij = lh observation for ith group 
Eij = random error with mean = 0 en variance = 0 2 

i = 1, ... , c; j= 1, ... , nl; c = number of groups 
ni = number of observations in the ith group. 

In the ANOV A-model, Jl serves as the 'baseline' value and the means of the 
respective levels are deviations from Jl: 

Jli under the restriction l:~ = 0 . 

The deviations from I' are represented by the a's. Only if the a-parameters 
satisfy certain identification constraints, unique estimates for parameters will 
be available. The identification constraints for the ANOV A. model are };aj = 
O. The mean Jl is the mean over all levels: 

Jl = {Jll + Jl2 + ... + Jlc )/c = {( Jl + al ) + ( Jl +~)+ ... + ( Jl + ac )}/c . 
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7.2. p.Model: Deviatioos from Last Levels 

MostJy, the following notation is used for the jl-model or Means-model: 

This model is cal led the 'JI-model' or 'Meaos model' because the group­
means Jll' •••• Jlc are the parameters that determine the model The Grand 
Mean P is the mean over alilevela· 

P = (Jil + Jl2 + ,. + JlcVe . 

The meao of the last level (Pc) is set to zero for each variabie. Parameter 
values are deviations from the last level (which is zero). The p-model 
parametrisation is defined as 

Pc = 0; ~j = Pi - Pc = Pi . Also, 

Pi = Y1 = (l:] Yij)/n l is the mean of the ni observations in group i. 

7.3. From ANOVA-Model top-Model aod Vice Versa 

To show the connection between the ANOVA-model and the ~model, we 
manipulate both sets of restrietions: 

in the ANOVA-model, and 

Pc=O in the JI-modeI. 

From the restrictions the reparametrisation follows: 

(A NOVA-model) ai - ac = JIj - Pc = Pi (]l-model). 

Summation over i yields: 

(ANOV A-model) 
(ANOV A-model) 
(ANOVA-model) 

0- ex ac = 1: j Pi (]l-model), thus 
ac = -1: i Pi Ie (]l-model), thus 

last level = minus the meao (p-model). 

The reparametrisation from ANOVA-model to p-model and vice versa is 
treated and exemplified in Appendix 7. Example 4 is used to compute p­
model and ANOV A-model estimates. Also, the conversion from one model 
to the other is shown. 
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8. Examples 

Five examples served to iIlustrate the conversion from Il-model to ANOV A­
model and the difference between SAS. GENMOD and Goodman's procedure. 
A weighted version of Goodman's procedure for loglinear anaJysis was 
programmed by Oppe at SWOV, for the anaJysis of data that had to be 
weighted. The BAG ('Blood Alcohol Level') data are an example of this. In 
traffic research a lot of weighting is called for: correction for length of time 
in contral, compensation for road segment length, etc .. Multiplicative 
Poisson models wjth unequal eell weights are neeessary tools for the road 
safety researcher. 

The presentation of the first two examples has two objectives. First of all, it 
serves to illustrate the notation and computation. In the second plaee it 
serves to illustrate the weighting procedure and the offset option in SAS· 

GENMOD, aprocdure that mimics the option with the same name in GLIM 

(Aitkin et al., 1989). Both in SA&.GENMOD and in GLIM, alinear predictor 
and a vector of expected vaJues are prepared. Apart from the exponentiaJ 
transformation, the two vectors are equivalent if no weights are involved. If 
the analysis includes weights for the data, the offset option or the weight 
function can be used. 

Offset 
The offset option comes into effect be/ore the analysis. Constant weights, 
such as ln( 1 0) in our case, are applied to the linear predictor, they are 
'offset' (set apart) from the calculations needed to fit a generaJised linear 
model. These caJculations involve the technique of iteratively reweighted 
least squares. The use of an offset variabie is illustrated in Examples 2 and 
3, in the BAG-data (Appendix 3, 4, 8, respectively), and, especiaJly, in the 
Goodman data (Appendix 9). If the weights for rows are proportionaJ (as in 
Appendix 4, Table 4b), predicted values ('Linear Predictor' in GLIM) are 
proportional. For example, in the Goodman data (Appendix 9), we added 5 
to each eell count, which had to he downweighted to 0.5 afterwards. To 
accomplish this, we prepare a vector of ln( 10) in the data step, we deciare it 
an 'offset' that has to be subtracted from the linear predictor, before 
expected values are computed. 
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Parameter Estimation 
Example 4 (Appendix 5) is used to illustrate parameter estimation, both in 
the Jl-model and in the ANOV A-model. The difference between both 
parametrisations is iIIustrated in Tables 5d - Se. For each cell, it is shown 
which parameters contribute to the expected cell value. The same is do ne 
for the marginaIs. From these tables, it is c1ear, that the sAs-intercept is 
estimated from the lastmost (South-East) cell, while in the ANOV A-model we 
have to take the sum over all eells. It is also indicated, from which eells other 
parameters are estimated: this follows from the restrictions in either model. 

The parametrisation for both models is given in Appendix 5, estimation of 
parameter values in Appendix 6, again for Example 4. ANOV A-model effects 
are departures from the grand mean, Jl-model restrictions are deviances 
from the last level. It is spelled out for all effects for Example 4. The 
conversion from one parametrisation to the other one is given in Appendix 
7, in formulas and in the parameters estimates for Example 4. It is shown 
that the differenees between the suceessive levels w.r.t. the last level are the 
same for both parametrisations. 

Orthogonal Contrast Vectors 
Parameter estimation using orthogonal contrast vectors is exemplified in 
Appendices 9 and 10. Orthogonal contrasts cao be defined for any variabie 
in the analysis, but not over variables, i.e., for interaction effects. Therefore, 
we defined a 'hypervariabie', a variabie that subsumes all (combinations of) 
effects. We named the variabie 'No', the serial number of the levels of all 
variables (cf. Appendix 8, Exhibits 8.ld, 8 .1e, 8.3a - 8.3c). More complex 
contrasts are combinations of contrasts (cf. Appendix 8, Exhibits 8.3c, 
8.3d). The anaJysis of the BAG-data , with three variables and their 
interactions, is completely described using orthogonal contrast vectors 
(Appendix 10). The same was done for the Goodman (1970) data, the 
variables Knowledge (goodlpoor; dependent variabie) of certain subjects 
from Solid/Non-Solid reading, from Newspapers (YIN), from Lectures (YIN), 
or from Radio (YIN) (see Appendix 9). 

Output Definition 
For the BAG-data, we compared the SAS-GENMOD sums of squares (Type 3 
SS) and WaJd statistics (that yield Pearson x2-squared values ) with the WPM­
values, they are pretty much the same (see Appendix 10). The default with 
SAS is LR-statistic (not the Pearson .x2-statistic) and Type I SS, instead of the 
partialised effects (Type 3), needed for orthogonal contrasts. 
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9. Concl usi ons 

In principle, SA8..GENMOD and WPM do the same job - as far as the analysis 
of Poisson distributed data in cross-classifications is concemed, but it \s 
difficult to compare the two programs, because 

1. difference in methods (estimation procedure, output statistics) 
2. difference in parametrisation (J.t-model, ANOV A-model) 

The presentation of output is also very different. With SAS, the output is 
extensive, quite clear for the expert, but not aIways so for the noV\ce. For 
example, it is not immediately obvious that sums of squares in SAS-GENMOD 
are sequential sums of squares. With WPM, the minimum-chi-squared 
method is very quick. easy to use, the output is cJear af ter some ora! 
explanation, and is frequently used. However, manuaIs are not available, and 
it is not immediately obvious that. in using contrast vectors, results will be so 
different from those obtained using SAS. WPM-ML is more sophisticated, not 
so easy to use and lacks a manuaI. 

WPM is a SWOV -program. It has benefits and shortcomings. The difIerences 
with respect to SAS-GENMOD concern 
- parametrisation (ANOV A-model, ",-model) 
- difference in statistics used, e.g., Pearson's rvs LR statistic 
- adequate description of procedures and aIgorithms 
- adding a constant (0.5) in view of the estimation procedure 
- difIerences in estimation procedure 
- options available in one program but not in the other one. 

In this case, we may concJude that weighted Poisson anaIysis in cross­
classifications can be satisfactorily performed using SAS-GENMOD, as weil as 
using WPM. SAS-GENMOD has more possibilities but is not easy to use. As we 
have seen, WPM is a special form of Poisson analysis - as is Poisson 
regression. WPM is not expected to yield the same results as SAS-GENMOD. 
SAS-GENMOD is a procedure for Poisson regression, for which either 
sequential SS or partiaI SS can be used. WPM is a procedure for weighted 
Poisson analysis in cross-classifications using using partialised SS only. 
Sequential and partiaI procedures need not yield the same results (see 
Appendix 10). 
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Appendix 1. Datafiles for Examples 

Table 1. 1: SAs-data for Example 1 

Example 1: unweighted data 

1 
1 
I 
I 

125 
40 

165 
170 

1 
1 
2 
2 

1 
2 
1 
2 

Table 1. 2: sAS-data for Example 2 

Example 2-. simple table 10 show weighting 

30.0 
3.0 
0.6 

500.0 

300 
30 

6 
5000 

1 
1 
2 
2 

1 
2 
1 
2 

Table l.3a: sAs-data for Example 3 

Example 3: Example 1 weighted 

1 
1 
2 
2 

125 
40 

165 
170 

1 
1 
2 
2 

1 
2 
1 
2 

Table l.3b: sAs-data for Example 3 

Example 3: Orthogonal contrasts setup 

1 
1 
2 
2 

125 
40 

165 
170 

1 
2 
3 
4 

Table l.4a: sAs-data for Example 4 

Example 4: 2x4 Tabie, Weight = 1 

1 
1 
1 
1 
1 
1 
1 
1 

233 
67 

225 
225 
125 
40 

165 
170 

1 
1 
1 
1 
2 
2 
2 
2 

1 
2 
3 
4 
1 
2 
3 
4 
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First column are weights 
Second column are counts 
Last two columns are design vectors. 
Third column gives index for rows 
Fourth column gives index for cd umns 

First column are weights 
Second column are counts 
(countlweight is 10 for each cell) 
Last two columns are design vectors 

First column are weights 
Last two columns are design vectors 

First column are weights 
Third column glves index for cells "No' 
No indices for rows and columns 

Weights are constant (first column) 
Last two columns are design vectors 



Appendix 1. Datafiles for Examples (confinued) 

Table 1. 4b: SAS-data for Example 4 
--. ---------- --, -----~ --- ---- -. , - -,... ----
Example 4. Weight = 500 

500 233 
500 67 
500 225 
500 225 
500 125 
500 40 
500 165 
500 170 

1 1 
1 2 
1 3 
1 4 
2 1 
2 2 
2 3 
2 4 

Table 1.4c: SAS-data for Example 4 

Example 4: Unweighted 

233 
67 

225 
225 
125 
40 

165 
170 

1 
1 
1 
1 
2 
2 
2 
2 

1 
2 
3 
4 
1 
2 
3 
4 

Table 1.5: Oppe's BAG-data weighted: 'BAGw' 
-----------------------------------------------------

No Weights Counts Row Col Categ 
---------------------------------------. ------------

1 .275 2275 1 1 1 
2 .268 339 1 1 2 
3 .317 263 1 1 3 
4 .372 163 I 1 4 
5 .265 448 1 2 1 
6 .199 33 1 2 2 
7 .229 11 1 2 3 
8 .556 10 1 2 4 
9 .236 1838 2 1 1 

10 .25 350 2 1 2 
11 .286 247 2 1 3 
12 .291 145 2 1 4 
13 .233 452 2 2 1 
14 .280 38 2 2 2 
15 .273 20 2 2 3 
16 .425 9 2 2 4 

----------. _---- -----------------------. ----------

Weights are constant (first column) 
Last two columns are design vectors 

This set yields exactly the same results 
as Table 1.~ apart from the mean, I' 
(and the intercept) 

This set yields exactly the same results 
as Table 1.4a 

First column is index for eells: 'No' 
Second column are weights 
Third column are counts 
Last three columns are design vectors 

This data (as weil as the next) serve to iIIustrate the use of orthogonal contrast vectors. Orthogonal 
contrast vectors are defined within a variabie. Therefore, we constructed 'No'. 'No' is a design vector 
indicating the ordering of tbe 16 cells. Within 'No', we can test (contrast) all kinds of effects. These 
effects are different combinations of levels within 'No'. 
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Appendix 1. Datafiles for Examples (confmued) 

Table 1.6. Goodman's 'Knowledgde of Cancer' Data 
- - ------- --- -- - - - -- --------- --- ---------- - -... ---..,.---- --
No Freq Newsp Lect Radio Solid Knowl 
- -- -- -------------~ -----------------------------------------

1 23 1 1 1 1 1 
2 8 1 1 1 1 2 
3 8 1 1 1 2 1 
4 4 1 1 1 2 2 First columns is index for cells: 'No' 
5 27 1 1 2 1 1 Second column are counts 
6 18 1 1 2 1 2 Remaining columns are design vectors 
7 7 1 1 2 2 1 Each variabie has two levels 
8 6 1 1 2 2 2 
9 102 1 2 1 1 1 

10 67 1 2 1 1 2 
11 35 1 2 1 2 1 
12 59 1 2 1 2 2 
13 201 1 2 2 1 1 
14 177 1 2 2 1 2 
15 75 1 2 2 2 1 
16 156 1 2 2 2 2 
17 1 2 1 1 1 1 
18 3 2 1 1 1 2 
19 4 2 1 I 2 1 
20 3 2 1 1 2 2 
21 3 2 1 2 1 1 
22 8 2 1 2 1 2 
23 2 2 1 2 2 1 
24 10 2 1 2 2 2 
25 16 2 2 I 1 1 
26 16 2 2 1 1 2 
27 13 2 2 1 2 1 
28 50 2 2 I 2 2 
29 67 2 2 2 1 1 
30 83 2 2 2 1 2 
31 84 2 2 2 2 1 
32 393 2 2 2 2 2 
-------------------------------------------------------------

'No' is a design vector indicating the ordering of the 32 cells. 
Within 'No', we can test (contrast) all kinds of effects. 
These effects are different combinations of levels within 'No'. 
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Appendix 2. Example 1: 2x2-TabIe, Unweighted 
sAs-Analysis 

Table 2a. Observed 

Al 
A2 

Total 

BI 

125 
165 

290 

B2 Total 

40 
170 

210 

165 
335 

500 

Table 2b. Logarithms of Observed 

BI B2 Total 

Al 4.828 3.689 8.517 
A2 5.106 5.136 10.242 

Total 9.934 8.825 18.759 

Table 2c. Expected under 'Independenee' 

BI B2 Total 

AI 4.561 4.238 8.799 
A2 5.269 4.947 10.216 

Total 9.830 9.185 19.015 

Table 2d: e1og(mijJ: Exponentials of 
Expected under Independence 

BI B2 Total 

AI 95.7 69.3 165 
A2 194.3 140.7 335 

Total 290 210 500 

29 

eell values are YiJ 

Logatithm is to the base e: ln(mlj) 

Independenee of row and col umn 
effects. Grand meao p, = 1/4.Iln(eells) = 
19.016/4 = 4.7539. The intereept is 
determined from eell (2,2): 4.947; 
e4.947 = 140.7 is expected value 
under independenee (cf. Table 2d), 
(see section 2.3) 

Values are exponentials of expected values: 
e1og(mij) or 'Xbeta' in SAS (Xbeta=XIJ). 



Appendix 2. Example 1: 2x2-Tabie, Unweighted (continued) 

sAs-Analysis 

Table 2e. Expected under Row Effects 

BI B2 Total 

Al 4.413 4.413 8.826 
A2 5.121 5. 121 10.242 

Total 9.534 9.534 19.068 

Table 2j Expected under Column Effects 

BI B2 Total 

Al 4.977 4.654 9.631 
A2 4.977 4.654 9.631 

Total 9.954 9.308 19.262 

Table 2g. Expected under Row & Column Effects 

AI 
A2 

BI B2 

4.561 4.238 
5.269 4.947 

Total 9.830 9.185 

Total 

8.789 
10.216 

19.115 

Table 2h. Expected under 'Intercept Only' 

BI B2 Total 

Al 4.828 4.828 9.656 
A2 4.828 4.828 9.656 

Total 9.656 9.656 19.312 

30 

Cell values are log mij = 11 + ai 
Intereept = 5.121 - eell (2,2), (see §23) 

Differenee between row estimates is 
4.413 - 5. 121 = -.7082: row effect 

Cell values are log mij = 11 + f3.J 
Intercept = 4.654 "'" eell(2,2) 

Differenee between column estimates is 
4.977 - 4.654 = .3228: column effect 

Cell values are log mij = Jl + ai + Pj 
Compare with model of Independenee 
Intercept = 4.947 - eell (2,2) 

Intereept Only: only grand mean effect 
eell values are (1:.1og m;j>fIJ = (log 500)/4 
=4.828 = Jl 



Appendix 3. Example 2: 2x2 TabIe, Weighted sAs-Analysis 

Table 3a: Observed 

AI 
A2 

Tot 

BI 

300 
6 

306 

B2 

30 
5000 

5030 

Tot 

330 
5006 

5336 

Table 3b: Weights 

AI 
A2 

BI B2 

30 
0.6 

3 
500 

Table 3e: Weighted Data (Obs / Weight) 

AI 
A2 

Tot 

BI 

10 
10 

20 

B2 

10 
10 

20 

Tot 

20 
20 

40 

Table 3d: Independence: Expected 

AI 
A2 

BI B2 Tot 

2.303 2.303 4.606 
2.303 2.303 4.606 

Tot 4.606 4.606 9.21 2 

Table 3e: Saturated Model: Expeeted 

BI B2 Tot 

AI 2.303 2.303 4.606 
A2 2.303 2.303 4.606 

Tot 4.606 4.606 9.212 

31 

Data only 

Weights for data 

Cells vaIues: obs / weight 
Data are downweighted by weights 

Intercept: 2.303 [= In(IO)] 

Mter weighting, equal expected values 
- Model of Independence 
Row Effect: 0 
Column Effect: 0 
Interaction: 0 



Appendix 4. Example 3 (= Example 1, Weighted) 
sAs-Analysis 

Table 4a. = Table la: Original Data 

BI B2 Total 
w=l w=1 

Al(w=l) 125 40 165 
A2(w=2) 165 170 335 

Total 290 210 500 

Table 4b. Weights for Intercept Only Model 

BI B2 Total 
w=1 w=1 

Al(w-l) 1/6 116 2/6 
A2(w=2) 2/6 2/6 416 

Total 3/6 3/6 

Table 4c. Predicted Intercept Only Model 

BI 
w=1 

B2 
w=1 

Al(w=l) 83.333 83.333 
A2(w=2) 166.667 166.667 

Total 

166.667 
333.333 

Total 250 250 N=500 

Table 4d. Expected (XBET A) for Intercept 
Only Model in counts (upper entry) 
and logs (lower entry) 

BI B2 Total 
w=1 w=1 

Al(w=l) 83.333 83.333 166.667 
4.423 4.423 8.846 

A2(w=2) 83.333 83.333 166.667 
4.423 4.423 8.846 

Total 166.667 166.667 333.333 
8.846 8.846 17.692 
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eell values are XI] (counts) 

We!ghts are 1 for columns (w]= I,j = 1. 2) 
Welghts are 1,2 for rows (wIJ = 1. w2] = 2) 

eell value.s are ~l: l:wlj,~ ·g·, 
eell (2,1). w21 -2, l:wlj- 6. 
Weights are equal for columns 
Weights are proportional for rows 

Predicted values are Wij / ~Wlj x N 

Predicted is proportional for rows 
Predicted is constant for columns 

SAS: Predicted x Wij -1 = Xp (expected) 

Prediction cell (2,1): 1/3 x 500 = 166.67 
Expectation cell (2,1): 1I2x166.67= 83.33 
Pred. cell (1,2): 1I6x5OO = 83.33; Exp.:83.33 

Expected = Predicted corrected for weight 
Xp = Predicted Values x Wij-I 

Expected is equal for rows 
Expected is equal for columns 
Dividing Predicted by wil 1 gives constant 
expected values for Interc. Only Model 

Without weighting, expected = 125 
(for each ceU), in logs: 4.828 



Appendix 4. Example 3 (= Example 1, Weighted) (continued) 

Column effects model column effects only. Rows are proportionaJ to weights (113; 2/3). 
Row tomls are 166.67, resp. 333.33. Predicted vaJue for cell (2,1) is 2x 333.33x 290 /500, 
i.e., weight x row totaJ x cdiUmn totaJ IN. ExponentiaJs of eell entries are given; cf.Table 4a 
Row effects model: analogous. 

Table 4e. Predicted values Column Model 

BI B2 TotaJ 
w=1 w=1 

AI(w=l) 96.67 70.00 166.67 
A2(w=2) 193.33 140.00 333.33 

TotaJ 290 210 N=500 

Table 4f. Expected vaJues Column Model 

BI B2 Total 
w=1 w=1 

AI(w=l) 96.667 70.000 166.667 
A2(w=2) 96.667 70.000 166.667 

Total 193.333 140.000 333.333 

Table 4g. Predicted values Row Model 

BI B2 Total 
w=1 w=1 

Al(w=l) 82.5 82.5 165 
A2(w=2) 167.5 167.5 335 

Total 250 250 500 

Table 4h. Expected values Row Model 

BI B2 Total 
w=1 w=1 

Al(w=l) 82.517 82.517 165.033 
A2(w=2) 83.764 83.764 167.527 

Total 166.281 166.281 332.560 
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Column effect - margin 
Row effect - wi => Nx w I Iw I. I. 

Row 1: 500 x wl.x 113 
Row 2: 500 x w2.x 1/3 
Columns equally weighted: Wj =1 

Predicted ::::- wi x rowtot x coltot I N 

Expected = Predicted Iweight 
Xp = Wij -1 x Predicted Values 

Weights are 1 for columns 
Weights are 1,2 fOT rows 

Row effect - margin 
Column effect - W J => Nx W J Il:w J 
Column 1: 500 x w.I x 1/2 = 250 
Column 2: 500 x w.2 x 1/2 = 250 
Rows not equally weighted: wi. = 1,2 

Predicted = Wij x rowtot x coltot I N 

Corrected for weights 

Expected = Predicted I weight 
Xp = Wij -1 x Predicted VaJues, 



Appendix 5. Example 4: 2x4 Table Unweighted 

Table Sa: Observed 

AI 
A2 

Tot 

BI 

233 
125 

358 

B2 

67 
40 

107 

B3 

225 
165 

390 

B4 

225 
170 

395 

Total 

750 
500 

1250 

Table Sb: Expected under Independence (anti-logs) 

Al 
A2 

Tot 

BI 

214.8 
143.2 

358 

B2 

64.2 
42.8 

107 

B3 

234 
156 

390 

B4 

237 
158 

395 

T able Sc: Expected under Independence (logs) 

BI B2 83 84 

Total 

750 
500 

1250 

Total 

Al 5.370 4.162 5.455 5.468 20.450 
A2 4.964 3.757 5.050 5.063 18.830 

Tot 10.334 7.919 10. 505 10.531 39.290 

Table Sd: Expected under Independence (ANOVA-model parameterss) 

BI 82 83 B4 Total 

Al fl-+al +fJI p.+a}+fl2 fl-+a l+f33 p.+a I +fJ4 4fl-+4a} +(fJ} +fl2+f33+fJ4)=4fl-+4a} 
A2 fl-+u,.+f3} p.+u,.+fl2 p.+a 2+f33 p.+a2+fJ4 4p.+4u,.+(fJI +fl2+f33+fJ4)=4p.+4a2 

Tot 2p.+2fJ} 2p.+2fl2 2p.+2f33 2p.+2fJ4 8p.+4( a} +a2)+ 2(f3} +fl2+f33 +fJ4)=8fl-

Table Se: Expected under Independence (p-model parameters) 

BI B2 B3 B4 Total 

Al fl-+alr+-fJl' 
A2 p.+fJI' 

For the ANovA-model, l:.al=l:.fJj=O and intereept is marginal total//J = 8fl-/8 = fl-. For the fl--model, 
the intercept is estimated from een (2,4). For this een, parameters are fl-, u,.' and fJ4" and since a2' = 
fJ4' = 0, een (2,4) gives the intereept. Next, al' is estimated from een (1,4), fJl' from een (2,1), etc. 
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Appendix 6. Example 4: Estimates in Ik and ANovA-Model 

ANOVA-model effects: deviances with respect to the grand mean, p. 

Grand Mean 
p. = 1/81: 2l=11:4]=1 log mi] = 1/8 x 39.29 = 4. 911 

Rows 
p. + al = 1I41:J=1Iog mIJ = 1/4 x 2Q46 = 5.115 
P. + a2 = 1/4 l: ]=llog m2] = 1/4 x 18.83 = 4.708 

Columns 
Il + fJl = 1121:2;=1 log mil = 1/2 x 10.330 = 5.165 
Il + P2 = 1I21:2i=1 log mi2 = 1/2 x 7.920 = 3.960 
P. + f3J = 1121:2;=1 log mi3 = 112 x 10.505 = 5.253 
Il + fJ4 = 1121:2;=1 log mi4 = 1/2 x 10.531 = 5.265 

}I-model effects: deviances with respect to the last level: 
(p.-model estimates are given with a prime, e.g., al' ) 

Rows 
a2 = - 0.2028 
al' = al - a2 = 0.2028 - (- 0.2028) = + 0.4056 (Row 1) 
a2' = a2 - a2 = -0.2028 - (-0.2028) = 0 

Columns 
f34 = + 0.354 
fJl' = fJl - fJ4 = + 0.256 - 0.354 = - 0.098 (Column 1) 
P2' = P2 - fJ4 = -0.952 - 0.354 = - 1.306 
f3J' = f3J - fJ4 = + 0.342 - 0.354 = - 0.012 
fJ4' = fJ4 - fJ4 = o. 

al = 5.1150 - 4.911 = + 0.2028 
a2 = 4.7075 - 4.911 = -0.2028 

fJI = 5.1650 - 4.911 = + 0.256 
f12. = 3.9600 - 4.911 = - 0.952 
f3J = 5.2525 - 4.911 = + 0.342 
fJ4 = 5.2655 - 4.911 = + 0.354 

Using SAS, we find the same values (apart from rounding errors): 

al ' = + 0.4055 (Row 1) 
a2'= 0; 
f31 ,= - 0.0984 (Column 1) 
f32' = - 1.3061 
f33' = -0.0127 
134' = o. 

Intercepts for Poisson Regression Model: 
Intereept Only (Meao): 
Mean + Row Effeets 
Meao + Column Effects: 
Meao + Row and Column Effects 

4.911 
4.911 - 0.2028 = 4.7082 
4.911 + 0.354 = 5.265 
4.911 - 0.2028 + 0.354 = 5.0622 

For all modeis, the intercept is determined from the lastmost eell: eell (2,4). 
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Appendix 7. Conversion from jl-Model to ANovA-Model 

To calculate ANOVA-model parameters for one specific effect when Jl-model parameters 
are given, proceed as follows (the proof is given below): 

- 1- Detennine the sum of parameter estimates in the Jl-model; 
-2- Divide this sum by the number of levels; 
-3- Change sign; 
-4- Add this number to all Jl-model estimates. 

This procedure will be applied to Example 4, the 2x4 Tabie, first to rows, then to columns. 

Rows 
Step I: SUM Jl-model estimates: .4056 + 0 = .4056. 
Step 2: DI VIDE by 2: .4056/2 = .2028. 
Step 3: CHANGE sign: - .2028. 
Step 4: ADD (-.2028) to all levels: 

Row 1: .4056 - .2028 = .2028. 
Row 2: 0 - .2028 = -.2028. 

Columns 
Step 1: SUM = - .098 - 1.306 - .012 = - 1.416. 
Step 2: DIVIDE by 4: - 1.416/4 = - .354. 
Step 3: CHANGE sign: + .354. 
Step 4: ADD ( .354) to all levels: 

Column 1: -.098 +.354 = .256; 
Column 2: -1.306 + .354 = -.952; 
Column 3: -.012 +.354 = .342; 
Cq umn 4: 0 + .354 = .354, the ANOV A-model estimates we started from. 

To cd clt ate JI- model estimates when ANOV A-model estimates are given, proceed as 
fol.ows: 

- 1- Detennine the parameter estimate for the last level; 
- 2-Subtract this number from all parameter estimates. 

This procedure will be applied to the above data, first to the rows, then to columns. 

Rows 
Step 1: DEfERMINE last level estimate: -.2028; 
Step 2: SUBTRACT (-.2028) from all parameter estimates: 

Row 1: .2028 - (-.2028)= + .4056; Row 2: -.2028 -(-.2028) = O. 

Columns 
Step 1 :DETERMINE last level estimate: .354; 
Step 2: SUBTRACf (.354) from all parameter estimates: 

Column 1: .256 - (.354) = - 0.098; 
Column 2: -.952 - (.354) = - 1.306; 
Column 3: .342 - (.354) = - 0 .012 
Column 4: .354- (.354) = O. 

(Note that the difference between the successive levels w.r.t. the last level are the same for the /.l-model 
and the ANOVA-rnodel). 
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Appendix 7. Conversion from Jl-Model to ANOVA-Model 
(continued) 

From ANOV A-model to p-model and vice versa: 

Let the parameters for a specific effect in the }l- model be given by 

}l-MODE4 

and let the parameters in the ANOVA-model he given by 

ANOV A-MODEL: 

Then it holds that l)YL- Yi = !j - fJi = fJj .and that 
2) 2:.j Pj Yj - 0, from which 

Ij p] (Yr yiJ = Ij fJ] Pj' or 

for which fJ i = 0, 

for which Ij Pj l) = O. 

0- JXYi= ~ fJj Pj , so that 

Yi = -liJ IjfJj Pj . 

WPM-Estimates for Examples 1 and 4: 

Using WPM-ML, we find the following estimates for Example 4, the 2x4 TabIe: 
Rows: 0.2161, -0.2161 
Columns: 0.2338, -0.9591, 0.3552, 0.3701. 
Using SAS we found, af ter transfonnation to ANOV A parameterization: 
Rows: 0.2028, -0.2028 
Columns: 0.256, - 0.952. 0.342, + 0.354. 

For Example 1, the 2x2 TabIe, we find using WPM-ML: 
Rows: -0.4311, 0.4311; 
Columns: 0.2774, -0.2774. 
The }I-model estimates, given by SAS, are: 
Rows: -0.7082, 0; 
Columns: 0.3228, O. 
We find the ANoVA-parameters using the transfonnation mIe: 
Rows: -0.3541, 0.3541; 
Columns: 0.1614, -0.1614, 

The WPM-estimates are slightly different because 0.5 is added to each observation. 
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Appendix 8. SAS-GENMOD Setups for Examples 

Exhibit 8.la: Creating sAs-File for Example I 

libname xx '[own dirl'" 
filename invoer '[own.dir]Exl'; 
data xx. Ex I ; 

infile invoer; 
input n cAB; 
In = log(n}, 

proc contents; 

ExhillJ~t 8.lb: Poisson Regression for Example I 

options pagesize=59 linesize=80 nocenter; 
libname xx '[own.dir]'; 

proc genmod data=xx.Ex I order=data; 
class A 13-, 

run; 

model c= B Idist=poisson * 
link = log; 

---------------------------------- -------------- -----
Exhibit 8.l c: Type I and Type 3 Analysis 
------------------------------------------------
options pagesize=59 Iinesize=80 nocenter', 
Iibname xx '[own.dir]'; 

proc genmod data=xx.Ex", order=data; 
c1ass AB; 

run; 

make 'obstats ' out = outdata; 
model c = Idist = poisson * 

link = log 
type I 
type3 
obstats 
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Comment 

generates SAs-dataset xx.Ex1 
in directory van owner ('own') 
Iibname xx 

n is weighting varia bie 
In is offset variabie 
c (count) is dependent variabie 

Comment 

Alternatives for Model statement * 
(1) model c= Idist=poisson etc. 
=>generates Intercept Only Model; 
(2) modd c= A Idist=etc. 
=>generates Row Effects Model; 
(3) model c= A B Idist=etc. 
=>generates Row+Column Model. 

---------------------------------------
Comment 
--- ------------------------------------

(1) Same sAs-data set as above 

(2) Extensive output preparation 
(3) Intercept model as above (*) 

SequentiaI sum of squares 
Partialising effects 
Produces extensive output 



Appendix 8. SAS-GENMOD Setups for Examples (continued) 

Exhibit 8.1d: Type 3 Analysis and Wald Statistics: 
Example 3 

------.... _- -------------- --------- --------------- ---
opflons pagesize=59 linesize=80 nocenter; 
libname xx '[own.dir]'; 
P"'oc genmod data=xx. ex.3 order=data, 

c1ass AB; 
model c= A B A *B Idist=poisson * 

link = log offset = I n 
type 1 type3 ; 

contrast 'Bb' B 1- 1 I E wald; 
contrast 'Aa' A 1- 11 E wald ; 
+contrast 'iJler A*B' .5 -. 5 -.5 .5 IE WALO; 
run; 

Exhibit 8.1e: Orthogonal Contrasts for Example 3 

options pagesize=59 linesize=80 nocenter; 
libname xx '[own.dir]'; 

proc genmod data= xx.ex3b order=data; 

• class No; 
model c = A B A *B Idist=poisson 

link = log offset = In 
type 1 type3 ; 

contrast ' A ' A 1 -1; 
contrast 'B' BI-I; 
contrast 'inter' A *B 0.5 -0.5 -0.5 0.5; 

Exhibit 8.2a: Orthogonal Contrasts for Example 4 

options pagesize=59 linesize=80 nocenter; 
libname xx '[own.dir]'; 

proc genmod data=x.x.Ex4 order=data; 
c1ass AB; 

make 'obstats ' out = outdata; 
model c= Idist=poisson. 
link = log offset = In 

type 1 
type3 

contrast 'B' B 
contrast 'A l' A 
contrast 'A2' A 
contrast • A3' A 

1 -1; 
3-1-1-1; 
o 2 -1 -1; 
o 0 1 - 1; 

Comment 

------------------------------ -- --_ ... 

Example 3, weighted data 

model includes interactions 
downweighting by 'In' 
Type 1 Analysis: sequential, 
Wald statistics ~ Pearson X2 

instead of Likelihood Ratio c;2 
+ Imposible to define interaction 

with class-structure present 

Comment 

• Contrast vectors defined on 

serial numbers of categories, 
to obtain interaction contrasts 

Type 3 Analysis: LR ratio stat. 
Contrast: main effect 'A' 
Contrast: main effect 'B' 
Contrast: interaction 

Comment 

No design matrix, only serial 
numbers 

Same models as above 

Type 3 analysis; Pearsons' X2 
log-likelihood ratio statistic (;2 
Contrast between categories, 
within variables 

Same results as Type 3 IE W ALO 

These contrasts yie/d same resu/ts as Type 3 ana/ysis using Wa/d statistics and as the SWOV-program 
WPM 
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Appendix 8. SAS-GENMOD Setups for Examples (continued) 

------. ----.. ------------. ------- -.-------------.- ---
Exhibit 8.3a: Creating SAs-file for BAG-data 
. ----. ---. ---- _.---._---.. ----.- ------- ---. -- -.- --. 
I ibname Xx '[own.dir]'·, 
filename invoer '[own dir]BAGw'; 
data xx.BAGw; 

infile invoel', 
input No Weight Freq Year Sexe BAG; 
In = 10g(Weight) " 

length No In Freq Year Sexe BAG 3.; 
proc contents; 
run; 

Exhibit 8.3b: Sequential Analysis BAG-data 

options pagesize=59 linesize=80 nocenter; 
libname xx '[own.dir]'; 
prae genmod data=xx.BAGw ; 

class No; 
model Freq=No I dist = poisson 
link = log 
offset = In; run; 

Exhibit 8.3c: Type 3 Analysis + Contrasts, BAG-data 

options pagesize=59 linesize=80 nocenter 
libname xx '[own.dir]'; 
prae genmod data=xx.BAGw; 

c1ass Year Sexe BAG; 
model Freq = YearlSexelBAG Idist = poisson 

link = log offset = In type3; 

contrast 'BAG 1 1 VS 2,3,4' BAG -3 1 1 1 IE; 
contrast 'BAG2 2 VS 3,4' BAG 0 -2 1 1 1 E ; 
contrast 'BAG3 3 VS 4' BAG 0 0 -1 11 E ; 

--------"":1.. --~ ----------------~_ --. -__ 
Comment 

BAGw: data 'mclude weights 
SAS-data set (weighted) 

'No' is serial number for eeUs 
Variables are Freq, Year, Sexe, 
and BAG; 'In' is offset variabie, 
for downweighting Freq; 
'No' is needed fct interaction 
contrasts. 

--. ----. --------------. -. --- -------. --. 
Comment 
---. -. ------. ------------------ --. -. ---
Sequential analysis, 
No contrasts speqfied. 

Comment 

Illustration of forming 
interaction contrasts and 
combining them into comp( ex 
contrast statements 
All possible effects. 

contrast 'BAGI to BAG3'. BAG -31 1 1, BAG 0 -2 1 1, BAG 00-1 1 IE; .Combination 

contrast 'BAG4 1,2 VS 3,4' 
contrast 'BAG5 1,2' 
contrast 'BAG6 3,4' 
contrast 'BAG4 to BAG6'. 
run; 

BAG -1 -1 1 11 E ; 
BAG - 1 1 0 0 IE; 
BAG 0 0 -1 1 1 E ; 
BAG -1 - 1 1 1, BAG -1 100, BAG 00-1 11 E; .Combin. 
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Appendix 8. SASGENMOD Setups for Examples (continued) 

-------------------------------------. ----- -------- ----
Exhibit8.3d: Contrasts as in WPM for BAG. data Comment 

----.--------------------- -. ----------- -.--- -.-----
<'" •. ) 
proc gemnod data=xx.BAGw; 

c1ass No; 

Complete orthogonal contrasts 
analysis of BAG-data. 

model Freq = No I dist = poisson 
link = log offset = In type3; 

contrast 'Year 1975 vs 1977' 

contrast 'SEXE' 

contrast 'BAG 1 1 vs 2,3,4' 
contrast 'BAG2 2 vs 3,4' 
contrast 'BAG3 3 vs 4' 

contrast 'BAGI-4'. 

contrast 'Y ear*Sexe' 

contrast 'Sexe*BAG l ' 
contrast 'Sexe*BAG2' 
contrast 'Sexe*BAG3' 

contrast 'Year*BAG 1 ' 
contrast 'Year*BAG2' 
contrast 'Year*BAG3' 

contrast 'Year*BAGI-3 ' • 

contrast 'Sexe*BAGI-3' -

contrast 'Year*Sexe*BAG l' 
contrast 'Year*Sexe*BAG2' 
contrast 'Year*Sexe*BAG3' 

contrast 'Y ear*Sexe*BAG 1-3' 

r~ ; 

No 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 _ I- 1 -1 1 E Wald; 

No 1 liL 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 E Wald; 

No 3 -I- 1- 1 3 - 1 -1-1 3 _ I- I -1 3 -1 -1 -1 1 E Wald; 
No 0 2 - L 1 0 2 -1 -10 2 - 1 -1 0 2 -1 -1 IE Wald; 
No 0 0 I - 1 0 0 1 -1 0 0 1 -1 0 0 1 -1 IE Wald; 

No 3 -1 -1 -1 3 -1 -1 -1 3 -1 -1 -1 3 -1 -1 -1, 
No 0 2 -1 -1 0 2 -1 -1 0 2 -1 -1 0 2 -1 -1, 
No 001-1001-1001-100 l-I1EWald;-Combin. 

No 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 IE Wald; 

No 3 -1 -I -1 -3 1 I 1 3 -I -I -I -3 I I 1 l EWaid; 
No 0 2 _1-10-2110 2-1-10-211 l EWaid; 
No 00 1-100-11001-100-11 lEWaid; 

No 3 -1 -1 -1 3 -1 -I -1 -3 1 1 1 -3 1 1 1 l EWaId; 
NoO 2-1-10 2-1-10-2110-211 l EWaid; 
No 0 0 1 -1 00 1 -I 00-1 1 00-1 1 l EWaid; 

No 3 -1 -1 -I 3 -I -I -1 -3 1 I 1 -3 I I I , 
No 0 2 -1 -10 2 -1 -1 0 -2 1 1 0 -2 1 1, 
NoOO 1-1 001-100-1100-11 lEWaId; -Combin. 

No 3 -1 -1 -1 -3 1 1 1 3 -1 -1 -1 -3 1 1 1 , 
No02-1-1 0-21102-1-10-211, 
NoOO 1-100-1100 1-100-11 lEWaId; -Combin. 

No 3 -I -1-1 -3 I 1 I -3 1 I I 3 -1 -1 -I/E Wald; 
No02-1-1 0-211 0-211 02-1-1 lEWaid; 
No 0 0 I -1 00-1 I 00 - 1 100 I -I l EWaid; 

- No 3 -I -I -1 -3 1 I I -3 I I I 3 -I -1 -I , 
No02-1-1 0-2110-21 102-1-1, 
NooO I-I 00-11 00-11 00 I-I lEWaId; -Combin. 
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Appendix 9. Goodman's (1970) Data: Contrast Vectors 

Ex4ibit 9. Orthogonal Contrasts f or Goodman data Conunent 

< .... ) 
proc genmod data=xx Goodhalf, 
class No~ model Freq = No 

Data is here lO(mij + Q 5), 
sinee GENMOD doesn't accept +O,S 

/ dist = poisson link = log 
offset = In obstats type3 " offset=>dividing eells by In( lO) 

contrast 'Newspl VS NewspO' 
No 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 - 1- 1- 1- 1- 1- 1 -1 -1 - 1- 1 -1 - 1- 1- 1 -1 / E Wald, 

contrast 'Leetl VS LeetO' 
No 1 1 1 1 1 1 1 1- 1 -1 -1 -1 -1 -1 - 1 -11 1 1 1 1 1 1 1 - 1- 1- 1 -1 - 1 -1 - 1 -1 / E Wald; 

contrast 'Radiol VS RadioO' 
No 1 1 1 1 -1 -1 -1 -1 1 1 1 1 - 1- 1 -1 - 1 1 1 1 1- 1-1 -1 -1 1 1 1 1 -1 -1 -1 -1 / E Walq 

contrast 'Solidl VS SolidO' 
No 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1- 1 -1 1 1- 1 -1 1 1- 1 -1 1 1 -1 - 1 1 1- 1 -1 / E Wald, 

contrast 'Knowil VS KnowlO' 
No 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1- 1 1- 1 1 -1 1 -1 1- 1 1 -1 1- 1 1 -1 / E Wald, 

contrast 'Knowl*Sofld' 
No 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 - 1- 1 1 1- 1 -1 1 1- 1 -1 1 1 - 1 -1 1 / E W AId; 

run; 
--------------------------------------------------------------

x2 and z values for Goodman data with SAS and WPM 
'T3' means Type 3 anaIysis in SAS; 'W'(Wald) yields Pearson's x? 
'OC' means orthogonal contrast vectors, adding 0.5, offset: In( 10) 

Source of Interaction X2 z df p-value 

Newsp 1 vs NewspO 
WPM 48.2321 6.9445 1 0.000 
SAS-OClf3/W 48.2321 ±6.9445 1 0.000 
Goodman 48.2321 6.9445 1 0.000 

Leetl vs LectO 
WPM 389.4305 -19.7340 1 0.000 
SAS-OCrf3/W 389.4305 ±19.7340 1 0.000 
Goodman 389.4305 -19.7340 1 0.000 

Radio 1 vs RadioO 
WPM 52.2795 -7.2305 1 0.000 
SAS-OCrf3/W 52.2795 ±7.2305 1 0.000 
Goodman 52.2795 -7.2305 1 0.000 

Solid 1 vs SoIidO 
WPM 1.9194 1.3854 1 0.000 
SAS-OCrf3/W 1.9194 ±1.3854 1 0.000 
Goodman 1.9194 1.3854 1 0.000 

Knowil vs KnowIO 
WPM 5.6269 -2.3726 1 0.000 
SAS-OCrf3/W 5.6269 ±2.3726 1 0.000 
Goodman 5.6269 -2.3726 1 0.000 

KnowI*Solid 
WPM 5.6824 2.3838 1 0.000 
SAS-OCrf3/W 5.6824 ±2.3838 1 0.000 
Goodman 5.6824 2.3838 1 0.000 

Analyses. Goodman (1970); WPM: ML; Orthogonal contrast vectors; 
adds 0.5 to each cell; uses Pearson's;él- statistic. 

SAS-PRoe GENMOD: Type 3 analysis (partialized effects) 
Orthogonal contrast vectors, Wald: Pearson's;él. 
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Appendix 10. Comparison of WPM & SAS: BAG-Data 

Exhibit lOa: Contrasts as in WPM for BAG-data Comment 

L ... ) 
proc genmod data=xx.BAGw; 

c1ass No; 
model Freq = No / dist = poisson 
link = log offset = lrn type3 ", 

contrast 'Year 1975 vs 1977' 

contrast 'SEXE' 

contrast ' BAG 1 I vs 2,3,,4 , 
contrast 'BAG2 2 vs 3,4' 
contrast 'BAG3 3 vs 4' 

contrast 'BAGI -4'. 

contrast 'Y ear*Sexe' 

contrast 'Sexe*BAGI' 
contrast 'Sexe*BAG2' 
contrast 'Sexe*BAG3' 

contrast 'Year*BAG 1 ' 
COllrast 'Year*BAG2' 
contrast 'Year*BAG3' 

contrast 'Year*BAG 1-3' • 

contrast 'Sexe*BAGI-3' • 

contrast 'Year*Sexe*BAG l' 
contrast 'Year*Sexe*BAG2' 
contrast 'Y ear*Sexe*BAG3' 

contrast 'Y ear*Sexe*BAG 1-3' 

run; 
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Complete orthogonal contrasts 
analysis of BAG-data 

No 1 1 1 1 1 1 1 1 - 1 -1 -1 -1 - 1 - 1 - 1 - 1 l EWaid, 

No 1 1 1 1 - I - 1 -1 -1 1 1 1 1 - 1 - 1 - 1 - 1 / E Wald; 

No 3 -1 -1 -1 3 -1 -1 - 1 3 -1 - 1 -1 3 - 1 -1 -1 lEW ald; 
No 0 2 -1 -1 0 2 -1 - 1 0 2 -1 -1 0 2 -1 -1 IE Wald; 
No 0 0 1 - 1 0 0 1 -1 0 0 1 -1 0 0 1 -I /E Wald; 

No 3 -1 -1 -1 3 -1 -1 -1 3 - 1 - 1 -1 3 - 1 -I -1, 
No 0 2 -1 - 1 0 2 -1 - 1 0 2 -I -I 0 2 - 1 -1, 
No 00 1- 1 00 1 - I 00 1 -1 001 -11 E Wald; .Combin. 

No 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 IE Wald; 

No 3 -1 -1 -1 -3 1 1 1 3 -1 - 1 -1 -3 1 1 1 l EWaid; 
No 0 2-1-10-21 10 2-1-1 0-211/EWald; 
No 00 1 -1 00-1 1 00 1 -1 00-1 I/E Wald; 

No 3 -1 -1 -13 -1 -1 -1 -3 1 1 1 -3 1 1 1 l EWaid; 
NoO 2 -1 -10 2-1-10-2110-2111 EWald; 
No 0 0 I -1 00 1 -I 00-1 1 00-1 1/ E Wald; 

No3 -1 -1 -13 -1 -1 -1 -3 1 1 1 -3 1 11, 
No 0 2 -1 -1 0 2 -I -1 0 -2 I 1 0 -2 1 1, 
NoOO 1-1 00 I-I 00-11 00-11 IEWald; . Combio. 

No 3 -1 -I -1 -3 1 1 I 3 -1 -1 -1 -3 1 1 1 , 
No02-1-1 0-211 02-1-1 0-211, 
NoOO 1-1 00-11 00 I-I 00 - 11 IEWald; .Combin. 

No 3 -I -1 -I -3 1 I 1 -3 I I 1 3 -I -1 -1IE Wald; 
No02-1-1 0-211 0-211 02 - 1-1 IEWald; 
No 0 0 I -1 0 0 -1 1 0 0 -1 1 0 0 1 -1 / E Wald; 

• No 3 -1 -1 -1 -3 1 1 1 -3 1 1 1 3 -1 -1 -1 , 
No02 -1-10-2110-21102-1-1 , 
No 001 -100 -1 1 00-1 1 001 -1 IE Wald; . Combin. 



Appendix 10. Comparison OfWPM & SAS: BAG-Data 
(contmued) 

Interaction Sum of Squares: WPM vs SAS 

SAS. GENMOD Procedure with 
-TYPE 3 instead of TYPE 1 analysis (default); 
-Orthogonal Contrast Vectors; 
-Pearson's X2 instead of LR..statistic (default}, 

DATA: BAG-data Blood-Alcohol-Level data '75 - '77 
S. OPPE, 1993, SWOV: D- 93-11 

Classification Variables: 
-YEAR (1975, 1977); 
-SEX (m,1); 
-BAG (4 classes) 

FREQ (per cell): Response variabie 
WEIGHTS: the data are corrected for exposition 

Interaction SS for the BAG-data using SAS and WPM 
'T3' means Type 3 analysis in SAS, 'W': (WAld) yields Pearson's X2 

Source of Interaction X2 df p-value 

YearxSex 
WPM 0.21 1 
SAS-T31W 0.23 1 0.633 

YearxBAG 
WPM 1.70 3 
SAS-T31W 1.72 3 0 .633 

SexxBAG 
WPM 102.71 3 
SAS-T31W 104.94 3 0.000 

YearxSexxBAG 
WPM 4.04 3 
SAS-T31W 4.02 3 0.259 

Analyses: WPM: Minimum Chi-Squared Method (Oppe, 1993); 
Orthononnal contrast vectors; interactions only; 
adds 0.5 to each eell; uses Pearson's x2-statistic. 
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SAS. GENMOD: Type 3 analysis (partialized effects) 
Contrast Vectors, Wald: Pearson's x2-statistic 



Appendix 10. Comparison of WPM & SAS: BAG-Data (continued) 

SAS-GENMOD 

WPM 

BAG-data 

T3 (=Type 3) vs Tl (=Type 1) analysis ; 
LR: Likelihood-Ratio X2 statistic: 
W ALO (W). Pearson' s X2 test statistio, 
Overall test (all variables in analysis); 

Program for Weighted Poisson Analysis; 
Uses Pearson's Ji2 test statistic and 
design matrix: orthonormal contrast vectors 

BI,ood-AlcohoL Level data '75-'79 (Oppe, 1993). 

Comparisoo of Results for BAG-data using SAS aod WPM 

Source of Interaction x?- df p-value SS Test Statistic 

YearxSex 
WPM 0.21 1 
SAS-TI/W 0.228 1 0.633 Type 3 Wald 
SAS-TI/LR 0.228 1 0.633 Type 3 LR 
SAS-Tl/LR 1.439 1 0.077 Type 1 LR 

YearxBAG 
WPM 1.70 3 
SAS-TItW 1.720 3 0.633 Type 3 Wald 
SAS-TI/LR 1.745 3 0.627 Type 3 LR 
SAS-Tl/LR 2.709 3 0.439 Type 1 LR 

Sex x BAG 
WPM 102.7 3 
SAS-T3/W 104.942 3 0.000 Type 3 Wald 
SAS-T3/LR 142.539 3 0.000 Type 3 LR 
SAS-TIILR 144.738 3 0.000 Type 1 LR 

Year x Sex x BAG 
WPM 4.04 3 
SAS-T3/W 4.023 3 0.259 Type 3 Wald 
SAS-T3/LR 3.997 3 0.264 Type 3 LR 
SAS-Tl/LR 3.977 3 0.264 Type 1 LR 

In comparing the results of the analyses above, we see that 
- WPM and SAS. T3/W produce comparable output (and equal to Goodman's); 
- SAS-T3/LR and SAS-Tl/LR can produce quite different results (e.g., Sex x BAG, 

Year x Sex, and Year x BAG). 
- SAS-Tl/LR, sequential analysis, yields most often (and largest) deviant results. 
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