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1. ACCIDENT BLACK-SPOT TECHNIQUES 

Accident black spots are usually defined as road locations with 

(relatively) high accident potentials. 

In order to detect such a hazardous location, we have to know the 

probability of an accident for a traffic situation of some kind (e.g. 

the crossing of a pedestrian or the encounter between two cars), or the 

mean number of accidents for some unit of time. 

The comparison of the probability or the mean with some norm (absolute 

black spots) or with the probability or mean of other locations (relative 

black spots) may result in the detection of a black spot. 

There are a lot of problems related to this definition. In order to 

define our sample space, we have to know what is and is not an accident. 

Furthermore there are weighting problems if one is interested in loss 

resulting from accidents instead of accidents themselves (e.g. weighting 

with respect to severity). Although these problems are in general under

estimated, we will not go into detail on this subject and concentrate on 

the general structure of black-spot analysis. 

In almost all known procedures, road locations are treated as isolated 

spots. 

One tries to detect the black spots by estimating the expected number of 

future accidents at a specific location from the number of accidents that 

already have occurred at that location. For many locations, especially in 

built-up areas, the number of observed accidents is too small to give an 

accurate estimation of the accident potential. This leaves us with a very 

inaccurate ordering of locations with regard to accident risk. We know 

that the black spots on the average are placed higher on the list, but we 

cannot distinguish them sufficiently from the grey, or even white spots. 

If one still uses this detection method, then the next problem is to find 

the causes of the supposed danger. Little information is given in the 

small accident numbers and one is almost completely dependent on an 

ad-hoc analysis of the location, based on rather general theories only. 

This approach, in which locations are investigated as isolated spots, 

does not seem promising to us, especially not if the accident numbers are 

small. 

An alternative procedure starts from the comparison between the road 

locations. The central question is: "What do accident black spots have in 
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common and in which respects do they differ from safe locations?" 

If we cannot relate accident figures to characteristics of the locations 

then treatment of black spots from general theories does not seem 

possible at all. Therefore we think that the analysis of black spots 

should start with the investigation of the relations between the 

characteristics of road locations and accidents for a group of locations 

that can be compared with each other. 

Multiple linear regression analysis and canonical correlation analysis 

are often used to detect such relations. 

In this case, however, there are a number of problems to be solved before 

these techniques can be applied. Several characteristics (such as the 

kind of road surface etc.) does not seem metric and some of the metric 

characteristics do not need to be linearly related to the probability 

of an accident. It seems not unreasonable to expect e.g. a curvilinear 

relation between the probability of an accident and the width of a road. 

Furthermore, reflection on the combined effect of characteristics 

suggests to use multiplicative models instead of models that are additive 

in the independent variables the probability of an accident at a 

location with characteristic A and B will be equal to the product of the 

probabilities for A and for B if both are independent. Experimental 

evidence supports these multiplicative models (see: Rasch, 1973; Oppe, 

1978). 

However, new techniques are developed that account for all these 

problems. The solution of the problem is related to the canonical 

analysis of contingency tables approach as described e.g. by Kendall & 

Stuart, 1967, Vol 11, pp. 568 vv. 

Recently Goodman (1981) compares this model with the log-linear models. 

The difference between both methods is that in the canonical analysis 

approach, one is interested in the scaling of variables in order to 

maximise the correlation or dependency, where as in log-linear analysis 

one rescales the variables under the assumption of independency. 

Interaction, or association as Goodman calls it, can be investiated 

within the log-linear model if one adds further restrictions on the 

residuals with regard to the row and column position of these residuals. 

Under special restrictions of this kind, both models result in identical 

solutions. 

The fundamental idea behind the canonical-analysis approach is, that the 
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computation of the correlation coefficient between the "non-linear" row 

and column variable makes sense after the proper rescaling of these 

variables. The analysis results in that scaling of both variables that 

maximises this correlation coefficient. 

If we generalise this procedure to multiway tables, then we arrive at 

some kind of non-linear principal-components analysis: variables are 

rescaled in such a way that they are as "homogeneous" as possible (which 

means that there mean intercorrelation is maximal). 

A second generalisation is found if we add new rows from different row 

variables to the table and eventually new columns from other new column 

variables. We then have some kind of super canonical-analysis problem, 

that reduces, after rescaling, to multiple linear regression (if there is 

only one column variable) or to the classical canonical correlation 

analysis (if there are more than one column variables). 

These analysis techniques and the related computer programmes (Homals for 

the generalised homogeneity analysis and Canals for the generalised 

canonical analysis) are developed at the Department of Data theory of the 

Leyden State University. A full description is given in Gifi (1981). 

We will describe how we used these techniques for the description of the 

relations between accident figures and the characteristics of road 

locations. 
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2. BLACK-SPOT DATA 

SWOV started an extensive research project in one of the Dutch provinces, 

called Noord-Brabant. This research was financed by the Ministry of 

Transport and the Noord-Brabant Provincial Council. One of the 

investigations within the project was concerned with a description of the 

relations between many accident, road and traffic characteristics of 

almost all public roads outside built-up areas in that province. Data 

collection is done by the Provincial Public Works Department and the 

regional department of "Rijkswaterstaat". DHV Engineering Consultants 

took care of all data handling necessary before starting the analyses of 

this data. 

The roads were classified in single-lane and dual-lane roads and each 

class consisted of three subcategories. Each road was divided in parts of 

100 meters. Intersections were deleted in the first analysis. New 

studies, concerning the intersections and larger units (routes) take 

place at the moment. A full report of this study is found in SWOV 

(1980/81). We use only some of the results, in order to demonstrate the 

usefulness of the relational techniques for black-spot analysis. 

In Table lone will find the marginals, with regard to the total number 

of injury accidents for each group of road locations. Black-spot 

detection and analysis based on the accident figures of these locations 

as such does not seem practical at all. 

We see that motorways have on the average the lowest number of accidents. 

The highest mean number of accidents (M) is found with dual-lane roads 

closed for slow traffic. If we correct for traffic flow then the 

single-lane roads will most likely turn out to be more dangerous. 

As to the variance (V) we see that this measure exceeds the mean, except 

for the dual-lane roads closed for slow traffic. The z-values, standard 

normal values derived from the Poisson index of dispersion: 

are significant, except for the one road category mentioned. This 

suggests that all other sets of roads are inhomogeneous and an 
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investigation with regard to differences in accident potential does make 

sense. 

In a mixed Poisson distribution, an estimate of the variance in Poisson 

parameters is given by the difference between the variance and the mean 

of X (see last column in Table 1). 

If we delete the locations without accidents and fit a truncated Poisson 

distribution to this data, then we find that not only the number of 

locations without accidents, but also the number of locations with 1, 

4 and 5 accidents are systematicly underestimated, while the numbers 

for 2 and 3 accidents are overestimated. Therefore it is not only the 

difference between locations with and without accidents that accounts for 

the variance in the Poisson parameters. Estimates with corresponding 

~-values and df (ignoring the zero class) are given in Table 2. 

The estimates for the negative binomial distribution and the 
2 corresponding l -values are also given in Table 2. Here the zeroclass 

has been included. These values show a reasonable fit. The t 2-value is 

significant only for the category of roads with mixed traffic. 

This suggests that the distribution of X is indeed a mixed Poisson 

distribution of a type as found by Greenwood & Yule (1920). The 

distribution of Poisson parameters for the category of roads with mixed 

traffic is perhaps more complicated then that of the other road types. 
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3. APPLICATION OF RELATIONAL TECHNIQUES FOR THE ANALYSIS OF ROAD 

SECTIONS WITH MIXED TRAFFIC 

The major aim of the analyses that we have done first was to find 

relations between 26 road and traffic characteristics of the 3833 

single-lane roads with mixed traffic, and their observed number of 

accidents. 

A list of these characteristics is found in the legenda of Figure 2. 

As can be seen from Table 1, most of the locations does not have injury 

accidents within the 5-year period. We have accomplished a second 

analysis using only the 685 accident locations. Both Canals analyses are 

in fact "non-linear" multiple-regression analyses, because there was only 

one dependent variable: the total number of injury accidents. From Figure 

1 we can see that both in the first and in the second analysis the 

scaling of the dependent variable is logarithmic. This is in agreement 

with the assumption of a multiplicative (log-linear) model: the model is 

linear in the independent variables with regard to the log-value of the 

accident numbers. Also the conclusion, drawn from the fit of the 

truncated Poisson distribution, that the difference in Poisson parameters 

is more complicated than between locations with and without accidents, is 

confirmed with this scaling. If there had been a clear distinction, then 

we should have found a dichotomous scale. The scale found here suggests a 

more continuous distribution of accident probabilities. 

Here we shall not discuss the solutions with respect to the independent 

variables. The main difference in both solutions was due to the influence 

of traffic volume on accident numbers. Traffic volume is an important 

variable in the analysis of all locations but not in the analysis of 

accident locations only. 

Succeeding analyses were concerned with more than one dependent variable. 

In these analyses various types of accidents were investigated together 

with the total number of accidents. The total number of accidents was 

included in each analysis in order to find an explanation for the 

specific accident types in addition to the explanation of the total 

number of accidents. For these analyses we used only the 685 locations 

with accidents. Some analyses had more than two dependent variables. We 

shall describe one of these non-linear canonical analyses here in order 

to explain the black-spot method. We will choose the analysis with the 
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total number of accidents and the number of fatal accidents as dependent 

variables. This analysis has been done in order to investigate to what 

extend the explanation of the most severe accidents differs from that of 

less severe accidents. 

The first canonical axis corresponds almost completely to the total 

number of accidents. The canonical correlation after rescaling is 

rcl = .41. 

The second canonical axis corresponds primarily to the number of fatal 

accidents. The canonical correlation for this axis is rc2 = .27. In order 

to visualise relations between variables, we may represent variables 

graphicly by vectors in a space spanned by the locations (a space with 

685 dimensions). The correlation between two variables is then 

represented by the cosine of the angle between the corresponding vectors. 

A correlation of 1 means a cosine of 1 and an angle of 0 degrees. 

A correlation of 0 means an angle of 90 degrees. 

In Figure 2 the projection of the independent variables on the plane 

through the dependent variables (in the space spanned by the locations) 

is given for the scaled variables. 

Figure 3 shows us the scaling of the dependent variables and the most 

important independent variables for the explanation, i.e. the variables 

with the largest projections. If we look at the canonical correlations, 

then at first glance these values seem to be low. Especially for a 

situation where 26 independent variables are used which are rescaled such 

that the canonical correlation is maximal. We did a bootstrap analysis to 

investigate the stability of the solution. This boots trap analysis was 

done by taking samples (with replacement) from the 685 locations. In 

order to make comparisons with the original analysis, each sample existed 

again of 685 locations. We concluded that the results were more stable 

than expected. A plot of the mean bootstrap analysis is given in Figure 

4. From this bootstrap study we estimated the canonical correlations for 

the population to be r
c1 

= .35 and rc2 = .20 for the first and second 

dimension. 

Reflection on these figures learned that the the correlations may be that 

low primarily due to the low accident figures for each location and not 

because of the non-existence of relations between the accident 
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probabilities and the characteristics of the locations. We cannot predict 

such small accident figures for locations accurately even if we know the 

real accident probabilities. This was in fact our initial problem. In 

order to investigate to what extend this effect might influence our 

results, we did a Monte-Carlo study as follows. 

The canonical scores for the locations that resulted from the analysis 

may be regarded as proportional to the logarithm of the probability of an 

accident at that location, because of the fact that the first canonical 

axis almost completely coincides with rescaled number of accidents. 

Therefore we transformed these values into real accident probabilities 

for the 685 locations and regarded these values as real population 

values. We then used these values as multinomial probabilities in an 

experiment in which we distributed 404 accidents over the 685 locations, 

according to the multinomial probabilities. We have chosen this number of 

accidents, because there are 1089 - 685 = 404 accidents that are freely 

distributed over the total set of accident locations. 

Then we computed the correlation between the accident probabilities and 

the number of allocated accidents that resulted from the multinomial 

experiment. The mean correlation for 100 of these Monte-Carlo runs was 

r = .45. Using samples of 10 times as much accidents (4040 accidents), we 

found r = .84, this to give an indication for the increase of r with 

sample size. From the Monte-Carlo study we conclude that the maximum 

value to be expected for the canonical correlation of the first dimension 

is .45. The estimated population value of rc1 = .35, resulting from the 

bootstrap study, seems rather high if' we compare this value with the 

maximum of .45. 

Therefore our conclusion is that, because we used the information of all 

locations together in our canonical analysis, we were able to predict the 

accident probability for each location a lot better from the road and 

traffic characteristics of the locations than it should have been 

possible using their individual accident number only. 

Furthermore, this analysis gives us the relation between the danger and 

the road and traffic characteristics. This information can be used in 

order to take countermeasures. 
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4. BLACK-SPOT INVESTIGATION BASED ON NON-METRIC CANONICAL ANALYSIS 

In the previous sections, we found that the accident probabilites of 

locations differ especially for roads with mixed traffic. Furthermore we 

found that relational techniques for categorical data seem to be useful 

techniques to predict accident potential. We will give here a more 

explicite description of how these techniques can be used for black-spot 

analysis. 

In order to accomplish an analysis as described, we have to collect the 

relevant data for the investigation. The object of investigation may be 

an intersection, a road section of some specific length as we used in the 

example, a pedestrian crossing in a small residential area, although the 

detailed comparison of complete areas will become increasingly difficult. 

For each object we have to measure the criterion value(s), e.g. the total 

number of injury accidents, accidents at daytime and nighttime, accidents 

with pedestrians involved etc. 

Furthermore we must select the relevant characteristics of the units with 

regard to the explanation of our criterion. For black-spot analysis, this 

will be primarily variables that are related to road characteristics or 

road conditions and controlling variables such as traffic volume, 

percentage of freight vehicles etc. This results in a "data matrix" 

consisting of n rows, corresponding to the n objects and m columns 

corresponding to the m characteristics. After the Canals analysis we get 

a new data matrix of rescaled variables. This rescaling is part of the 

solution that describes the relation between the criterion and the road 

and traffic characteristics. In addition, the solution results in an 

ordering of the characteristics with regard to the contribution of the 

independent variables to the explanation of safety. Finally we get an 

ordering of the locations with regard to unsafety. 

In the example that has been described, we find a rescaling for each 

characteristic, and for each dimension an ordering of objects and 

variables. Table 3 shows this ordering for the first dimension. Only the 

five most important explaining variables are represented for the 25 most 

dangerous and 25 least dangerous locations. Table 4 shows us the same 

data for the second dimension. Figure 3 gave us the scaling of the five 

major independent variables for each dimension and the scaling of the 

dependent variables. 
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If we look e.g. at location 3 and 4 of Table 3, we see that this are two 

adjacent locations that are curved and have two and three minor crossings 

respectively. Furthermore the road is rather small at these points 

( 6 m) and have orientation lighting. One location has one accident, the 

other has three accidents, including one fatal accident. Figure 5 gives 

us an idea of these locations. 

A plot of the most dangerous locations on a map may suggest structural 

countermeasures. An analysis of and comparison with the least dangerous 

spots may also suggest countermeasures. 

From Table 4 we see that if we want to concentrate on fatal accidents, 

countermeasures with regard to a high percentage of freight vehicles, 

together with high bicycle volumes seem to be urgent. The first five 

locations are almost adjacent. Two of the locations have two fatal 

accidents. Figure 6 gives us an idea of these locations. Structural 

measures instead of measures on the locations itself seem to be indicated 

here. 

This is just an example to show that this technique works and how it 

works. 

At last we will mention the advantage of this procedure for the evaluaton 

of safety measures. A general problem in the evaluation of safety 

measures is the effect of the "regression-to-the-mean". This effect is 

due to the fact that if we divide the locations into two groups, one with 

high numbers of accidents in the past and the other with low accident 

numbers, then there will be a tendency for the mean accident number of 

the first group to decrease in time and for the mean accident number of 

the second group to increase, even if we do not change any location. This 

results from the fact that several locations in the first group have high 

accident numbers and several locations in the second group low accident 

numbers by chance. These effects can be very substantial and suggest 

accident reductions that are far too optimistic. 

We may want to solve the problem by incorporating the accidents of all 

locations (including the locations that have not been treated) in the 

evaluation study or even estimate the regression-to-the-mean effect using 

the non-treated locations only. Here we do not have to deal with this 

problem, because we can estimate the expected number of accidents for a 

given location if there will be no treatment. Furthermore, we can compute 
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the accident reduction as a result of the countermeasures that have been 

taken, without referring directly to the number of accidents that 

occurred in the past on that location. 
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FIGURES AND TABLES 

Figure 1. Scale value versus number of accidents (on a log-scale), for 

the total set of locations with mixed traffic (EG 1) and for the set of 

accident locations with mixed traffic (EG 1 A). 

Figure 2. Projection of the scaled independent variables (1-26) on the 

plane through the scaled dependent variables (27 and 28) for roads with 

mixed traffic (EG 1 AD). 

Figure 3A. Plots of rescaled categories for the five most important 

variables on dimension one of analysis EG 1 AD. 

Figure 3B. Plots of rescaled categories for the five most important 

variables on dimension two of analysis EA 1 AD. 

Figure 3C. Plots of rescaled categories for the two dependent variables 

of analysis EG 1 AD. 

Figure 4. Projectio~ of the scaled independent variables (1-26) on the 

plane through the scaled dependent variables (27 and 28) for the mean 

bootstrap analysis of EG 1 AD. 

Figure 5. Hazardous location of first dimension. 

Figure 6. Hazardous location of second dimension. 

Table 1. Accident figures for almost all non-reconstructed 100 meter 

sections (intersections excluded) of primary and secundary roads outside 

built-up areas in Noord-Brabant. Data are collected over the five 

year-period from 1971-1975. 

Table 2. Estimated values and the corresponding t2-values and df's for 

the truncated Poisson distribution and the negative binomial distribution 

for the data of Table 1. 
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Table 3. Order of the locations with regard to the predicted accident 

potential (first canonical dimension) with information about the most 

relevant characteristics. 

Table 4. Order of the locations with regard to the predicted number of 

lethal accidents (second canonical dimension) with information about the 

most relevant characteristics. 
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Figure 4. Projection of the scaled independent variables (1-26) on the 

plane through the scaled dependent variables (27 and 28) for the mean 

boots trap analysis of EG 1 AD. 



Figure 5. Hazardous location of first dimension. 

Figure 6. Hazardous location of second dimension. 



Number of accidents (X) 

dual lane roads: 0 1 2 3 4 5+ T M V Z 

1. motorways 873 139 21 8 I 1042 .201 .258 6.17 

2. other road for motor vehicles 207 49 15 5 8 284 .444 .776 8.15 

3. roads closed for slow traffic 68 40 12 1 121 .554 .495 -.75 

single iane roads: 

1. roads 

2. roads 

3. roads 

for motor vehicles 345 50 23 4 9 431 .334 .636 11. 18 

closed for slow traffic 1867 329 113 41 22 8 2380 .339 .600 22.89 

with mixed traffic 3148 424 167 56 27 11 3833 .284 .520 30.93 

Table 1. Accident figures for almost all non-reconstructed 100 meter 

sections (intersections excluded) of primary and secunqary roads outside 

built-up areas in Noord-Brabant. Data are collected over the five 

year-period from 1971-1975. 
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Truncated Poisson Negative Binomial 

0 2 3 4 5+ X2 /df 0 1 

Dl 304.9 134.5 29.6 4.4 .5 6.08/2 873.5 136.1 

D2 39.6 42.8 23.1 8.3 2.2 .5 15.45/3 204.9 50.7 

D3 84.0 41. 1 10.0 1.6 .2 .78/2 67.4 41.7 

SI 40.6 46.2 26.3 10.0 2.8 .6 13.55/3 339.7 59.7 

S2 306.2 301.3 148.3 48.6 12.0 2.4 30.13/4 1851. 8 353.8 

S3 391.2 395.9 200.3 67.6 17. 1 3.5 26.86/4 3116.9 483.7 

2 Table 2. Estimated values and the corresponding l -values and df's for 

the truncated Poisson distribution and the negative biaomial distribution 

for the data of Table 1. 

2 

25.8 

17.5 

10.5 

19.4 

110.9 

147.3 

3 4 5+ 't 2 / df 

5.2 1.4 1.83/2 

6.6 2.6 1.7 4.01/3 

1.3 • 1 .40/2 

7.3 2.9 2.0 7.25/3 

39.3 14.7 9.5 5.84/4 

52.2 19.8 13. 1 13.54/4 
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102081137 3.052 -0.756 2 1 1.929 1; 062 -0.806 0.517 3.!j86 
102081136 2.9lJ5 1.810 4 2 1.929 . 1.062 -0.806 0.517 1;.203 
10205126 2.859 0.920 3 2 1.929 1.062 O.llJ6 -0.223 -0.280 
10205117 2.720 O. 8ll 5 3 1 1.929 1.062 -0.806 -0.223 -0.280 
10201623 2.590 .... 0.756 2 1 1.929 1.062 0.1116 5.336 3.486 
10208lJOlj 2.572 1. 735 lJ 1 1. 929 1.062 -0.806 0.517 -0.280 
102101118 2.1193 1.810 5 2 1. 929 1.062 -0.806 0.517 -0.280 
10205672 2.1120 0.8ll5 3 1 1. 929 1.062 -0.806 -0.223 -0.280 
10210854 2.ll1ll 1.735 lJ 1 1. 929 1.062 1.563 0.517 --0.280 
102001117 2.296 1. 735 II ,1 -0.5117 1.062 0.lll6 11. 18 O. -0.280 
102101115 2.250 0.8ll5 3 1 1.929 1.062 -0:806 0.517 -0.280 
1020111127 2.236 0.8ll5 3 1 1. 929 1.062 -0.806 -0.223 -0.280 
102056611 2.188 -0.756 2 1 1.929 1.062 -0.806 -0.223 -0.280 
1020111120 2. 185 0.920 3 2 1.929 1.062 -0.806 -0.223 3.lJ86 
102101103 2.181 0.8ll5 ., 1 1. 929 1.062 -0.806 0.517 -0.280 .) 

10201868 2.17lJ 0.8ll5 3 1 1.929 -0.9ll2 0.1ll6 -0.223 -0.280 
10202556 2.139 0.8ll5 3 1 1·929 1.062 -0.806 0.517 -0.280 
10201019 2.090 0.920 3 2 -0.5ll7 1.062 -0.806 5.336 -0.280 
102001119 2.057 0.8ll5 3 1 1.929 1.062 1. 563 5.336 -0.280 
10206377 2.0ll1 2.922 6 3 1.929 -0.9ll2 1. 563 0.517 -0.280 
102101128 2.032 0.920 3 2 1.929 1.062 -0.806 0.517 -0.280 
10202010 2.011 -0.756 2. 1 1.929 1.062 -0.806 -0.223 -0,280 
10211227 2.008 1.735 lJ 1 1.929 1.062 -0.806 0.517 -0.280 

25 locations with highest canonical scores on first dimension 

10202lJ30 -1. 689 -0.756 2 .1 1. 929 1.062 1.563 -0.223 -0.280 
102021118 -1.691 -0.756 2 1 -0.5117 -0.9ll2 1.563 -0.223 -0.280 
10206117 -1. 770 -0.756 2 1 -0.5ll7 -0.942 1. 563 -0.223 -0.280 
10202428 -1.791 -0.756 2 1 1.005 -0.9ll2 1.563 -0.223 -0.280 
10210388 -1.80ll -0.756 2 1 -0.547 -0.9ll2 1.563 -0.223 -0.280 
10210692 -1.816 -0.756 2 1 -0.5ll7 -0.9ll2 1. 563 -0.223 -0.280 
10130352 -1.827 -0.756 2 1 -0.5117 -0.942 1. 563 -0.223 -0.280 
10210335 -1.858 -0.681 2 2 -0.5ll7 1. 062 1. 563 0.517 -0.280 
10209612 -1.876 -0.756 2 1 -0.5117 1.062 1. 563 0.517 -0.280 
10208991 -1.927 -0.756 2 1 -0.5ll7 1.062 -0.806 -0.223 -0.280 
10209650 -1.955 0.845 3 ~ -0.5ll7 -0.942 0.146 -0.223 -0.280 
1020111192 -1·957 -0.756 2 1 -0.5ll7 '-0.942 -0.806 -0.223 -0.280 
10202411 -2. 116 -0.756 2 1 -0.547 -0.942 1. 563 . -0.223 -0.280 
10202395 -2.12ll -0.756 2 1 -0.5117 -0.9lJ2 1. 563 -0.223 -0.280 
10211478 -2.223 -0.756 2 1 -0.547 1.062 1. 563 0.517 -0.280 
10130379 -2.227 -0.756 2 1 -0.5117 -0.942 1. 563 -0.223 -0.280 
10208990 -2.230 -0.756 2 1 -0.5117 1.062 -0.806 -0,,223 -0.280 
10208963 -2.230 -0.756 2 1 -0.547 , .062 -0.806 -0.223 -0.280 
10208966 -2.230 -0.756 2 1 -0.547 , .062 -0.806 -0.223 -0.280 
10209610 -2.264 -0.756 2 • 1 -0.5ll7 1.062 '.563 -0.223 -0.280 
'0206253 . -2.299 -0.756 2 1 -0.5lj7 -0.9ll2 1. 563 -0.223 -0.280 
10202406 -2.33ll -0.756 2 1 -0.547 -0.9li2 1. 563 -0.223 -0.21::0 
102096111 -2.437 -0.756 2 1 -0.547 -0.942 0.146 0.517 -0.280 
10209646 -2.606 -0.756 2 1 -0.5ll7 -0.942 0.1116 -0.223 -O.2eO 
10202126 -2.667 -0.756 2 1 -0.547 1.062 1.563 -0.223 -0.280 

25 locations with lowest canonical scores on first dimension 

Table 3. Order of the locations with regard to the predicted accident 
potential (first canonical dimension) with information about the most 

relevant characteristics. 
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10201.J992 11.957 -0.0111 2 1 2.693 0.816 -0.9112 2.699 -0.056 
10204991.J Ij.957 -0.443 3 1 2.693 0.816 -0.942 2.699 -0.056 
10204987 11 .,094 9.066 4 3 2.693 0.816 1.062 2.699 -0.056 
10204985 4.063 9.30Ij ':l 3 2.693 0.816 1.062 2.699 -0.056 .; 

1020Ij984 3·794 -0.01L/ 2 1 2.693 0.816 1. 062 2.699 -0.056 
10208951 3.1188 -0.0111 2 1 2.693 0.816' 1.062 -0.346 2.1e3 
10204792 3.328 -0.014 2 1 2.693 0.816 -0.942 -0.346 -0.056 
10201603 3.286 o . 867' 2 2 0.128 0.816 -0.9112 -0.3Ij6 -0.056 
10204788 3·195 0.438 3 2 2.693 0.816 -0.942 -0.346 -0.056 
10204790 ' 3.128 -0.443 3 1 2.693 0.816 1.062 -0.31J6 -0.056 
10206395 2.961 -0.4Ij3 3 1 2.693 0.816 -0.9112 -0.346 -2.055 
102·10925 2.911 -0.778 6 1 2.693 -1.131J -0.942 2.699 -0.056 
10210930 2.844 -0.014 2 1 2.693 -1.1311 -0.942 2.699 -0.056 
10201606 2.733 9.304 3 3 0.128 0.816 -0.942 -0.346 -0.056 
10210921 2.534 -0.014 2 1 2.693 -1 • 134 -0.942 2.699 -0.056 
10210920 2.534 -0.014 2 1 2.693 -1. 134 -0.9L/2 2.699 -0.056 
10211647 2.441 -0.443 3 1 0.128 ·1 .314 1.062 2.699 -0.056 
10206402 2.394 -0.014 2 1 ' 2.693 0.816 1.062 -0.346 -2.055 
1020L/9L/2 2.332 0.867 2 2 0.128 0.816 -0.942 2.699 -0.056 
10206387 2.256 -0.4L/3 3 1 0.128 -0.816 -0.942 -0.346 -2.055 
10204934 2.245 0.867 2 2 0.128 0.81'6 -0.942 2.699 -0.056 
10208004 2.199 -0.014 2 1 0.128 -1.134 -0.942 -0.346 -0.056 
10204492 2.196 -0.014 2 1 0.128 -1.134 -0.942 -0.346 -0.056 
10206380 2.157 -0.014 2 1 0.128 0.816 -0.942 -0.346 -2,055 
10206385 2.157 -0.014 2 1 0.128 0.816 -0.942 -0.346 -2.055 

25 locations with highest canonical scores on second dimension 

10202097 -1.623 -0.01,4 2 1 -0.416 -1. 134 -0.942 -0.346 -0.056 
10202556 -1. 690 -0.443 3 1 -0.416 -1 • 134 1.062 -0.346 -0.056 
10201651 -1.691 -0.014 2 1 0.128 -1.134 1.062 -0.346 -0.056 
10208399 -1.692 -0.682 4 1 0.128 -1. 134 1.062 -0.346 -0.056 
10206174 -1.694 -0.682 4 1 -0.416 -1.134 1.062 -0.346 -0.056 
10200417 -1.715 -0.682 4 - 1 0.128 0.816 1.062 -0.346 -0.056 
10203438 -1.731 -0.443 3 1 0.128 0.816 1.062 -0.346 2.183 
10202416 -1. 760 -0.01L/ 2 1 -0.416 -1.134 1.062 -0.346 2.183 
10202363 -1.787 -0.443 3 1 -0.L/16 -1.134 1. 062 -0.3Ij6 2.183 
10201626 -1 .805 -0.4Ij3 3 1 0.128 -1. 134 1.062 .-0.346 -0.056 
10206167 -1.806 -0.443 3 1 -0.416 -1.134 -0.942 -0.3l.J6 -0.056 
10206172 -1.806 -0.014 2 1 -0.416 -1.134 -0·942 -0.346 -0.056 
10202096 -1.813 -0.4Ij3 3 1 -0.Ij16 -1 . 134 -0.9Ij2 -0·346 -0.056 
10211055 -1. 8l.J 3 -0.014 2 1 -0.416 -1 . 134 1. 062 2.699 2.183 
10206081 -1.868 -0.014 2 1 0.128 1 .314 1.062 -0·346 -0.056 
10203272 -1.887 -0.4Ij3 3 0.128 0.816 -0.942 -0.346 -2.055 
10201583 -1.921 -0.014 2 C.128 -1. 134 1.062 -0.346 -0.056 
10202391 -1. 924 -0.014 2 -0.416 -1 . 134 1. 062 -0.346 2.183 
10205111 -1.930 -0.014 2 -5.556 -2. 129 1.062 -0.3Ij6 2.183 
10202401 -2.009 -0.014 2 -0.Ij16 -1. 134 1.062 -0.346 2.183 
10203441 -2.210 -0.014 2 0.128 0.816 1.062 -0.346 2.183 
10206554 -2.269 -0.01Ij 2 0.128 -1. 134 1.062 -0.346 -0.056 
10205106 -2.625 -0.443 3 -5.556 -2.129 1.062 -0.346 2.183 
10201623 -2.845 -0.014 2 0.128 -1. 134 1.062 -0. 3Ij 6 -0.056 
10200221 -3.443 -0.014 2 -0.416 0.816 1.062 -0.3Ij6 -0.056 

25 locations with lowest canonical scores on second dimension 

Table 4. Order of the locations with regard to the predicted number of 

lethal accidents (second canonical dimension) with information about the 

most relevant characteristics. 


