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Summary

This report gives an overview of the models developed in countries other
than the Netherlands to evaluate past developments in road traffic safety
and to obtain estimates of these developments in the future. These models
include classical linear regression and loglinear models as applied in Great
Britain, and the ARIMA and DRAG models used in Belgium, Canada, France
and Sweden.

The linear regression models for Great Britain were used to forecast the
number of road crash casualties of different severities in a future year (2000
and 2010). In the model used to predict the number of casualties in 2000,
the year 1983 played an important role. In this year compulsatory seat-belt
wearing was introduced and this turned out to be of great influence on the
number of casualties. To predict the number of casualties in 2010, the
effect of three road safety measures was first examined, and the number of
casualties over the years was estimated if these measures had not yet been
introduced. Based on these results a prognosis was made for 2010. A totally
different model, i.e. not a linear regression model, was used to forecast the
number of crashes and casualties for drivers older than 60 over 20 years.
This model consisted of three submodels, describing the predicted number of
older drivers, the predicted number of crashes involving older drivers, and the
number of casualties in crashes involving older drivers respectively.

An important problem with classical linear and loglinear regression applied
to time series data is the assumption of independence of the observations.
However, repeated observations over time are usually not independent at
all, since last year’s number of casualties is often quite a good predictor for
current year’s number of casualties. In a classical linear regression this is
reflected in residuals that are serially correlated. This results in statistical
tests whose standard errors are too small, and therefore in overoptimistic
conclusions about the relations between variables that evolve over time. This
in turn results in forecasts that are flawed. ARIMA and DRAG models, on the
other hand, do take the dependencies between observations into account.

All the developed DRAG models have basically the same structure, they all
consist of several layers. The first layer describes the road demand, either
expressed as the total road mileage or as the total fuel sales. The next layer
is dedicated to the explanation of the number of crashes and victims. Finally,
in the last layer the severity of the crashes is explained, where the severity
is expressed as the number of persons injured per crash with bodily injury
and the number of persons killed in an crash with bodily injury. Each layer
consists of one or more models, each of them containing a large amount of
explanatory variables, varying from weather conditions to economic activities.

DRAG models have several disadvantages. First, being extended ARIMA
models, the observations should be stationary. This means that they must
have constant mean and variance over time. Since this is not the case for
time series, the observations should be filtered first. Another disadvantage
is the large amount of explanatory variables. For forecasting purposes the
future values of all these variables need be modelled separately.
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SWOV uses structural time series are used to describe, explain and forecast
developments in Dutch road traffic safety. This type of time series does
not have the disadvantages described above: structural time series do
not require stationarity, and the explanatory and dependent variables are
modelled simultaneously.
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1. Introduction

Two objectives of the SWOV’s Road Safety Assessment Department are:
– to build explanatory models for disaggregated developments of road

traffic safety in the Netherlands;
– to obtain forecasts for the future development of road traffic safety based

on the modelled disaggregated developments in the past.

Two aspects are essential in setting up explanatory models for the analysis of
developments in road safety. The first is that a theoretical (conceptual) model
needs to be designed, indicating which explanatory variables are assumed
to influence developments in road safety; the second aspect is the choice
of the analysis technique that is most suitable for the empirical validation of
the relations hypothesized in the theoretical model. In the current research
program we have worked on these two aspects in separate projects.

In a different project from the one presented in this report, a theoretical
model was developed based on existing knowledge about the factors that
affect the occurrence of road accidents of a certain severity. At the core of
this model is the following equation: accidents = exposition x risk, as applied
within a certain time and space interval. The objective is to add explanatory
variables to this equation which affect road safety within that same time and
space interval. Since an explanatory variable usually does not affect all types
of accidents, it is considered important to disaggregate the entire traffic
process.

In the present study, the main focus has been on obtaining an inventory
of the analysis techniques used internationally to empirically validate the
relations between exposure and risk on the one hand, and explanatory
variables on the other, for disaggregated types of accidents. The objective
was to see whether we could learn from the experiences of researchers in
other countries on this subject.

In presenting the relevant studies we will not only discuss which analysis
techniques were used, but also at what level of disaggregation they were
applied, and which explanatory variables were included. Studies solely
concerned with the analysis of accident data (and which did not even
consider exposure data) were excluded from the inventory.

We were particularly interested to see whether other countries had used
structural time series techniques for the analysis of their road safety data,
since previous SWOV research found that this technique is best suited for the
analysis of time series data (Bijleveld & Commandeur, 2006).

Several studies corresponding to the two objectives of SWOV’s Road Safety
Assessment Department were found. The methodological approaches
used in Great Britain are the most helpful in achieving these objectives and
will hence be extensively discussed. The methodologies used in Canada,
Belgium, Sweden, France, and Spain will also be reviewed and presented.

In this report a model is defined as one or more mathematical equations
which relate road safety to several variables. A method or methodology will
entail the way in which the model is developed, for example which technique
is used to estimate the parameters of the models.
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2. Great Britain

For Great Britain three models will be discussed which forecast the road
safety at different disaggregation levels. These models were developed by
Broughton (1991), Broughton et al. (2000) and Maycock (2001).

Broughton (1991) developed four models to forecast the number of road
crash casualties of different severities in 2000. For this purpose he studied
British casualty trends since 1949. He paid special attention to certain
statistical questions affecting the confidence intervals for the forecasts. The
model and the methodology used are described in Section 2.1.

Section 2.2 discusses the methodology of Broughton et al. (2000). This was
used to forecast the number of casualties at three severity levels in 2010 for
five road user groups and two road type categories. This methodology takes
into account the effect of several road safety measures.

Finally, Maycock (2001) developed a model to forecast the road safety
of a specific group of the population in Great Britain, the over-60s. This
model consists of three submodels, predicting the number of older drivers,
the number of crashes they are involved in and the resulting number of
casualties, disaggregated by gender and age group. This model is discussed
in Section 2.3.

2.1. Forecasting the number of casualties in the year 2000

2.1.1. The basic model

Several authors have noted that for several decades the fatality rate per
hundred million vehicle kilometres travelled has been decreasing by an
almost constant percentage each year. The statistical strength of this relation
in Great Britain was shown by Broughton (1988), with the model taking two
specific safety measures into account: the introduction of compulsory seat
belt wearing in 1983 and the very short impact of drink-driving legislation in
1968.

Broughton (1991) extended the analysis of Broughton (1988) to data from
the period 1986-1989 using the basic model:

log

(

C

T

)

= a + b · y + s + ε, (2.1)

where C is the total number of casualties in year y, T is the total traffic in
year y, a, b are the model parameters to be estimated, ε is the error term and
s measures the effect of the compulsory seat belt wearing, i.e., s = 0 prior to
1983 and s = s′ from 1983. The short impact of the drink-driving legislation
in 1968 was allowed for by removing this year from the data.

Four separate models of the form (2.1) were fitted for:
– the number of fatalities;
– the number of killed and seriously injured persons (KSI);
– the number of all casualties;
– the number of all injury crashes.
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The model parameters were determined by ordinary linear regression.
Confidence intervals were computed for the parameter estimates and for the
annual rate of decline of the casualty rate, which can be computed as:

B = 100 · e−b.

The fit of the models to the data was good. The proportion of variance
explained was higher than 0.98 for each model. This high value can also be
a consequence of misinterpreting purely random variation as systematic
variation, see Fridstrøm et al. (1995).

2.1.2. Analysis of the residuals

Before using the models for forecasting purposes, the residuals were
analysed. This analysis consisted of two parts: studying whether the rate of
decline did change and checking for autocorrelation.

The first part of the analysis is important because model (2.1) assumes that
the rate of decline is constant. So if the rate of decline did change, the model
should be altered in such a manner that it takes this change into account.
This was the case for the model for the number of fatalities and for the model
for KSIs, the killed and seriously injured. Indeed, residuals indicated that
these numbers decreased more rapidly over recent years starting in 1983. To
test this the model (2.1) was altered into

log

(

C

T

)

= a + b · y + c · (y + 3) + s + ε, (2.2)

where c = 0 prior to 1983 and c = c′ afterwards. This model assumes that
the annual change in the dependent variable was b before and b + c′ after
1983. A c′ deviating significantly from zero hence indicates that a change in
trend did occur. Such a c′ was found for the models for the fatality and KSI
rate.

The presence of autocorrelation can be tested by plotting the residuals
against time. For the casualty and injury crash rate the residuals resulting
from the original model were used, whereas for the fatality and KSI rate the
residuals from model (2.2) were used. The model for the KSI rate seemed to
overestimate the rate for certain periods and to underestimate it for others,
which is evidence for autocorrelation or misspecification. Additional (formal)
tests were conducted, which confirmed that the model for the KSI rate indeed
was affected by autocorrelation. The tests also showed that the models for
the casualty and injury crash rate were affected by autocorrelation. This
means that for these three models the parameter estimates can still be quite
accurate, but that the computed standard errors may be too small.

The problem of autocorrelation occurring in the models for the casualty
and injury crash rate were solved by transforming the dependent variable
according to the following transformation:

z′(y) = z(y)− ρz(y − 1),

where z is a variable depending on time y, ρ is a measure for the degree
of autocorrelation estimated from the data and z′ is the transformed
variable. The residuals of the transformed models were found to be free of
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autocorrelation, so the estimates resulting from the models can be accepted.
The parameter estimates changed a little, whereas the standard errors were
2.5 times larger than the standard errors for the original estimates.

2.1.3. The forecasts of casualties

The developed models were used to forecast the casualty rates for future
years, under the assumption that road safety measures were introduced
at the same rate and with the same effectiveness as in the past. For the
forecasts of fatality and KSI rates model (2.2) was used, whereas model
(2.1) was used for the other two rates. From the predicted casualty rates the
predicted number of casualties can be computed if the future traffic growth is
known or can be estimated.

Estimates of the future traffic growth were based on a prediction of the
Department of Transport. This prediction was that the mileage would grow
between 1989 and 2000 by 40% and 23% under two economic scenarios
that represent optimistic and pessimistic combinations of assumptions about
growth in the Gross Domestic Product and fuel prices. The resulting casualty
forecasts were expressed as percentages of the averages for 1981-1985,
which is a baseline often used in Great Britain for evaluating progress in
reducing casualties.

2.2. Forecasting the number of casualties in the year 2010

In October 1997 the Department of Transport (DOT) of Great Britain
announced the intention of setting a new national casualty reduction
target for 2010. Following this announcement the DOT established the
‘Safety Targets and Accident Reduction’ (STAR) Group, consisting of eight
subgroups, to work on the development of the new road safety strategy and
the numerical targets. The results derived by the subgroup concerned with
the numerical context for the new targets were reported by Broughton et al.
(2000). The numerical context was provided by forecasting the number of
casualties in 2010 under appropriate assumptions about the traffic volume
in that year. The used forecasting method will be discussed in the next
subsections.

2.2.1. The basic model

Broughton et al. (2000) adopted the linear relationship between the logarithm
of the casualty rate (defined as the number of casualties of a specific severity
per measure of traffic volume) and time found in previous studies, including
Broughton (1991). The basic model of Broughton et al. (2000) is hence of the
form

log

(

Ft

Mt

)

= a + b t + εt, t = 1, . . . , n, (2.3)

where Ft is the number of traffic casualties of a specific severity in year t and
Mt is the amount of traffic volume in year t.

Model (2.3) can be used to calculate the number of casualties for future
years. This deduction involves estimating the parameters a and b based
on data from the past by ordinary linear regression and then computing
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log(Ft/Mt) for a year in the future using the estimated values of a and b. The
simple equality

Mt · e
log( Ft

Mt
) = Mt ·

Ft

Mt
= Ft.

shows that the number of casualties in year t can be computed once Mt is
known.

2.2.2. Disaggregations

Broughton et al. (2000) developed separate models, all of the form given in
(2.3), for the following disaggregations:
– severity of injuries, consisting of three categories: killed, seriously injured,

slightly injured;
– group of road user, consisting of five categories: car occupants,

pedestrians, bicyclists, motorcyclists (including users of mopeds and
scooters and other two-wheeled motor vehicles), other (a small group
including people travelling by bus, coach, van or lorry);

– road type, consisting of two categories: urban and rural.
This adds up to a total of thirty models.

To deduce the number of casualties from these models, different traffic
volumes Mt were used for different groups of road users. It was defined to
be
– the volume of car traffic in year t for car occupants;
– the total traffic volume in year t for pedestrians, bicyclists and other;
– the volume of motorcycle traffic in year t for motorcyclists.

2.2.3. Road safety measures and their effects on road safety

It is not sufficient to just extrapolate the developed basic models to forecast
the number of casualties in 2010. Indeed, these basic models just show the
trend in the past and they do not take explicit account of road safety policies.
This section will describe how future measures can be incorporated in the
forecasting method.

There is a wide range of possible road safety measures which influence the
number of casualties. It is impossible to take them all into account. Therefore
Broughton et al. (2000) only chose three types of measures which are known
to have a significant effect on the casualty rates. These types of measures
are:
– improved standards of passive safety in cars;
– measures to reduce the level of drink-driving;
– road safety engineering.
Broughton et al. (2000) described what the number of casualties since 1983
might have been if these measures had not yet been introduced. These
adjusted numbers indicated the effect of all other road safety activities
together. These other road safety activities were referred to as the core road
safety activities.

Here it will only be explained in which way the effect of measures to reduce
the level of drink-driving and the effect of the core road safety activities can
be quantified. The computations will be illustrated with the Dutch data in
Table 2.1.
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% increase of casualties due

Year Ft F alc
t palc

t F̂ alc
t to alcohol without measures Mt

1985 1408 540 0.383523 540.00 0.00 60.6

1986 1442 586 0.406380 553.04 -5.62 63.2

1987 1355 405 0.298893 519.67 28.31 64.8

1988 1315 382 0.290494 504.33 32.02 70.6

1989 1334 437 0.327586 511.62 17.08 71.2

1990 1310 387 0.295420 502.42 29.82 73.6

1991 1271 384 0.302124 487.46 26.94 72.1

1992 1195 297 0.248536 458.31 54.31 76.4

1993 1145 317 0.276856 439.13 38.53 73.8

1994 1141 333 0.291849 437.60 31.41 73.6

1995 1296 370 0.285494 497.05 34.34 77.5

1996 1297 383 0.295297 497.43 29.88 78.7

1997 1243 370 0.297667 476.72 28.84 80.3

1998 1175 326 0.277447 450.64 38.23 82.2

1999 1275 386 0.302745 488.99 26.68 85.3

2000 1269 322 0.253743 486.69 51.15 85.9

2001 1194 281 0.235343 457.93 62.96 87.0

2002 1172 297 0.253413 449.49 51.34 88.7

2003 1184 330 0.278716 454.09 37.60 89.4

Table 2.1. Example data for the computation of the effect of alcohol on
casualties

The basic assumption in the computations is that the proportion of casualties
from crashes in which alcohol played a part should be equal for the years
following 1985 if no measures against drink-driving are implemented after
1985. Because the proportion of alcohol-related casualties in 1985 is equal
to

palc
1985 =

F alc
1985

F1985
=

540

1408
= 0.383523,

the number of alcohol-related casualties for t = 1986, . . . , 2003 without
measures having been taken can be computed as

F̂ alc
t = palc

1985 · Ft = 0.383523 · Ft.

This implies for example that F̂ alc
2003 = 0.383523 · 1184 = 454.09, and hence an

increase of 454.09− 330 = 124.09 casualties due to alcohol if no measures
are taken.

The sixth column of Table 2.1 contains the yearly percentages with which
the real number of casualties due to alcohol should be multiplied to get
the expected number of casualties due to alcohol if no measures against
drink-driving would have been implemented. These percentages can be
computed as
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100 ·

(

F̂ alc
t − F alc

t

F alc
t

)

.

One of the conclusions which can be drawn from Table 2.1 is that the
measures against alcohol in traffic have led to a reduction of 37.60% of
casualties in the year 2003.

Analogously the effects of safety of cars and the improvement of
infrastructure were estimated.

Now that the effects of measures against drink driving, of safety of cars and
of the improvement of infrastructure are known, the effects of all other road
safety activities together (the core road safety activities) can be estimated.
For this estimation, the mobilities Mt for the example data in 1985 and
2003 are needed. The mobilities in 1985 and 2003 are M1985 =60.6 and
M2003 =89.4. If in the period 1985-2003 there had been no improvement in
road safety the casualty rate F2003/M2003 should be equal to the casualty
rate F1985/M1985 which is computed to be 23.23. Under the assumption that
the number of casualties is reduced by respectively 2%, 7% and 3% due to
the three types of safety measures mentioned before, the casualty rate in
2003 would not be 23.23 but

F1985

M1985
· (1 −

2

100
) · (1 −

7

100
) · (1−

3

100
) = 20.54.

This formula is based on the assumption that effects of measures are
independent. So every reduction percentage is applied to the number of
casualties already reduced by the other two types of measures. For the
unknown reduction percentage x of the core road safety activities the
following equation should hold:

F2003

M2003
=

F1985

M1985
· (1−

2

100
) · (1−

7

100
) · (1−

3

100
) · (1−

x

100
),

from which it follows that

x = 100 ·

(

1−
F2003

M2003

F1985

M1985
· (1− 2

100 ) · (1− 7
100 ) · (1 − 3

100 )

)

= 35.52.

So the reduction percentage of the core road safety activities is, in this
example, equal to 35.52%.

It should be remarked here that this estimate of x is only based on the data
for the years 1985 and 2003. The data for all the other years is ignored.
Hence it can be expected that a better estimate can be found by using all the
data.

2.2.4. Baseline prognoses for 2010

From the data in Table 2.1 it is possible to compute the total number of
casualties under the assumption that no measures against drink-driving were
implemented. Indeed, this number, denoted by F̂t, equals

F̂t = Ft − F alc
t + F̂ alc

t .
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Now two models, both of the form (2.3), can be considered. The first one is
based on the real data Ft and the other one on the estimated data F̂t. Linear
regression gives the following results:

log

(

Ft

Mt

)

= 58.726− 0.028t + εt,

log

(

F̂t

Mt

)

= 49.156− 0.023t + εt.

Based on these two models the prognosis for the casualty rate in 2010 can
be made under the assumption that the core road safety activities stay on
the level of 2003 and that no more measures against drink-driving will be
taken. This prognosis is made by drawing a line from the point on the first
regression line corresponding to t = 2003 up to t = 2010 parallel to the
second regression line, see Figure 2.1.

Figure 2.1. The casualty rates with and without measures against
drink-driving and the prognosis for 2003 and further years based on them.

Year

C
as

ua
lty

ra
te

The prognosis for the casualty rate in 2010 can be used to deduce the
expected number of casualties in 2010. The expected number of casualties
depends on the chosen future scenario for the Mt. Broughton et al. (2000)
identified several possibilities for the future developments of the mobility of
the different groups of road user. For car traffic the following four scenarios
were investigated:
– a fast increase of mobility;
– a central increase of moblity;
– a slow increase of mobility;
– no change in mobility.
These forecast come from the 1997 national road traffic forecasts from the
Department of the Environment, Transport and the Regions. The central
increase is the most likely outcome, the fast and slow increases correspond
to some confidence bounderies.

For the other road user groups similar scenarios were identified, based on
knowledge of past trends. The combined scenario for all mobilities should
not contradict the linkages which exists between the different road user
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groups. For example, if it is assumed that the car traffic stays on the same
level, then it is reasonable to assume that there will be more walking and
cycling.

2.2.5. Adding extra measures to the baseline prognoses for 2010

After the prognoses have been determined for the numbers of casualties
in 2010 for several subgroups, the effects of additional measures can be
computed as:

F̂2010 · (1− µ1) · (1− µ2) · . . . · (1− µm).

Here µi is the estimated reduction factor of measure i. So if measure 2 is
expected to reduce the number of casualties by 2% then µ2 =0.02. The
number of casualties in 2010 when measure 2 is implemented is then equal
to F̂2010 · 0.98.

2.3. Forecasting older driver crashes and casualties

The number of older drivers will increase considerably over the next
years, due to several reasons. First of all, during the last decades the
life expectancy increased, which resulted in a faster growth (in terms of
percentage) of the older groups in the population than the population as a
whole. Secondly, the proportion of the older members of the population who
have a driving licence increased over the years and is expected to continue
to do so. This is particularly true for women.

This increase in the number of older drivers will cause a road safety problem,
because older drivers have a higher crash rate than other drivers. The British
Department of the Environment, Transport and the Regions funded a study
of older drivers. One part of this study, which is the subject of this section,
aimed at forecasting the numbers of crashes and casualties for older drivers
(over 60) by gender and age group over the next 20 years (Maycock, 2001).

2.3.1. The structure of the model

The model used by Maycock (2001) for the prediction of the number of
crashes involving older drivers and the resulting casualties consists of three
submodels. The first submodel is given by:

Predicted number of older drivers = (Predicted number of people in the
relevant sector of the population) × (Predicted proportion of drivers in
this sector).

The predictions for the population were published by the Government
Actuary’s Office. The prediction of the proportion of drivers was based on the
data for the years 1973 up to 1997. The methodology for this prediction will
be discussed later.

Using the outcome of the previous submodel, the number of crashes
involving an older driver was computed via:
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Predicted number of crashes involving older drivers = (Predicted
number of older drivers) × (Predicted crash rate of older drivers).

The crash rate of drivers is defined as the number of crashes per year
a driver is expected to be involved in as a driver. It was estimated from
past national crash data taking into account the facts that crash rates have
changed over the years and that the mileage that drivers drive has increased
over the years.

Finally, the predicted number of crashes involving older drivers was used to
compute the casualties caused by older drivers as follows:

Predicted number of casualties caused by older drivers= (Predicted
number of crashes involving older drivers) × (Predicted casualty rate
in this type of crashes)

Here the casualty rate is defined as the number of casualties per accident.

2.3.2. Disaggregations

The predicted number of drivers, crash involvements and casualties
was computed for both male and female drivers. For each gender the
computations were carried out for seven age groups: 60-64, 65-69, 70-74,
75-79, 80-84, 85-89 and 90 and older. The number of crashes was computed
for two severities separately: KSI (killed and seriously injured) crashes
and slight crashes. The same disaggregation was used for the number of
casualties.

2.3.3. Predicting the proportion of licensed drivers

From the structure of the model sketched in Section 2.3.1 it follows that
the first step in forecasting the road safety of older drivers was predicting
the proportion of drivers for both genders and each older age group. The
horizontal thick line in Figure 2.2 divides the drivers in older and younger
groups, whereas the vertical thick line divides time in past and future. Hence
the first step was to predict the proportion of drivers in the cells in the right
bottom rectangular of the figure. The development of the proportion of
drivers can be described in two ways, which are illustrated by the horizontal
and diagonal arrows in Figure 2.2.

The horizontal arrows in Figure 2.2 illustrate the change of the proportion
of drivers in a certain age group, say for example the group 60-64, over the
years. The relationship between the proportion of drivers in the population
and time was assumed to be a logistic curve described by:

PA(t) =
1

k + be−at
, (2.4)

where PA is the proportion of drivers in a certain age group A and a > 0, b

and k are model parameters. So in year t the proportion of drivers in age
group 60-64 is denoted by P60−64(t). The upper limit of the proportion of
drivers in each age group is given by:

PA,lim = lim
t→∞

PA(t) =
1

k
.
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Figure 2.2. Illustrating the principles involved in the prediction of the proportion of drivers in the
population.

The diagonal arrows in Figure 2.2 illustrate the development of a cohort,
which is defined to be a certain age group in a certain 5-year period. For
example, the group 35-39 in the period 1970-1974 is the same cohort as
the age group 40-44 in the period 1975-1979 and so on. The proportion of
drivers in a cohort changes due to people getting their licence and people
giving up driving. At first the proportion increases rapidly because most
people are getting their licence just after becoming 17. Then the increase
becomes smaller, until it balances the rate at which drivers are giving up
driving. At this time the proportion of drivers in the cohort has reached its
maximum, denoted by PC,max. After reaching this maximum the proportion
of drivers will decrease. This decrease was assumed to be represented by
a curve in which 1 − PC/PC,max increases exponentially, where PC is the
proportion of drivers in a certain cohort C. In formula:

1−
PC

PC,max
= dec(Age−A0), (2.5)

where A0 is the age at which the maximum proportion is reached. It turned
out that the age of 65 is appropriate.

From Figure 2.2 it follows that the data to the left of the vertical thick line
can be used to estimate the parameters in (2.4) and (2.5), and hence to
predict the proportion of drivers in the future. The logistic form is the most
convenient form to predict the future trends, but it was hard to determine
the value of PA,lim for many of the age/gender groups. This problem was
solved by using the cohort approach, which makes it possible to estimate
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the proportion of drivers in 2020-2024. So the proportion of drivers in all
age groups was known for the periods up to and including 1995-1999 and
it was estimated by the cohort approach for 2020-2024. Now the logistic
function passing through these two points could be calibrated, resulting in a
convincing estimate of PA,lim.

The process of estimating the proportion of drivers in 2020-2024 by
the cohort method consisted of two steps: first the value of PC,max was
estimated, then the parameters A0, c and d were be determined. The
proportion of drivers in each age group was known for the 5-year periods
before 2000. A quadratic regression of the proportion of drivers in an age
group on time was carried out on this data. The resulting relationship was
used to calculate PC,max. Plotting the values of 1/PC,max against the cohorts
implied that PC,max followed a logistic curve. The results of fitting a curve to
these points are:

1

PC,max
=

{

1.03 + 0.022e0.070·C, for male drivers,

1.03 + 0.103e0.086·C, for female drivers,

where C is a number corresponding to each cohort, such that C = 0 for the
cohort of age 35-39 in 1995-1999 and C increases by units of five for each
cohort. Thus C = 55 for the cohort of age 90+ in 1995-1999. In order to
be able to predict the proportion of drivers for each age group over 60 the
values of PC,max should be calculated for the cohorts with age 35-39 up to
65-95 in 1995-1999, which can be done using the equations above.

As mentioned earlier the variable PC,max denotes the highest possible
proportion of drivers in cohort C. Once PC,max is reached the proportion
of drivers in the cohort will decrease. This decrease is described by the
function in (2.5). The identification of the parameters in this function was
done two steps:
1. First the ratios PC/PC,max were calculated for the cohorts with age 70-74

up to 90+ in 1995-1999, using the estimated values of PC,max. The ratios
exceeding 1 were omitted.

2. The parameters of the function were determined by plotting
ln(1 − PC/PC,max) for the same cohorts as in the first step against the
mid-point age of the cohort minus a suitable value for A0. The value for
A0 was chosen to be 65.

There turned out to be no statistical significant difference between the plots
for female and male drivers, hence the data were combined. The function
which describes the development of the proportion of drivers (male and
female together) in a cohort is given by

PC = PC,max(1− 0.02e0.14(AGE−65)),

where AGE is the mid-point age of the age groups. This function was
expected to change over time due to an increase in life expectancy. This
increase was expected to be 2.2 years between 1994 and 2031 for men and
women, which corresponds to 0.3 years per five year period. By including a
term in the driving increment function this change was taken into account.
The driving increment function becomes

PC = PC,max(1− 0.02e0.14(AGE−65−0.3N)),

where N is the number of future 5-year periods with N = 0 for 1995-1999.

18 SWOV publication R-2006-34

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands



Using this function the proportion of drivers in each age group above 60
years of age in 2020-2024 was estimated.

Next the logistic prediction curve given by (2.4) was computed. Because this
curve had three parameters (a, b, k) and had to pass through two points, the
value of one parameter had to be chosen. In this case a was supposed to be
the same as for the curves based on the given initial data. Next b and k were
estimated for each age group, for male and female drivers separately.

2.3.4. Predicting the crash rate of drivers

As mentioned before, the crash rate is defined as the number of crashes per
year a driver is expected to be involved in. Because crash rate changes
over time, it should be modelled. Under the assumption that the crash rate
decreases with a constant multiplier per year, the model for the crash rate is
given by:

Crash rate = A0(Age, Gender)e−bYear,

where b is the fractional reduction per year, Year is the year in which the
crashes took place and A0 is a constant which is dependent on the age
group and gender being considered. The value of b was assumed to be the
same for each age group but different for the two genders. The values of A0

and b were estimated on basis of crash data by severity and crash type over
the years 1986-1997.

At first a total of 90 models were fitted, namely separate models for male and
female drivers, the nine age groups and for the following five categories:
– KSI crashes;
– slight crashes;
– single-vehicle crashes with a pedestrian (all severities);
– single-vehicle crashes with a cyclist (all severities);
– single-vehicle crashes with any other object (all severities).
It was tested if the age effect for the different types of crashes were different.
This turned out not to be the case, so the last three categories were no
longer considered as different crash types.

It is logical to expect that the crash rate also depends on the mileage
travelled by a certain age/gender group in a year, so the previous crash
rate models could be improved by including the average annual mileage
appropriate to each driver group. To do so, the average annual mileage
should be known. The models for the average annual mileage were based
on several National Traffic Surveys for male and female licence holders
separately and for the various age groups. The most appropriate models are:

Annual mileage = (32.014− 564Age + 2.4Age2)e0.000237Age·Year,

for male licence holders, and

Annual mileage = (9.557− 129Age + 0.32Age2)e0.000237Age·Year,

for female licence holders, where Year is the actual year minus 1992. The
mileage was included in the models for crash rate in two ways:

Crash rate = A1(Age, Gender)Me−bYear
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and

Crash rate = A2(Age, Gender)M0.3e−bYear,

where M is the average annual mileage appropriate to each gender and age
driver group and A1 and A2 are constants depending on the age group and
gender of the driver. The second model is far less sensitive to mileage and
errors in mileage than the first model and was hence used for prediction
purposes. This corresponds to what was done by for example Maycock,
Lockwood & Lester (1991) and Forsyth, Maycock & Sexton (1995).

2.3.5. Predicting the casualty rate

Recall that the casualty rate is defined as the number of casualties per
accident. Two questions are of interest:
– Do older driver crashes result in a different pattern of casualties from

those of younger drivers?
– Has the pattern of casualties changed over the years?
By studying the data for the years 1979, 1983, 1987, 1992 and 1997 it was
concluded that there were small differences in casualty patterns between the
age groups and between the genders, but the differences were not large in
practical terms. Furthermore, the only notable change in crash pattern over
the years was the fall in motorcycle casualties, but this was very probably a
consequence of the decrease in motorcycling.

Because the casualty patterns were not very different for different age
groups and years, the type of crash did not have to be taken into account
when estimating the casualty rates for the two severities (KSI and slight)
separately. It was only necessary to determine if the casualty rate depends
on age group and gender and whether or not it had changed over the years.
In order to do so crash and casualty data for the same five years as before
were analysed. For each year two ratios were computed:

KSI casualties
KSI crashes

and
slight casualties

all crashes
.

There is a difference in the severity of the crashes by which the number
of casualties is divided, because slight injuries can arise from crashes of
all severities, while KSI casualties can only arise from KSI crashes. The
analysis of these ratios lead to the following conclusions:
– both for KSI and slight casualty rates there was no significant difference

between the genders;
– for KSI casualty rates there was no trend over time and the difference

between the age groups was of no practical importance;
– for the slight casualty rates there was a trend over time and an age effect.
For the prediction of the number of KSI casualties it was hence assumed that
the KSI casualty rate was constant over the years and equal for each age
group. This constant value was taken to be the overall average value of the
computed ratios, which was 1.22 KSI casualties per KSI accident. The slight
casualty rate was described by

Slight casualties per accident = 1.34e−0.002Age+0.01(Year−1992).

Now all the necessary information was available to predict the future number
of crashes and the resulting casualties for age groups 60-64 up to 90+.
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3. Canada

Gaudry (1984) and Fournier & Simard (2002) used what are known as
DRAG models to explain the road use demand, the crashes and their
severity in the province of Quebec. The first DRAG model, now referred to
as DRAG-1, was developed by Gaudry (1984). The Société de l’Assurance
Automobile du Québec (SAAQ), requested further development, which
resulted in the DRAG-2 model, developed by Fournier & Simard (2002). An
overview of both DRAG models is given in this section.

3.1. The basic structure of the DRAG model

The underlying structure of both the DRAG-1 and the DRAG-2 model is quite
similar. It can be described as follows:

DR ←− (Xdr), (3.1)

V I ←− (DR, Xvi), (3.2)

where the arrows means “determines in a certain way” and Xdr and Xvi

stand for collections of explanatory variables for road demand (DR) and for
victims (V I) respectively. If a variable belongs to both collections it has a
direct effect on V I via the relation in (3.2) and an indirect effect via its impact
on DR as described in (3.1). Two types of victims were considered, namely
the number of injured persons and the number of those killed. One of the
differences between DRAG-1 and DRAG-2 is the road use demand. In the
DRAG-1 model this is expressed in the consumption of gasoline and diesel
fuel, whereas in the DRAG-2 model it is measured by the distance travelled
by gasoline-powered and diesel-powered cars separately. A consequence of
this difference is that the detailed structure of both models is slightly different.

Both models consist of several layers and equations. In the first two layers
of the DRAG-1 model the fuel sales for highway use (gasoline and diesel
separately) are extracted from the data on total fuel sales. This is done
because the total fuel sales also include the fuel sales for off-highway use,
for example agriculture and building sites, which is not a measure for the
road demand. The extraction can be done using the following linear form:

DC = DNR + DR =
∑

i

βiX
dnr
i +

∑

j

βjX
dr
j + edr,

where DC is the total fuel sales measured, DNR is the fuel sales for
off-highway uses, DR is the fuel sales for highway uses, Xdnr

i are the
explanatory variables of the sales for off-highway uses, Xdr are the
explanatory variables for highway uses and edr is the residual error.

The first layer of the DRAG-2 model consists of two equations which explain
the distance travelled by gasoline- and diesel-powered cars separately.

The next three layers in both models are dedicated to the explanation of
the number of crashes and victims. The first of these layers explains the
following three crash categories:
– property damage only (PDO) crashes;
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– crashes with at least one person injured;
– and crashes with at least one person killed;

It does this together with two aggregations, namely:
– crashes with bodily injuries;
– the total number of crashes.

In the following layer the severity of the crashes is explained, expressed in
the morbidity (the number of persons injured per crash with bodily injury) and
the mortality (the number of persons killed per crash with bodily injury). Now
the total number of victims can be computed. For example, the number of
injuries is computed as the product of the number of crashes with bodily
injury and the morbidity of these crashes. So the three layers explaining the
number of victims can be written as:

AC ←− (DR, Xvi)

GR←− (DR, Xvi)

V I = AC ·GR,

where AC is the number of crashes of a certain type and GR is a certain
severity.

The equations in the last layer (i.e., V I = AC ·GR) are the only deterministic
equations of both models. All the other equations are stochastic. The
mathematical formulation for each of these stochastic equations is:

y
(λy)
t =

K
∑

k=1

βkX
(λx)
k,t + ut, (3.3)

where Xk,t is the value of the k-th explanatory variable in month t and y(λ)

denotes the Box-Cox transformation of a variable, which is:

y(λ) =

{

yλ
−1
λ , λ 6= 0,

ln(y), λ→ 0,

and where:

ut =
(

eδ0+
P

M
m=1 δmZ

(λzm)
m,t

)

−1/2

vt,

vt =

r
∑

l=1

ρlvt−l + wt.

Here Zm,t, m = 1, . . . , M, are the explanatory variables for the variance of ut.

They are chosen from the set of explanatory variables Xk,t. Furthermore,
wt is white noise. The model parameters βi, δi and ρi are estimated
simultaneously by the maximisation of the log likelihood function.

3.2. Explanatory variables

DRAG models usually involve a large number of explanatory variables.
Therefore it is useful to classify these variables. The classes (with examples
between brackets) for the DRAG-1 and DRAG-2 model were:
1. the dependent variables of the first (two) layer(s), which are the gasoline

and diesel fuel consumption in the DRAG-1 model and the distance
travelled by gas-powered and diesel-powered cars in the DRAG-2 model;

2. the prices (of the fuel, public transport and car maintenance);
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3. motorisation:
– quantity (the number of motor vehicles of various categories);
– vehicles characteristics (the size of vehicles and presence of seat

belts);
4. networks:

– laws, regulations, police (the speed limit and patrol frequency);
– levels of services of transports modes (the transit wait time);
– infrastructure, climate (rain and snowfall per day);

5. consumers:
– general characteristics (the number of driver’s licenses per car);
– age (the proportion of drivers between age 16 and 24 compared to the

total number of driver’s license holders);
– gender (the proportion of pregnant women in the group of women

holding a driver’s license);
– ebriety or vigilance (drugs per driver’s license);

6. final economical activities and intermediates (the vacation index and Expo
1967);

7. et cetera:
– administrative decisions that affect the measurement;
– aggregation (month composition);
– seasonal and constant (regression constant).

The meaning of a certain explanatory variable is not the same for all layers
where it can be found. For example, a variable such as snow explains the
level of road use demand in the first (two) layer(s), whereas in the other
layers it explains the change in crash probability and crash severity to a given
road demand.

3.3. Representation of the results

In this section the results of the DRAG models will be discussed. The results
of the DRAG-2 model will be discussed in more detail.

The appropriate Box-Cox transformation and the presence of
heteroscedasticity were identified by means of likelihood ratio tests. This test
was not used to evaluate the contribution of particular variables. Instead, this
was done by comparing the log likelihood L for a reference model to the one
obtained by adding one or more variables. The Student’s t test was used to
examine if the coefficient of a particular variable deviates from zero. It was
decided that a coefficient significantly deviates from zero if the Student’s t is
larger than 2.

The goodness-of-fit of the models (both DRAG-1 and DRAG-2) was
measured by two forms of the Pseudo-R2, which are defined as:

Pseudo-(L)-R2 = 1− e
2
N

(L0−L),

Pseudo-(E)-R2 = 1−

∑N
t=1+r(yt − E(yt))

2

∑N
t=1+r(yt − ȳ)2

.

Here L is the log likelihood of the considered model and L0 is the log
likelihood of the model developed under the assumption that the model is
linear, that the results are homoscedastic and independent and that all the
coefficients βk, except the constant, are equal to zero. Furthermore, E(yt) is
the mathematical expectation of yt and ȳ is the sample mean.
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Table 3.1 summarises the results of the DRAG-2 model. It shows the
distribution of the explanatory variables by means of their t−values. Also the
number of autocorrelation coefficients ρ1, . . . , ρr, the values of the Box-Cox
transformation parameters λx and λy , the Pseudo-(E)-R2 and the number of
used observations are given. Observations that were not used correspond to
the autocorrelation coefficient of the highest order.

Distance Crashes Severity Victims

Elements examined

# explanatory var.

# t−values ≥ 2

# t−values ∈ (1, 2)

# t−values ≤ 2

Autocorrelation parameters

Value of λy

Value of λx

Pseudo-(E)-R2

# observations

# used observations

Gas Diesel

37 32

14 8

3 8

20 16

5 5

0.213 0.174

0.213 0.174

0.994 0.993

445 445

432 431

PDO Injury Fatal

48 47 46

18 18 17

11 14 10

19 15 19

3 4 2

0.241 0.279 0.360

0.241 0.279 0.360

0.963 0.968 0.898

445 445 445

432 433 439

Morbidity Mortality

47 48

8 4

12 13

27 31

2 2

0.539 1.567

0.539 1.567

0.696 0.331

445 445

433 434

Injury Dead

47 48

16 16

17 16

14 16

3 1

0.201 0.367

0.201 0.367

0.964 0.889

445 445

433 439

Table 3.1. Summary of the results of the DRAG-2 model.

The main conclusions that can be drawn from Table 3.1 are:
1. For the equations concerning the distance travelled almost half of the

variables had a low Student t. This means that the corresponding
coefficients did not significantly deviate from zero. The Pseudo-(E)-R2

was over 99% for both equations, which means that the models
reproduced the data very accurately. Both λx and λy were approximately
equal to 0.2 which indicates that the models were close to the logarithmic
function.

2. For the crashes and victims a large proportion of Student t values was
higher than 1. For PDO crashes, bodily crashes and injured persons
the Pseudo-(E)-R2 was over 96%, so these models fitted the data
reasonably well. The values of λx and λy were between 0.20 and 0.28

for the non-fatal crashes and injured victims, hence the corresponding
models were close to the logarithmic function. For fatal crashes and killed
victims the values of λx and λy were close to 0.36. However, the distance
travelled was treated differently than the other explanatory variables. It
was included in the model in linear form (λ = 1) and in quadratic form
(λ = 2).

3. For morbidity and mortality there was a high proportion of unimportant
variables. The values of these variables did not fluctuate much. Also the
goodness-of-fit was not very good, which is shown by the Pseudo-(E)-R2

values of 33% and 69%. The values λx and λy were equal to 0.539 for
the morbidity. This indicates that the model was halfway between the
logarithmic and linear form.

3.4. Forecasts for the period of 1997-2004

Fournier & Simard (2002) obtained forecasts for the years 1997-2004. For
this purpose, the values of the model parameters had to be known, as well
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as the values of the explanatory variables for the forecast period. The values
of the model parameters were determined by using data from December
1956 up to December 1993. Then by using the data from explanatory
variables for the future, forecasts were obtained.

For the two types of distance travelled, for PDO crashes, for bodily injury
crashes, and for injured persons these forecasts were realistic and
acceptable. However, the predicted numbers for fatal crashes and for
killed persons were very small and hence unlikely to be the right numbers.
Therefore, data for the years 1994, 1995 and 1996 were used to re-estimate
all the parameters of the models equations, using the same explanatory
variables, the same autocorrelation structure and the same values for the
Box-Cox parameters. Only the value of λ corresponding to distance travelled
was allowed to be different than its initial value of 2. Indeed, the predicted
number of fatal crashes and killed persons became higher, while the values
of all the other dependent variables remained almost the same.
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4. Belgium

In Belgium two models were developed describing the influence of several
variables on the number of crashes and their severity. The first model is
based on the DRAG model, which was described in Chapter 3, and was
developed by Van den Bossche & Wets (2003). However, there are some
differences with the original DRAG model: exposure was included only as an
explanatory variable, not as a dependent variable and the severity of crashes
was not defined as morbidity and mortality, but as the number of killed and
injured persons.

The other model was developed by Van den Bossche, Wets & Brijs (2004).
Instead of a DRAG model, a multiple regression model with ARIMA errors
was used. Not only was it attempted to explain the past development of
traffic safety, forecasts were also made for a twelve months out-of-data-set
period. Because data was not available, exposure was not included in the
model as an explanatory variable.

The models will be discussed simultaneously in this chapter.

4.1. The data

To keep a balance between availability of information and variability in the
variables monthly data were used. For the DRAG type model data was
available from 1986 up to 2000, whereas the model with ARIMA errors was
fitted on data from January 1974 up to December 2000. Here the last year
was used for forecasting purposes.

Both models had four dependent variables, but they were slightly different.
The dependent variables of the DRAG type model were:
– the number of crashes with injured persons;
– the number of crashes with persons killed;
– the number of persons injured;
– the number of persons killed;

And the variables of the ARIMA model were:
– the number of crashes with slightly injured persons;
– the number of crashes with persons killed or seriously injured;
– the number of persons slightly injured;
– the number of persons killed or seriously injured.

Table 4.1 gives an overview of the explanatory variables which were used in
both models. The dummy variables used to indicate the month in the DRAG
type model were included to cope with seasonality. The model with ARIMA
errors also included dummy variables. These variables corresponded to
January 1979, January 1984, January 1985 and February 1997 and were
added to the model because the numbers of crashes and victims in these
months were extremely low.

4.2. Methodology

It is possible to model the relations between the dependent and explanatory
variables listed above with multiple linear regression. In theoretical linear
regression several assumptions are made about the explanatory variables
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Category Independent variables Model

Exposure Fuel consumption (for gasoline and diesel) DRAG

Prices Price of vehicle maintenance DRAG

Price of adult public transit DRAG

Average fuel price and tax DRAG

Laws and regulations Mandatory seat belt use in front seat in 1975 ARIMA

Introduction of 30 km/h zones in 1988 Both

Improvement of position vulnerable road users in 1991 DRAG

Several regulations introduced in 1992 Both

The imposement of 0.05% alcohol level in 1994 Both

Introduction of right of way for pedestrians in 1996 Both

Weather conditions Quantity of precipitation (ml/100) Both

Average temperature DRAG

Number of days with precipitation Both

Number of days with sunlight Both

Number of days with frost Both

Number of days with snow Both

Number of days with thunderstorms Both

Quantity of precipitation per precipitation day DRAG

Number of sunlight hours ARIMA

Economic activity Inflation (in percentage) Both

Percentage of unemployed people Both

Net exports (Exports - Imports) DRAG

Number of car registrations ARIMA

Percentage of second hand car registrations ARIMA

Time Number of workdays DRAG

Number of Saturdays DRAG

Number of Sundays and public holidays DRAG

Dummy variable for indication of the month DRAG

Months since first observations divided by 100 DRAG

Table 4.1. Summary of the independent variables in Belgium.

and the error term. However, some of these assumptions are frequently
violated when linear regression is applied to time series. These assumptions
are that:
– the explanatory variables may not be perfectly correlated;
– the error terms should be uncorrelated over time;
– the error terms should be identically distributed with mean zero and

constant variance.
The situation were the first assumption is violated, is called multicollinearity.
In this case it is not possible to isolate the effect of a single explanatory
variable. When the error terms are correlated among themselves, i.e., if the
second assumption is violated, then there is autocorrelation. In this case
the variance of error terms and the standard deviations of the regression
parameters may be underestimated and confidence intervals, t−tests or
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F−tests are no longer strictly applicable. It leads to the possibility that a
coefficient is assumed to be significantly different from zero, while it is not.
This is also the case if the third assumption is violated, which is called
heteroscedasticity.

Van den Bossche & Wets (2003) and Van den Bossche, Wets & Brijs (2004)
solved the problems mentioned above in two different ways. The DRAG type
model of Van den Bossche & Wets (2003) allowed for flexible functional
forms and corrected for possible autocorrelation and heteroscedasticity.
Because it is not always necessary to correct for these problems, a gradual
modelling approach was used. First an ordinary regression was carried out.
By verifying the condition indices, high multicollinearity was identified in all
equations. Hence, the variables in the collinear relation were transformed
by Box-Cox parameters. If there was no appropriate transformation the
variable was dropped from the model. Then the new model was tested for
heteroscedasticity, using the Spearman Rank Test and the Modified Levene
Test. The conclusion was that heteroscedasticity was not a serious problem.
Finally, the Portmanteau Q∗-statistic indicated that the null hypothesis of
white noise residuals could not be rejected. However, some autocorrelation
terms were added to the model because of the (Partial) Autocorrelation
Function and the corresponding confidence interval.

The model with ARIMA error terms, used by Van den Bossche, Wets & Brijs
(2004), only corrected for autocorrelation. The obtained models were tested
for multicollinearity and heteroscedasticity, but they turned out to be no
serious problems.

4.3. Results of the DRAG type model

The quality of the different models for the four dependent variables is
described by the values in Table 4.2. Note that the models for the number of
crashes with persons injured and the number of persons injured performed
better than the other two models. The number of observations is the total
number of observations minus 12, which was the maximum autocorrelation
level in the models.

Crashes Crashes Persons Persons

with injuries with killed injured killed

Log likelihood -1,113.82 -634.36 -1.192.02 -649.152

Pseudo-(E)-R2 0.9003 0.6459 0.8735 0.6961

Pseudo-(E)-R2 adjusted 0.8785 0.5835 0.8501 0.6401

Number of observations 168 168 168 168

Table 4.2. Goodness of fit of the DRAG model for Belgium.

4.4. Forecasting with the ARIMA model

The developed model was used to forecast the dependent variables for the
year 2000. The values of the explanatory variables were available. Because
the observed values of the dependent variables were known for 2000 a
comparison could be made between the observed and the predicted values.
They were quite close, but crashes were predicted better than victims.
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5. Sweden

In January 1991 The Stockholm Traffic Agreement, also called The Dennis
Traffic Agreement, was signed. This agreement contained three measures
to solve urban transportation problems in Stockholm and its surroundings.
These measures are:
– a ring road system with one completed inner ring and one

horse-shoe-shaped outer ring;
– a public transport commuter rail upgrading and a tangential light rail line;
– a system of vehicle tolls at the inner ring and on the outer western

by-pass to reduce road traffic and to finance the road program.
During the process of implementation of these measures the authorities
wanted to be able to monitor the impacts of the measures.

For this purpose two consultancy bureaus were requested to carry out the
MAD-project, where MAD stands for ”Measurement and Analysis of the
Dennis Agreement”. The aim of this project was to give a description of and
an analytic tool for assessing the past development of several aspects of
traffic in the Stockholm region during the last 25 years.

Tegnér et al. (2002) developed two models which were used in the
MAD-project to study the traffic safety development in the Stockholm region.
These models are called DRAG-Stockholm-1 and DRAG-Stockholm-2, where
the latter is an improvement of the first. Tegnér (2000) developed a third
model, the DRAG-Stockholm-3 model. These DRAG-models are discussed
in Section 5.1.

A far more simple model has been developed by Brüde (1995). This model
used time series analysis covering the years 1977-1991 to forecast the
number of road fatalities up to the year 2000 in the whole of Sweden. Only
two explanatory variables were used, namely time and traffic. Section 5.2
discusses this simple model.

5.1. The DRAG-type models

5.1.1. The structure of the model

The DRAG-Stockholm-1 model consists of three typical DRAG submodels:
– an exposure model of total road mileage (vehicle kilometres) for gasoline

driven cars;
– a frequency model of the total number of injury and fatal crashes;
– three severity models for the numbers of slightly injured, severely injured

and fatalities per accident.
The other two DRAG models have a similar structure. However, not only
the gasoline vehicle kilometres were included, but also the diesel vehicle
kilometres. Moreover, the crash frequency model of DRAG-Stockholm-2
consists of three submodels:
– the number of slight injury crashes;
– the number of severe injury crashes;
– the number of fatal crashes.

The numbers in the third submodel of the DRAG-Stockholm-1 model were
changed correspondingly into:
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– slightly injured persons per bodily injury accident;
– severely injured persons per severe and fatal accident;
– fatalities per fatal accident.

5.1.2. Explanatory variables

For the DRAG-Stockholm-1 and -2 model monthly data for a total of a
hundred variables was collected for the period 1970-1995. This period was
extended to 1970-1998 for the DRAG-Stockholm-3 model. Not all variables
were available or defined for the Stockholm region, so national data was
used for these variables instead. The used explanatory variables described
the economic activities, the vehicle fleet, prices and public transport, road
network and restrictions, climate and calendar, special events and health. In
the DRAG-Stockholm-2 model more explanatory variables were tested than
in the DRAG-Stockholm-1 model.

5.1.3. Results

The modelling results of the DRAG-Stockholm-1 model are described in
Table 5.1. The overall correspondence between observed and estimated
vehicle kilometres was also tested and turned out to be quite good.

vhc-km Road crashes Slight injuries Severe injuries Fatalities

Number of expl. variables 20 29 29 29 29

Number of t−values ≥ 2 15 10 3 4 2

Number of t−values ∈ (1, 2) 1 10 13 12 12

Number of t−values ≤ 1 4 9 13 13 15

Autocorrelation parameters 3 3 3 3 3

λy 0.53 0.24 0.13 0.53 0.57

λx1 0.53 0.24 0.13 0.53 0.57

λx2 1.51 2.00 2.00 2.00 2.00

Log likelihood at opt. form -2878 -1282 389 508 825

Sample size 300 288 288 288 288

Table 5.1. Function form, stochastic specification and other summary statistics.

5.1.4. Prognoses

The DRAG-Stockholm-3 model was also used to forecast the number of
crashes and their severity for the year 2015. Several assumptions were
made:
– the population increases from 1.78 to 2.09 million;
– the employment grows by 30%;
– shopping activities grow by 37%;
– the car park grows by 18%;
– car traffic volume increases by 26%.
Various scenarios, which describe the development of the other explanatory
variables, have been analysed with DRAG-Stockholm-3. The conclusions are
that:
– the growth of the Stockholm region leads to three more fatal crashes per
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year;
– new city highways would reduce the number of severe injuries by 30 each

year;
– powerful countermeasures are necessary for safer bicycle traffic;
– a 1% yearly reduction of the average speed up to 2015 may lead to 6

fewer fatalities and 17 fewer severe injuries;
– the number of fatalities is forecast to be reduced by 21% if the road and

street illumination is improved by 1%.

5.2. The more simple model

The form of the model chosen by Brüde (1995) is

Fatalities = a · bYear · Trafficc,

where Year = 1 for 1977, Year = 2 for 1978 et cetera and Traffic is equal to
the traffic (mileage) index with 1977 as base year, i.e. Traffic = 100 for 1977.
The given model has three advantages:
– it is simple and interpretable;
– it immediately shows the number of fatalities instead of the death rate

(fatalities/traffic);
– it permits a non-proportional relationship to traffic volume for fatalities.
The model parameters a, b and c were estimated by using generalised linear
models under the assumption that the number of fatalities follows a Poisson
distribution and using the data for 1977-1991. The estimated model fitted
the data reasonably well: it explained 95% of the variation in the number
of fatalities. The obtained model predicted 743 fatalities for 1992 and 647
fatalities for 1993, while the actual values were 759 and 632 respectively.
Hence, the predictions were very accurate.

The forecasts, however, were uncertain in several aspects. They were based
on the assumption that future road safety work would be as extensive and
successful as before. Also, the fact that the model fitted the data quite well
is no guarantee that the model will be reliable in the future. Furthermore,
making the forecasts required to extrapolate the regression model outside
the area where the observations were made.
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6. France

Several attempts were made in France to explain the past developments
of road safety. Three DRAG-type models were developed, with their
own characteristics. Hence the models will be discussed separately in
Sections 6.1 - 6.3. Furthermore, two models will be discussed which tried to
explain the effect of specific variables, namely climate variables (Section 6.4)
and the presidential amnesties of 1988 and 1995 (Section 6.5).

6.1. The TAG-1 model

Jaeger & Lassarre (2002) developed the TAG-1 model for France. TAG
stands for Traffic, Crash and Gravity, which illustrates that the TAG model is
inspired on the DRAG model. However, several adaptations were made:
explanatory variables concerning specific French road safety conditions were
included in the model and behaviour was added to the model as a fourth
dimension, next to traffic, crash and gravity.

6.1.1. The structure of the model

The TAG-1 model consists of the following four dimensions:
1. the exposure to risk measured as the number of kilometres travelled;
2. the risk behaviour measured in terms of the average speed driven on the

inter-urban network;
3. the number of injury crashes, both for fatal and for non-fatal crashes;
4. the crash severity in terms of the rate of fatalities, minor injuries and

severe injuries per injury accident.
The resulting model consists of seven equations of the form (3.3). Let y1,t be
the total mileage, y2,t the average inter-urban speed, y31,t, y32,t the number
of fatal and non-fatal crashes respectively, y41,t, y42,t, y43,t the number of
fatal, serious and slight severity rate respectively and xi,t, i = 1, . . . , k the
explanatory variables, all in year t. Then the model is given by


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



y1,t = f1(xi,t; u1,t),

y2,t = f2(y1,t, xi,t; u2,t),

y31,t = f3(y1,t, y2,t, xi,t; u31,t),

y32,t = f4(y1,t, y2,t, xi,t; u32,t),

y41,t = f5(y1,t, y2,t, xi,t; u41,t),

y42,t = f6(y1,t, y2,t, xi,t; u42,t),

y43,t = f7(y1,t, y2,t, xi,t; u43,t),

(6.1)

where ui,t denotes white noise. The advantage of this structure is that the
direct and indirect effects of the explanatory variables can be identified and
that the compensation effects between the numbers of fatal and non-fatal
crashes and between the numbers of fatalities and injuries can be studied.

6.1.2. The explanatory variables

Distinction was made between internal and external variables. The internal
variables were linked to the characteristics of vehicles, drivers, and the
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road infrastructure, whereas external variables were related to the system
environment. The external variables usually have an indirect effect on the
performance of the road transport system through their effect on its three
components: vehicle, driver, road. The main explanatory variables are given
in Table 6.1.

Vehicles 1. Stock − PC/HVG/motorised two-wheeler breakdown

Drivers 2. Characteristics − Proportion of young adults

3. Behavioural variables − Rate of seat belt wearing

− Taxed wine consumption

Infrastructure 4. Networks − Share of traffic on motorways and autoroutes

and on main roads

Demography 5. Population − Proportion of young adults

Economy 6. Price − Price of fuel per km

− Price of a car, public road, rail and air

transport

7. Unemployment − Proportion of unemployed

8. Reasons for people’s journeys − Working population

− Household consumption

− Vacations

− Taxed wine consumption

9. Reasons for good transport − Industrial activity

Government 10. Road safety laws − Mandatory technical inspections

− Behavioural legislation

Climatic 11. Climatic variables − Snow, etc

Table 6.1. Classification of the main explanatory variables integrated in the TAG model.

6.1.3. Methodology

The developed models were based on the monthly series of the average
speed and the number of crashes and casualties from 1967 to 1993. The
total number of kilometres travelled on the French network was not known on
a monthly basis for such an extended period of time. Hence a methodology
was developed for calculating the total mileage travelled on the entire French
road network by all road vehicles.

The L-1.5 algorithm of the TRIO software programme was used to set or
estimate the values of the Box-Cox parameters of the dependent and
explanatory variables in (6.1). The risk of multicollinearity was minimised by
including the variables in a stepwise manner in the model.

6.2. The RES model

The TAG model was designed for the whole French road network and used a
large amount of explanatory variables. The RES model, which is the subject
of this section, is an extension of the TAG model into a vectorial, i.e., a
multivariate, framework. The number of explanatory variables was limited to
about ten for the sake of robustness and the model was limited to two types
of roads: toll motorways and main roads.
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6.2.1. The basic model

The dependent variables for the models to be developed were the traffic,
the number of crashes and the number of deaths, all three for both toll
motorways and main roads. Bergel & Girard (2002) gave two possible model
forms: a univariate and a vectorial specification. The first one is of the form
given in (3.3). It was tested if the model with the constraints λy = 0 and
λx = 0 for the primary explanatory variables was significantly different from
the model with only the first constraint. The result was that the constraint
λx = 0 could not be rejected from a statistical point of view. Hence, not
the primary explanatory variables but their logarithms were included in the
vectorial specification.

The vectorial formulation makes it possible to take into account the
(immediate or delayed) correlation between the residuals corresponding to
two equations on the same level, for example the number of crashes on
main roads and on toll motorways. The general form of the autoregressive
vectorial formulation is as follows:

Θ(B)−1Φ(B)Yt = Θ(B)−1Ψ(B)Zt + Wt, (6.2)

where B is the delay operator defined as Bnxt = xt−n and

Yt = the vector of the p dependent variables;

Zt = the explanatory vector with q components;

Wt = white noise vector with p components;

Φ, Ψ, Θ = matrices of which the entries are polynomials.

The vector Yt can be considered to consist of two parts: an exogenous
part (explained by the explanatory variables) and its own dynamics. These
dynamics can be described in the form of an unobservable autoregressive
vector Xt. This leads to the following, representation, named state space:

Xt+1 = FXt + KWt,

Yt = D(B)Zt + HXt + Wt,

where D is a polynomial matrix in B and F, K and H are three real matrices
of appropriate dimensions. The vector Xt is called the state vector.

6.2.2. The explanatory variables

The available database contained monthly data for the years 1975-1993 for
the following variables:
– the number of personal injury crashes (fatal and non-fatal) and victims

(killed, seriously injured and slightly injured), separately for both toll
motorways and main roads;

– the number of kilometres travelled on motorways and on main roads;
– transport supply (road network length, fuel prices and motorway tolls);
– transport demand (gross domestic product, industrial production and

household consumption expenditures);
– climatic variables relating to temperature, the occurrence of frost and the

height of rain;
– behavioural variables: speed and seat belt use.
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The primary explanatory variables for the number of crashes and deaths
were the numbers of kilometres travelled on toll motorways and on main
roads. The primary explanatory variables for the volume of traffic were the
household consumption expenditures, the fuel prices, and the length of the
motorway network.

6.2.3. Methodology

The methodology for the univariate model is similar to the one used in the
ARMAX model and will be discussed in detail in Section 6.3. For the vectorial
model it was decided to estimate the parameters in the state-space model
instead of the parameters in (6.2), because then a distinction could be made
between the effects of the explanatory variables and the dynamics of Yt itself.
The parameter estimation involved three steps:
1. In this step the dependent variable Yt was corrected for the effects of the

explanatory variables to isolate the dynamics of Yt. This results in the
following corrected vector Y Ct :

Y Ct = Yt −D(B)Zt.

2. This step concerned the modelling of the process Y Ct :

Xt+1 = FXt + KWt,

Y Ct = HXt + Wt.

First the system’s rank was determined using the Hankel matrix of Y Ct.

Then the matrices F, K and H were estimated using the Desai and Pal
algorithm.

3. Finally the obtained values of F, K and H were used to re-estimate
the effects of the explanatory variables, that is D(B), by the maximum
likelihood method on the initial vector Yt.

6.3. ARMAX models

The aim of Depire (1999) was to develop explanatory and predictive models
for road safety. He dealt with time series analysis of risk and severity for toll
motorways and main roads on a monthly basis over the years 1975-1998.
For the year 1999 forecasts were made. The developed models are of the
DRAG type.

6.3.1. The basic model

Four models were developed: two models for the number of crashes with
bodily injuries and the number of fatalities on toll motorways and two models
for the same crashes on main roads. Each of the four submodels has the
following form:

log Yt = β1

Xλ
1,t − 1

λ
+

I
∑

i=2

βiXi,t + εt,

εt = ut − θ1εt−1 − · · · − θpεt−p,

ut ∼ N (0, σ2),

(6.3)
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where X1,t denotes the number of vehicle kilometres. Note that this model is
indeed of the DRAG form given in (3.3). However, DRAG models generally
describe the exposure to risk, the risk itself and the severity. Depire (1999)
did not model the exposure to risk, but only used it as an explanatory
variable for risk and severity.

The maximum order p of the autoregressive coefficients was assumed to be
equal to 14. This assumption was based on the following model for the error
term εt :

(1−θ1B − θ2B
2)(1 − θ12B

12)εt =

= (1− θ1B − θ2B
2 − θ12B

12 − θ13B
13 − θ14B

14)εt = ut,
(6.4)

where B is the backward shift operator. This model takes into account the
short memory (at the most two months) of the dependent variable, the short
term effect of the independent variables and the (annual) seasonality of the
time series.

6.3.2. Explanatory variables

Probably the most important explanatory variable was the exposure to risk,
measured in vehicle kilometres for each of the two considered road types.

Furthermore, it seems quite logical that weather conditions also have
an influence on the road safety. Hence, the amount of precipitation per
month, the monthly average temperature and the number of days with frost
per month were included as explanatory variables. The temperature was
split into two variables, namely the summer temperature (TE) and winter
temperature (TH). They are defined as follows:

TH =

{

TMAX, from October up to March,

0, for other months,

TE =

{

TMAX, from April up to September,

0, for other months,

where TMAX is the maximum temperature in a month. Two variables
involving temperature instead of one were included in the model because of
the idea that the influence of the temperature on the number of crashes and
fatalities is different in different seasons.

As already mentioned, the number of vehicle kilometres was the most
important explanatory variable. However, this was not known for the ‘future’
year 1999. Hence other explanatory variables should be included in the
model. It was assumed that there were two economic factors which could
be used for this purpose, namely the households consumption expenditures
and the prices of petrol. The first one was only available with a quarterly
periodicity, but was computed for this study with a monthly periodicity on
basis of the households consumption of manufactured products issued by
l’Institute National de la Statistique et des Études Économiques (INSEE).
The obtained series was expressed in constant prices of 1980 and was
included in the model with a three month delay. The price of petrol was
defined as the mean price per litre, expressed in constant prices of 1980,
of regular gas, super with and without lead and diesel. The price index was
then set to 1.00 for the year 1980.
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6.3.3. Methodology

Two methodologies were used to develop the models. The idea of the first
approach is to estimate the parameter λ in the same way as the other
parameters in the model. Because this model is not linear, the NLIN
procedure in SAS can be used. The autoregressive structure of the time
series under consideration should be taken into account. Indeed, if a
classical regression is used, the residuals will show an autoregressive
structure which makes it impossible to use the obtained estimates of the
model parameters. To confirm the autoregressive structure given in (6.4) two
SAS procedures (AUTOREG and ARIMA) are available. The first approach
can be summarised as follows:
1. The SAS procedure NLIN is used in order to obtain the residuals εt. NLIN

computes the estimates of the parameters λ, β1, . . . , βI . The residuals can
then be estimated by

εt = yt −

(

β̂1

X λ̂
1,t − 1

λ̂
+

I
∑

i=2

β̂iXi,t

)

.

2. One of the procedures AUTOREG or ARIMA is applied to εt in order to
get an idea of its autoregressive behaviour. The autoregressive parameter
p in

εt = ut − θ1εt−1 − . . .− θpεt−p

is determined.
3. The SAS procedure NLIN is applied once more, but know with the value

of p obtained in the previous step. The parameters of the equation

Yt = f(Yt−1, . . . , Yt−p; X1,t, . . . , X1,t−p; . . . ; XI,t, . . . , XI,t−p)

are reestimated by the coefficients in the following equation:

Yt = β̂1

X λ̂
1,t − 1

λ̂
+

I
∑

i=1

β̂iXi,t −

p
∑

j=1

(

θ̂jYt−j − θ̂j

I
∑

i=1

β̂iXi,t−j

)

+ ut.

There are several problems with this approach. Firstly, the procedure is
based on the assumption that the first step does not have an impact on
the estimates in the second step. However, this assumption can hardly be
verified. Secondly, the coefficients are not estimated simultaneously but
successively. Furthermore, the estimated value of λ is very unstable: it
depends strongly on its initial value λ0. Finally, some of the coefficients can
not be estimated with this method, due to divergence. Because of these
problems, it was decided to use another approach.

In this alternative approach the value of λ is not estimated, but it is fixed. The
optimal value is determined by the least square method. A grid is used for
λ, denoted by λ0, . . . , λn, so that there is no instability because of the initial
conditions. In short the approach involves the following steps, starting with
λ0 :
1. The Box-Cox transformation of X1,t corresponding to λi is set.
2. The SAS procedure AUTOREG is used with the transformed variable to

estimate the other model parameters.
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3. The model error, expressed as the sum of squared errors, is computed.
The sum of squared errors is defined by

SSE =

N
∑

i=1

u2
t .

4. If i 6= n the proceedings steps are repeated for λi+1.

This results in a set of sum of squared errors, one for each possible value
of λ. The optimal value of λ is the value corresponding to the minimal sum
of squared errors. Two methods were used to estimate the parameters:
the Yule-Walker algorithm and the method of maximum likelihood. The first
method diverged sometimes, due to a convergence problem in the algorithm.
The second one seemed to work fine, but it was very slow. The results of
both methods were very similar when the Yule-Walker algorithm converged.

6.3.4. Results

The parameters for the four models were estimated based on the period
January 1975 up to January 1994. Taking into account the three months
delay of the households consumption expenditures this came to a total of
226 months.

The results for the four models are extensively discussed in Depire (1999).
First, the optimal value of λ was presented, together with the “dynamics” of
the model, which is described by the indices of θi for which θi is not equal to
zero. Then the stability of the estimated parameters was tested. This was
done by reestimating the parameters for the extended period of January
1975 - December 1998 and checking if the new values were contained in
the confidence intervals of the parameters in the original models. It was
also tested if the model given in (6.3) with λ = λ̂ deviated significantly
from the model with λ = 0 and with λ = 1. For this purpose the Lagrange
multiplier test was used. The autoregressive model was compared with the
classical regression model by means of a plot of the predicted values and the
observed values of the dependent variables. The residuals were subjected to
a number of tests. These tests are:
– the sign test, which is used to test the hypothesis that the residuals come

from the same distribution;
– the Shapiro-Wilk test, which is used to test the hypothesis that the

residuals are normally distributed;
– the Fisher test and the Bartlett-Kolmogorov-Smirnov test are used to test

the hypothesis that the residuals are white noise.
The results of all those tests are summarised in Table 6.2.

Both hypotheses H0 : λ = 0 and H0 : λ = 1 were accepted for crashes on
main roads. However, the significance of the first one was larger than the
significance of the second, so λ = 0 was preferred.

The hypotheses for the residuals were accepted or rejected on the basis
of a 5% confidence level. For the residuals of each of the four models
at least three tests were accepted. If the confidence level had been 1%
instead, the hypothesis that the residuals corresponding to crashes on
toll motorways form a sample would not have been rejected. The same
hypothesis corresponding to fatalities on main roads would already have
been accepted if the confidence level was set to 4%. Furthermore, the tests
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Crashes on Crashes on Fatalities on toll Fatalities on

toll motorways main roads motorways main roads

Value of λ̂ -0.0404 -0.2828 -0.3636 -1.333

Autoregr. coeff. θ1, θ12, θ14 θ1, θ2, θ12, θ14 θ12 θ1, θ2, θ12, θ14

Stable coefficients Yes Yes Except vhc-km Yes

H0 : λ = 0 Accept Accept Accept Accept

H0 : λ = 1 Reject Accept Reject Reject

Sample test Reject Accept Accept Reject

Normality test Accept Reject Accept Accept

Fisher test Accept Accept Accept Accept

Bartlett test Accept Accept Accept Accept

SSE 2.935156 1.052959 23.54387 2.91741

R2 68.58% 33.12% 45.54% 26.96%

Table 6.2. The results for the four different models.

for normality and the Fisher and Bartlett tests contradicted each other in the
case of crashes on main roads. The first one rejected the hypothesis that
the residuals are normally distributed, while the Fisher and Bartlett tests
accepted this hypothesis.

6.3.5. Prognoses for 1998 and 1999

Depire (1999) not only explained the past development of road safety, but
also made predictions for 1998 and 1999. The real number of crashes and
fatalities in 1998 was known, hence a comparison could be made between
the predicted and observed values. The values of the explanatory variables
were also known for 1998.

There are two types of prediction. Namely the prediction of Yt+h

step-by-step, denoted by Ŷt(h), and the prediction of Yt+h with h > 1 in one
step, denoted by Ỹt(h). They are defined as:

Ŷt(h) = E(Yt+h|Ŷt(h− 1), . . .) where Ŷt(h) = Yt if h ≤ 0,

Ỹt(h) = E(Yt+h|Yt, . . .).

In the case under consideration predictions are required for Zt where

Zt = log Yt = β0 + β1 log Xi,t +

I
∑

i=2

βiXi,t + εt,

εt = ut + θ1εt−1 + . . . + θpεt−p.

Because of the results described in the previous section, the Box-Cox
parameter of Yt and X1,t is now set to λ = 0.

The prediction of Zt+1 is given by:

Ẑt(1) = β̂0 + β̂1 log X1,t+1 +

I
∑

i=2

β̂iXi,t+1 + θ̂1εt + . . . + θ̂pεt−p+1.
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By induction it can be proved that the step-by-step prediction of Zt for h

steps ahead is given by:

Ẑt(h) = β̂0 +

I
∑

i=1

β̂i log Xi,t+h +

J
∑

j=1

γ̂jXj,t+h+

+ θ̂1ε̂t(h− 1) + . . . + θ̂pε̂t−p+1(h− p).

It is also possible to compute the prediction Z̃t(h) of Zt+h :

Z̃t(h) = β̂0 +

I
∑

i=1

β̂i log Xi,t+1 +

J
∑

j=1

γ̂jXj,t+1+

+ θ̂1ε̂t(h− 1) + . . . + θ̂pε̂t−p+1(h− p).

From this it follows that Ẑt(h) 6= Z̃t(h) except for h = 1. Depire (1999)
preferred Z̃t(h).

The results of the predictions for 1998 were expressed in terms of δt and δ∗t
which are defined as:

δt =
log Ỹt − log Yt

log Yt
, δ∗t =

Ỹt − Yt

Yt
.

The relative differences δt for the number of crashes on toll motorways were
almost all smaller than 5%, which indicated a very accurate prediction. The
prediction of the number of crashes on main roads was even better, because
all the relative differences were of the order 1%. Far less satisfactory were
the predictions for the number of fatalities on toll motorways. The reason for
this was that the observed number of fatalities varied a lot in 1998 and hence
could not be modelled very well. Finally, the predictions for the number of
fatalities on main roads were reasonably good with relative differences
smaller than 5%.

To be able to predict the number of crashes and fatalities in 1999
assumptions had to made about the development of the explanatory
variables. These assumptions are:
– The household consumption expenditures, denoted by CFM, increase

with 2.5%;
– The price index for patrol (ICARB) increases with 1.1%;
– The weather variables are equal to the normal monthly values, defined as

the mean of the mean monthly values of the last thirty years.
The variables CFM and ICARB were included in the model instead of the
number of vehicle kilometres, because this last number was not known for
1999. For the development of CFM and ICARB there were two scenario’s.
The first scenario is

CFM99
i = (1 + 2.5%) · CFM98

i ,

ICARB99
i = (1 + 1.1%) · ICARB98

i ,

where i denotes the month. However, this scenario has a drawback: it
does not respect the continuity of ICARB. Furthermore, the values of
ICARB were available for the first semester of 1999. Hence, it was decided
to consider a second scenario which uses this knowledge. In order to have
a yearly growth of 1.1% of ICARB the values of ICARB for the second
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semester should be determined using the following equation:

(1 + 1.1%)

12
∑

i=1

ICARB98
i =

6
∑

i=1

ICARB99
i + (1 + τ)

12
∑

i=7

ICARB98
i ,

hence

τ =
(1 + 1.1%)

∑12
i=1 ICARB98

i −
∑6

i=1 ICARB99
i

∑12
i=7 ICARB98

i

− 1.

So the second scenario is:

ICARB99
i = (1 + τ)ICARB98

i , i = 7, . . . , 12.

A similar derivation holds for CFM. The results for both scenarios were very
similar.

6.3.6. Extension to the entire network

In the previous sections models were discussed for toll motorways and for
main roads. In this section the generalisation of these models to the entire
French road network is discussed. Because the number of vehicle kilometres
was not known for the entire network on a monthly basis, the variables CFM

and ICARB were introduced into the model. The resulting model takes the
form:

log Yt = β0 + β1 log CFMt−3 + β2 log ICARBt + β3TEt+

+ β4THt + β5NGELt + β6HPLUIEt + εt,

where Yt denotes the number of crashes on the entire network or the
number of fatalities on the entire network. The error terms εt again had an
autoregressive structure. To find the estimates of the model parameters the
software programme MODEST was used. The modelling of the number
of crashes was straightforward, the modelling of the number of fatalities
required more work. It turned out that the residuals were rather large for
eight months, so eight dummy variables were introduced. The inclusion of
these variables in the model improved the fit of the model. The obtained
models were applied to the year 1999, under the same assumption as in the
previous section.

6.4. The effect of climate variables

Bergel & Depire (2002) aimed at analysing the influence of climate on the
number of injury crashes and fatalities, aggregated for the whole of France
and for each of the four main network categories.

6.4.1. The explanatory variables

Monthly data for the period 1975-1999 were collected for the following
variables:
– risk exposure;
– the highest temperature of the day;
– the occurrence of frost;
– the daily rainfall height;
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– atypical meteorology variables.
The first variable was measured with the traffic volume (expressed in
hundreds of billion vehicle kilometres) on the main network (consisting of
main roads and motorways). On the secondary and urban networks the
traffic volume was not known on a monthly basis, so it was modelled in that
case with the help of several explanatory variables.

The climate variables were averaged over the whole territory and over the
month. First, daily climate variables were computed by averaging the daily
variables measured at several points in France. Then they were aggregated
or averaged over the month to construct monthly variables. The atypical
meteorology variables code the number of days in a month with extreme
climate values.

6.4.2. The basic model structure

A total of five models was developed, one for the entire network and one for
each of the four road categories: main roads, motorways, secondary roads
and urban roads. The models have the following form:

Φ(B)



log Yt −
I
∑

i=1

βi log Xi,t −
J
∑

j=1

βjXj,t − µ



 = Θ(B)ut,

where Yt is the two-dimensional vector with the number of injury crashes
and the number of fatalities in year t as its components, Xi,t are the main
explanatory variables measuring the risk exposure, Xj,t are explanatory
variables measuring the climate, Φ, Ψ are two polynomials in the delay
operator B and ut is a white noise not correlated with the past of Yt, Xi,t and
Xj,t. All the variables, dependent as well as explanatory, were obtained by
filtering the initial data with I − B12 in order to get a stationary dependent
variable which is corrected for the effects of the explanatory variables.

For main roads and motorways a model was also developed for the risk
exposure, with the same climate variables. This made it possible to identify
not only the direct effect of the explanatory variables on the number of
crashes and fatalities, but also their indirect effect, through the traffic volume.

6.4.3. Methodology

First models were developed with the monthly averaged variables. Next the
atypical meteorology variables were also added to the models. The model
parameters were estimated with the AUTOREG and ARIMA procedures
of SAS by means of maximising the log likelihood. It was assumed that
the dependent variables were Gaussian. Although the calculation of the
likelihood can be questioned if this normality assumption does not hold, the
parameter estimates can still have good asymptotic convergence properties.

6.5. The effect of presidential amnesties

In France it is a tradition that a newly elected president pronounces a general
amnesty of traffic offences. Because this is published by the media in
advance, drivers are encouraged to ignore traffic regulations. Bergel (2002)
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attempted to detect the effect of the amnesties in 1988 and 1995 on the
number of traffic fatalities in France.

6.5.1. The structure of the model

Intervention analysis was applied to a model of a similar form as the model in
the previous section. To be precise, the developed model is of the following
form:

Φ(B)(I −B12)

(

log Yt − α1 log Ct −
K
∑

k=1

βkXk,t−

−
n
∑

i=0

γiP
[T0,1]
t−i −

m
∑

i=0

δiP
[T0,2]
t−i

)

= µ + Θ(B)at,

where

Yt = the number of fatalities in year t,

Ct = the fuel consumption in year t,

Xk,t = the explanatory variables of climatic and calendar

nature,

P
[T0,i]
t = dummy variable defined byP

[T0,i]
t = 1 when t = T0,i

and 0 elsewhere for i = 1, 2,

T0,1, T0,2 = the two months in which the publicity first appeared

in the media,

n, m = the number of months of intervention following the

announcement in the media,

Φ, Θ = polynomials in the delay operator B,

µ = the intercept,

at = white noise.

The sum involving P [T0,1] is only unequal to 0 if t is in the interval
[T0,1, T0,1 + n] in which case the sum equals γj for t = T0,1 + j where
j = 0, . . . , n. A similar statement holds for the sum involving P [T0,2].

Assuming that γ0 = . . . = γn and δ0 = . . . = δn leads to the following
simplified model:

Φ(B)(I −B12)(log Yt − α1 log Ct −
K
∑

k=1

βkXk,t

− γStep1,t − δStep2,t) = µ + Θ(B)at,

where Step1,t and Step2,t are dummy variables equal to 1 on the interval
[T0,1, T0,1 + n] and [T0,2, T0,2 + n] respectively, and 0 elsewhere.

6.5.2. Methodology

The model was applied using different dates for the beginning and the end of
each of the intervention periods. Then the best models were applied again
but then without the explanatory variables which were not significant.
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7. Conclusion

This report gives an overview of studies that were performed in countries
other than the Netherlands in order to obtain explanatory models for the
analysis and forecasting of developments in road safety. Several types of
disaggregation of the national traffic process were used in these studies. All
studies used some form of disaggregation in terms of accident severity.
Some studies also disaggregated the traffic process by type of road user,
road type, gender, and/or age group.

Moreover, apart from exposure data, several types of explanatory variables
were considered for inclusion in these studies. In the studies performed
in Great Britain these variables were drink driving, passive safety in cars,
road safety engineering, and what are called core road safety activities.
In the studies performed in Canada, Belgium, Sweden, and France many
explanatory variables were investigated. Examples are: prices, laws and
regulations, weather conditions, economic variables, and calendar variables.

In terms of analysis techniques, classical linear regression and log-linear
regression were applied in the studies performed in Great Britain, while the
ARIMA and DRAG approaches were used in the studies of Belgium, Canada,
France, and Sweden.

An important problem with classical linear and loglinear regression applied
to time series data is the assumption of independence of the observations.
However, repeated observations over time are usually not independent at
all, since last year’s number of casualties is often quite a good predictor for
current year’s number of casualties. In a classical linear regression this is
reflected in residuals that are serially correlated (see Section 2.1.2). This,
in turn, results in statistical tests whose standard errors are too small, and
therefore in overoptimistic conclusions about the relations between variables
that evolve over time, and also in forecasts that are flawed.

The ARIMA and DRAG models discussed in Chapters 3 - 6, on the
other hand, are dedicated time series models, and therefore do take the
dependencies between the observations in time series data into account. An
important requirement of ARIMA models, however, is that time series must
be stationary (meaning among other things that they must have constant
mean and variance over time) before the actual analysis can be carried out.
Since most observed time series are made up of possibly non-stationary
components like trend and seasonal (if measured on a quarterly or
monthly basis, for example), cycle, and calendar variation, in the ARIMA
approach the observations usually have to be filtered first (that is, trend and
seasonal variation need be removed from the series by a process called
differencing) in order to obtain stationarity. The actual analysis then consists
of determining which autoregressive moving average (ARMA) specification
yields the best fitting model for the stationary series, at the same time
checking that the residuals are identically and independently distributed.

As discussed in the present report, DRAG models are extended versions of
the standard ARIMA approach where
– exposure, crashes, and crash severity are modelled in separate analyses;
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– many explanatory variables are added to the models;
– both the dependent and independent variables are allowed to be

transformed by Box-Cox transformations.
On top of the stationarity requirements already mentioned for ARMA models,
therefore, specific disadvantages of DRAG models are that
– exposure, crashes, and crash severity are not modelled simultaneously;
– the large amount of explanatory variables is at odds with the principle of

parsimony;
– the Box-Cox transformations (although these are presented as an

advantage) of the variables lead to all sorts of identification and
interpretation problems.

A more recent development in the field of time series analysis consists of the
so-called structural time series models (Harvey, 1989; Durbin & Koopman,
2001). Applications of these models to the analysis of road safety can be
found in Harvey & Durbin (1986) and Ernst & Brüning (1990) on the effect
of the seat belt law in Great Britain and Germany, respectively, and in
Lassarre (2001) who compares the developments of road traffic safety
in ten European countries. In Ord & Young (2003) structural time series
models are used to analyse developments in air and rail traffic. However,
we did not encounter studies in other countries where the structural time
series approach was used to empirically validate the hypothesized relations
between road accidents and explanatory variables, at least not with the
scope intended in the Road Safety Assessment Department of the SWOV.

In contrast with ARIMA and DRAG models, structural time series models
do not require stationarity and allow for the explicit decomposition of an
observed time series in trend, seasonal, cycle, and calendar variation.
Moreover, the latter models are very flexible, transparently handle missing
data, and are easily extended to the multivariate analysis of time series data.
They also allow for a simple and direct comparison with the results obtained
with classical linear regression models, since the latter are just a special
case of structural time series models where the components are treated
deterministically instead of stochastically.

Another advantage of structural time series concerns the forecasting of
explanatory variables. If for example a DRAG model is used for forecasting
purposes, the values of the explanatory variables for the forecast period must
be known. These values are obtained by modelling the explanatory variables
separately and the modelled future values are then used in the DRAG model.
In structural time series however the explanatory and dependent variables
are not modelled and forecast separately, but simultaneously.

It is for these reasons that we favour the use of structural time series
models for the description, explanation and forecasting of (disaggregated)
developments in Dutch road traffic safety.
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