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ABSTRACT

The development of traffic and traffic safety over long periods is viewed
as long-term change in system structure and cutput in the context of
self-organizing and learning systems. The theoretical analysis states
that society
a.~- creates changes in the road traffic system in order to accamplish more
positive outcames
b.- adapt the system to negative cutcames of these changes
c.- stabilize the system at satisfaction level.
Relevant changes in the traffic system are foremost expressed by growth of
traffic volume as a result of road enlargement and growth of the number of
vehicles and distances travelled. On the basis of supply-demand
considerations, mathematical models for traffic growth are proposed.
Growth of traffic volume leads to growth of exposure. The relation between
traffic volume and exposure is mathematically constrained by a power-
transformation of volume to exposure.
Growth of exposure in a partial-adapted traffic system leads to negative
outcomes, e.g. accidents. Risk reduction is viewed as adaptation of the
system and is described in terms of mathematical learning theory. It is
conjectured on theoretical grounds and empirically demonstrated by data
from several countries, that the long-term development of the number of
fatalities is not a function of the level of traffic volume but of
increment in traffic volume. Since fatalities result from insufficient
adaptation of the system, the reduction of fatality risk as an adaptive
process may tend to nearly zero at the time the traffic system has
approached the level of saturation of traffic volume. The development of
outcomes between the continuum of expected encounters (pure exposure) and
fatalities, like conflicts, damage only accidents and injuries, is on
theoretical grounds mathematically described as a weighted sum of exposure
(= function of traffic volume) and fatalities (= function of changes in
traffic volume) and consequently will not reduce to zero at the end of
the growth of the system. Data from several countries illustrate the
validity of the theory. Results confirm the postulated mathematical
relation between the development of increments in traffic growth and the
development in traffic safety. A basic camparison of the development for
several countries in Europe and the USA is given by analysis of the data.
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1. INTRODUCTION

The development of traffic and road safety over long periods of time is
described by several authors (Appel, 1982; Blokpoel, 1982; Brihning et
al., 1986; Koornstra, 1987; Minter, 1987; Oppe, 1987; Oppe et al., 1988;
Haight, 1988) as related processes resulting in a steadily decreasing
fatality rate. Blokpoel, Appel, Brihning and Haight use linear
approximations for either growth of traffic volume or fatality rate or
both, whereas Oppe, Minter and Koornstra use non-linear functions for
growth of traffic (sigmoid growth curves) and non-linear decreasing
functions for the fatality rate (log-linear or logistic curves).

Apart fram limit constraints (non-negative mumber of fatalities) and
mathematical elegance, no theoretical justifications for these linear or
non-linear functions are given. Oppe refers to a saturation assumption for
the choice of symmetric sigmoid curves for traffic growth. Minter
implicitly makes similar assumptions, but also refers explicitly to
learning theory for the justification of the fatality-rate curve, as did
Koornstra. Camparing these applications with standard knowledge in
mathematical psychology (see Sternberg, 1967), Koornstra applies the
linear-operator learning model (constant reduction of error probability)
and Minter the so-called beta-learning model (reduction of error
probability as a logistic decreasing function). All authors, except Minter
for the fatality rate, describe these functions with time as the
independent variable, whereas mathematical learning theory takes the
number of relevant events as explanatory variable.

Perhaps the most remarkable result is presented by Oppe (1987), where he
demonstrates that the parameters of the fatality-rate curve are
empirically related to the parameters of the growth curve for traffic
volume. Koornstra (in: Oppe et al., 1988) proves that this relation of
parameters allows the number of fatalities to be a function of the
derivative of the function for traffic growth. One may wonder why
fatalities seem to be related to the increase of traffic volume and not to
the level of traffic volume itself. Clearly, scame theoretical reflection
is in place.



2. GENERAL SYSTEMS APPROACH

At an aggregate level and over a long period of time one may view traffic
ard traffic safety as long-term changes in system structure and output.
Renewal of vehicles, enlargement and reconstruction of roads, enlargement
and renewal of the population of licensed drivers, changing legislation
and enforcement practices and last but not least changing social norms in
industrial societies are camplex phenamena in a multi-faceted and
interconnected changing network of subsystems within a total traffic
system. The steadily decreasing fatality rate can be viewed as adaptation
of the system as a whole to accammodate and evade the negative ocutcomes.

2.1. Evolutionary systems

The above-mentioned characterization of the system can be compared with
evolutionary systems, known as self-organizing systems (Jantsch, 1980) in
the framework of general-systems theory (Ilaszlo et al., 1974) .

There are striking parallels between the growth of traffic and the growth
of a population of a new species. In Figure 1 we picture the main elements
of such an evolutionary system in population biology.
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Figure 1. A model of a biological system.

Mutations are the basis for the formation of new aspects of functioning
in specimen of an existing species. The survival process by selection of
the fittest, leads to a reproduction process of those elements which are
well adapted to the envirorment. The result is an emerging population of



the new type of the species. The process of selection and reproduction
guarantees that only those members who survive the premature period, will
produce new-offspring. The selection process leads to a growing birth rate
as well as to a reduction of prabability of non-survival before the
mature reproductive life period. The resulting growth of a population and
the development of the mumber of premature non-survivors is pictured in
Figure 2.
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Figure 2. Evolution of a population.

Our main interest in this process is the rise and fall of the number of
premature non-survivors. The growth of new-born members in the population
follows a lower S-shaped sigmoid curve similar to the growth of the
population. In cambination with a steadily decreasing probability of death
before mature age, this results in the bell-shaped curve of the number of
premature non-survivors. Under suitable mathematical expressions, used in
population biology (Maynard Smith, 1968) such as logistic equations, this
bell-shaped curve can be mathematically described as proportional to the
derivative of the growth equation. The generalized assumption of this
notion could be formilated as follows: B
- the develcopment of the number of negative (self-threatening)

outcomes of a self-organizing adaptive system is related in a

simple mathematical way to the development of increase for

positive outcomes-.



Looking upon the traffic system as a self-organizing adaptive system it is
tempting to translate this conjecture as:
- the development of the mumber of fatal traffic accidents per year
is in a simple mathematical way related to the yearly increment in
traffic growth-.

2.2. Open and closed systems

The differences between open input-cutput controlled systems and closed
self-organizing adaptive system, however, must be well understood in order
to judge the validity of such analogy from biological systems to social,
technical or econamic systems. In Figure 3 a diagram of an open
management system (taken from Jenkins, 1979) is given.
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Figure 3. A model of an open system of management.

In such open systems feedback goes fram output to input through a
camparator based on extrapolations and abjectives. Unlike biological
systems, here this process is not governed by an autamatic or blind
mechanism like mutation, but by actions of a deliberate decision-making
body. The control is directed to manipulation of the input rescurces by
actions of individuals, collective bodies or even other subsystems of a
more or less physical nature. The system is called an open system, since
the feedback is a recursive relation between output to and input from the
envirorment, while the inner operational production subsystem itself is
unchanged.



Inooﬁtrasttosudmanopensystan,wemaypictureanevenmrerelevant
"closed" system of management as is given in Figure 4.
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Figure 4. A model of a "closed" system of management.

Here the recursive loop in the system is hardly based on input-cutput
relations. Again the comparator is a decision-making body. It compares
intermediate output with given objectives, but now the action leaves the
input unchanged as a given set of resources and charnges the structure of
the operational production process in order to bring the ocutput
performance in accordance with the cbjectives. The system is called a
closed system since it operates within the system by changes in the
substructure of itself. It takes the outside world from which the input
comes as given and does not control the input. The effects of output are
mainly viewed as intermediate and directed to the inner parts of the
system.

The close resemblance to the biological system of Figure 1 is apparent.
Now instead of a blind mutation and selection process we have deliberate
actions from a rational decision-making body, but the structure is more or
less identical with respect to its closing. This closing is even stronger
in the diagram of the closed management system. Resources or necessary
energy use of the system are taken for granted, although the envirorment
of the closed system is a crucial cordition for the existence of such
systems. But given the envirormental boundary conditions for the system,
its functioning within these boundaries can be analyzed as internal
throughput production without regard to manipulation of the given input.
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In classical open systems the mathematical description is based on
matrices or vectors for input and ocutput related by transformation
matrices, which correspond to the working structure of the system and are
generally expressed by linear algebraic equations (Descer, 1970). The aim
of control in this type of system is the maintenance of stability at a
(desired) equilibrium level of ocutput through manipulating the input.

In closed systems the input is not manipulated and instead of
transforming the input, the transformations of the input themselves
charge, since the operational structure itself is changing. Due to its
changing operational structure the mathematical description of closed
systems is quite problematic.

In general, closed systems are self-referencing systems where output
becames input. They are concerned with intermediate throughput instead of
input and output, and generally handle development of throughput in non-
equilibrium phases of the system. The development of throughput is
foremost described by non-linear equations, like throughput equations in
electrical circuits as a classical closed system or throughput equations
in catalytic reaction cycles in modern chemical closed systems (see
Nicolis & Prigogine, 1977). Except in these cases of camplete self-
reference where the output is the only source of relevant later input and
where change is autonomic, so-called autopoietic systems (see Varela,
1979; Zeleny, 1980), the field of closed systems is far less developed in
a mathematical sense.

However, for most social systems the relevance of closed systems is much
larger, than open systems. Every change of law, every reorganization of a
firm, every new machine in a factory is a change in the operational
structure in order to enhance the quality and/or quantity of the
performance, but cannot be analyzed by the classical control in

equilibrium systems.

Except the universe itself, a system is never closed, nor solely an open
system, perhaps excluded man-made technical production systems. Most
canplex real-life systems can be described as both open and closed. The
similtanecus mathematical description, however, is generally still
intractable. Although such systems are mathematically difficult, on a
conceptual level they can easily be described similtanecusly and as such
are pictured in the diagram of Figure 5 (taken from Laszlo et al., 1974).
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Figure 5. A model of an open and "closed" social system.

We apply this social-system description to the emergence of motorized
traffic and traffic accidents. We concentrate on the imner closed
feedback loop from measurement of performance through the feedback
campartment to structural changes in the system as an adaptation process
on a conceptual level. Subsequently the quantification of the development
of throughput in the system is mathematically analyzed.

2.3. The "closed" traffic system

The emergence of traffic and traffic accidents can be described as a
closed system in the following way. Society invents improvements and new
ways of transport in order to fulfil the need of maobility of persons and
the need of supply of goods. These needs and cbjectives are mainly met by
the development and increasing use of cars and roads in modern industrial
society.

This is done by

- building roads, enlarging and improving the network of roads,

- manufacturing cars and other motorized vehicles, mpmvmthe
quality of vehicles and renewing them and enlarging the market of
buyers of these vehicles,

- teaching a growing population of drivers to drive these cars or
other motorized vehicles in a more controlled way for which laws
are developed and enforcement and education practices are
improved.



This growth and renewal can be quantified by mumbers of car owners and
license holders, by length of roads of different types and as a gross-
result by the fast growing mumber of vehicle kilometers. We take vehicle
kilameters as the main indicator of this growing motorization process of
industrial society.

The negative aspect of this motorization is the emergence of traffic
accidents; as an indicator we may take the number of fatalities. The
adaptation process with regard to this negative aspect can be described as
increasing safety per distance travelled, made possible by the enhanced
safety of roads, cars, drivers and rules. Reconstructed and new roads are
generally safer than existing roads, new vehicles are designed to be
safer than existing vehicles, newly licensed drivers are supposed to be
better educated than drivers in the past. Moreover, society creates and
changes rules for traffic behaviour in order to improve the safety of the
system. These renewal and growth processes of roads, vehicles, drivers and
rules in the traffic system result in an adaptation of the system to a
steadily safer system. In this view growth and renewal are inherently
related to the safety of the system. Without growth and renewal there is
hardly any enhancement of safety conceivable.

Growth of vehicle kilameters is not unlimited. The number of actual
drivers is restricted by the number of the population and by time
available for travelling. The main limitation, however, is the available
length of road-lanes. This is not only restricted by economic factors,
but has a limit by the limits of space, especially in densely populated
areas. We conjecture therefore a still unknown saturation level for the
number of vehicle kilameters, viz. a limit for growth of traffic. An
interesting question we try to answer is, to which extent such a limit of
growth also imposes, by its postulated inherence for safety, a limit to
the attainable level of safety.
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3. MATHEMATTCAT, DESCRTPTTON OF GROWTH

3.1. Absolute growth

Fram inspection of the curves for vehicle kilameters over a long period in
many countries, it can be deduced that these growth curves in the starting
phase are of an exponentional increasing nature. Fore same countries a
decreasing growth seems apparent in the more recent periods, however not
always evidently different from a somewhat irregular linear increase. On
the other hand the theoretical notion of some unknown future saturation
level or at least a notion of limits of growth for vehicle kilameters has
strong face-validity. On the basis of these considerations we restrict
ourselves to growth described by sigmoid curves. We will concentrate on
three types of sigmoid curves with time as the indeperndent variable often
used in sociometrics and econametrics, leaving other types used in ecology
(May & Oster, 1976) aside. In the literature (Mertens, 1973; Johnston,
1963; Day, 1966) on econometrics and biametrics, these sigmoid growth
curves are well documented. These three growth curves are named as the
logistic curve based originally on the well-known Verhulst equation
(Verhulst, 1844), the Gompertz curve originated by Gampertz (1825) and the
log-reciprocal curve traditionally used in econametrics (Prais &
Houthakker, 1955; Jchnston, 1963).
let: Ve =yehicle kilometers in year t

Vmax=saturation level veh. km. for t->

a,f =parameters

t =time in years
. we write these curves as comparable exponentional functions

logistic curve

X V=V [ 1+e @) L (@ > 0) (1)
. &I@LZ aarve
. _otHA

Vt = Vmax e (@ > 0) (2)

(¢ > 0) (3)
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In Figure 6 we give an impression of the shape of these curves
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Figure 6. Curves of growth with saturation.

If we take Vi/Viay @ the proportion of growth realized in year t, we see
that these curves due to the exponentional expressions range from zero to
unity with time progressing.

Since it is not so much vehicle kilameters that saturate, but density of
traffic as a demand-supply relation between length of road lanes and
distances travelled, a transformation from vehicle kilameters to density
may be in place. Enlargement of length or road lanes in our system
approach is a lagged reaction on the growth of vehicle kilameters. A
transformation by a monotonic contimuous reducing function of the vehicle
kilometers themselves, therefore, may be an appropriate transformation.
Such a transformation leads to a generalization of functions for growth.

. As from the theory of traffic flow (Haight, 1963), it is well known

. that the mean of the distribution of vehicles on the lanes (Poisson
distribution) is directly related to the mean of the density

. distribution (negative exponentional distribution), a power-

. transformation as a monotonic continuous transformation of vehicle

. kilameters itself has theoretical justification.

. Assuming that the development of mean density of traffic over time,

. defined as D, , can be expressed by a power-transformation of vehicle

. kilameters

. Dt=uV€ (c<1) (4a)



15

. If the reduction is due to the lagged enlargement we may even
. conjecture that density is dependent on a lagged value of Vt' If the
. time-lag is Tamd t - 7 = t° (4a) becames

. Dt=uV§. (c<1) (4b)

. This last expression will also be valid if we include the dependence

. on actual vehicle kilameters by a weighted geametric mean of (4a) and
(4b), since this mean is fairly exact represented by a time-lag
between 7 ard O.
By reciprocal powering both sides of the curve-equations we see that
this power-transformation of (4a) is absorbed in the S-parameter of

. the Gampertz curve and in the a and S8 parameters of the log-
reciprocal curve. The logistic curve becomes asymmetric (Nelder,
1961) and for reasons of camparability of notation this

. generalization is written as

asymmetric logistic curxve

= ~(at+B) .-1/c
V=V _ [1l+e ] (5)
For c < 1 the logistic curve moves toward the Gampertz curve ard for
c > 1 this curve is described by a slower increase in the beginning
and a quicker levelling off at the end.

An other generalization is cbtained by a similar monotonic transformation
of the time axes.

Since scale and origin of time are undetermined this power-
transformation replaces time as at+8 in the equations by (at+[3)k.
Except for the log-reciprocal curve we shall not elaborate on this
. last generalization, because of the rather camplex nature of its
derivatives on which we concentrate hereafter. This generalization of
. the log-reciprocal curve is written as

. eneralized log-reciprocal curve

X
: v, =v_ e ()

t  'max (k>0) (6)
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3.2. Increase of growth

The increase of growth is mathematically described by the derivative of
the functions for growth.

Writing the derivatives of (2), (5) and (6) with respect to time, we
. obtain the functions of time for the increase of vehicle kilometers
corresponding to the growth models given above as

derivative of asymmetric logistic curve
* -1 ~(at+B) -1, at+f -1
Vo=ac vmx[1+e( B) 171/C [ 1+ &R 4 (7a)
or
Vp=actv 1+ (7b)
or after some further substitution and manipulation of (5)
* -1 .,
Vg=eac vmaxvt[vrcnax-vil (7€)
derivative of Gompertz curve
: ot+B
* - at+B
Vt =q Vmax e e (8a)
or
* at+
Vt =a Vt e A (8b)
. or after some further substitution and manipulation of (2)
*
Ve=eV, [InV__-1InV_ ] (8c)
. derivative of generalized log-reciprocal curve
' vV=dxly e"("“?"e)-k (at+g)~ (K1) (9a
t max )
or
) V: = oKkt v, (at+g) (D) (9b)

. or again after some further substitution and manipulation of (6)

) A & k1 Ve (InV_ - 1nV, 1 LK (9¢)
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. From (8c) and (9c) we see that for k-> », the Gampertz curve is
a limit case of the generalized log-reciprocal curve, since
S0 (k+1)/k = 1 and e can be redefined.
The relation between the asymmetric logistic curve and the Gompertz
curve can also be described as a limit case for c -> 0. Rem:;iting

(7¢c) as

t

c
V:=av [1-(Vt/vmax) ]
c
. arnd noting that

T
. -1
lim Xt = 1n X

T=>0 T t (10)

we find for ¢ => 0 bysubst1t1rtingr=cardxt=vt/vmx

V:=avt[1nvmx-1nvt]
lim c~>0

Since this is identical to (8c) we see that, for the power-
transformation parameter c approaching to zero, the Gampertz curve is
also the limit case for the asymmetric logistic curve.

From a more phenomenal level it is also interesting to calculate the
inflexion point of these curves, because inflexion points determine the
maximum increase in vehicle kilametres with respect to time.

By setting the second derivative with respect to time to zero and

substituting these time values into (1) or (5), (2) and (3) or (6),

the maximum increments for these curves are obtained. For c=1 in (7)
. this gives t = -B/a or at the time where

Vi = 0.5 Vmax (logistic curve)

and for any ¢ > 0 in (7) at the time where

. Vt = (c+1) -1/ \'4 (asymmetric logistic curve)
max
for ¢ = 1 becames 0.5 and for lim c~>0 this term
. approaches e — = 0.3678, because of the well-known definition of e
. as the limit of (1+1/n)" for n-> w.

. Note that (c+1) /€
1



18

. We also aobtain for (8) t=-f/a or at the time where
. Vt = 0.3678 Vmax (Gampertz curve)
. and for k=1 in (9) we obtain t=(1-28)/2a or at the time where
. Vt = 0.135 me (log-reciprocal curve)
and for any k > 0 at
Vt = 0.3678 (k+1)/k A4  ax (generalized log-reciprocal curve)
Again note that 0.3678 ¥1/X _ 0,135 for x = 1.

In Figure 7 we picture the development of the increase in vehicle
kilometers as derivatives of the standard non-generalized curves in
correspondence to Figure 6.
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Figure 7. Curves of the increase of growth.

In Figures 6 and 7 and the camputations just given, the inflexion‘poim:
of the sigmoid curves comes earlier for the log-reciprocal curve than for
the Gampertz curve and the inflexion point for the logistic curve is
situated later than for the Gampertz curve.

By the power-transformation, with c going fram unity to zero, the vertical
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axes can be campressed so that the asymmetric logistic curve approaches
the form of the Gampertz curve from cne side. From the other side the form
of the Gampertz curve is approached by the power-transformation of the
horizontal time-axes, with k going from unity to infinity, for the log-
reciprocal curve. This transformation stretches and campresses time around
the point where rescaled time is unity (viz. t = (1-8)/a).

The asymmetric logistic curve and the generalized log-reciprocal curve
therefore seems to span the space of possible sigmoid curves fairly well.
In general, the log-reciprocal curve takes longer to level off than the
logistic curve. These considerations may also guide the choice of type of
curve on a phenamenal level.

3.3. Acceleration of arowth

As shown by (7c), (8c) and (9¢) all these sigmoid shaped curves are
described by an increase of growth as the product of the growth achieved
and (a transformation of) the growth still possible. This property leads
to a very interesting aspect related to the mathematical description of
adaptation since it enables one to write the rate of increase of the
growth curve, defined as acceleration, by relatively simple functions
which turn cut to be monotonically decreasing functions of time.

Iet: Q = V:/Vt (11)

. We write from (7b), (8b) and (%) the different accelerations Q. as

. asymmetric logistic acceleration

. Qt=<:zc-1 [ 1+ ¥t ]-1

(12)
. We see from (12) that the shape of the acceleration curve for
. asymmetric logistic growth is not effected by the generalizing

. power-transformation of Vt and remains symmetric.

. Gompertz acceleration

at+f

. Qt=ae

(13)
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. log-reciprocal acceleration

k ]-(k+1)

. Q =a K1 ate (14)

. Thus, the generalizing power-transformations on time for log-
. recoprocal growth is with respect to the acceleration equivalent to a
. power-transformation of the acceleration itself.

In Figure 8 we show these acceleration curves (for c=1 ard k=1).
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Figure 8. Curves for the acceleration of growth.

As can be seen fram the formulae and the graphs these acceleration curves
are monotonicly decreasing curves and as such can be candidates for a
mathematical description of adaptation in time.

3.4. Growth and probability functions

These explicit formilae for growth with saturation are commonly found in
the literature, but are by no means exhaustive. Referring to the
proportion of growth as values between zero and unity and considering the
graphs in Figure 7, we may think of continuocus single-peaked density
functions of distributions in probability theory for which every
cumilative probability function forms a legitimate sigmoid-shaped
description for the proportion of growth.
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. Unfortunately most cumilative probability-distribution functions do

. not have explicit formilae and therefore cannot be treated as

. described. However, integration of such probability distributions

. for which no explicit formulae exist, is approximated by summation of
. small discrete steps.

Such sum functions describe growth of traffic volume as the achieved
proportion of a saturation level by sigmoid curves. The many probability
distributions that fall into this class, show that the number of possible
and mathematical tractable growth curves are not limited to those
mentioned here or otherwise found in the literature.
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4. MATHEMATTCAL DESCRIPTION OF ADAPTATION

4.1. Interpretations of risk reduction

The decreasing fatality rate has been interpreted by Koornstra (1987) and
Minter (1987) as a community learning process.

Their interpretations, however, differ. Minter stresses collective
individual learning, where Koornstra points to a gradual learning process
of society by enhancing safety through changes in road network, vehicles,
rules and individual behaviour. Minter's interpretation is in accordance
with stochastic learning theory (Sternberg, 1967), where learning is a
function of the number of events. Koornstra's interpretation leads to
camunity learning as a function of time. This last interpretation could
be named "adaptation", since generally adaptation is a function of time.

Koornstra (in Oppe et al., 1988) rejects Minter's interpretation on two
grourds. In the first place the fatality rate decreases more than the
injury rate, which in Minter's interpretation means that individuals learn
to discriminate and avoid fatal-accident situations better than less
severe accident situations. This cannot be explained by individual
cumlative experience. Secondly the mathematical learning curve functions
described by Koornstra and Minter do fit the data much better as a
function of time, than as a function of the cumlative experience,
expressed by the sum of vehicle kilometers as Minter does.

On the cother hand, transforming mathematical learning theory as functions
of the number of relevant events (trials) to functions of time asks for
strong assumptions. These assumptions are contained in our "closed" system
interpretation of traffic and the adaptation theory of Helson (1964). The
concept of adaptation as time-related adjustment to envirormental
conditions, must be brought in accordance to the event-related improvement
described in learning theory.

Our "closed" self-organizing system interpretation points to the
gradually safer conditions, while growth of traffic as such leads to more
accidents. Growth of traffic, however, also implies safer renewal,
enlargement of a safer road network, safer vehicles and better and
coordinated rules. These effects are not immediate but generally will

lag in time. New laws, like belt laws, lead to belt-wearing percentages
gradually growing in time. Reconstructions of black-spots are reactions
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of cammmnities on a growing number of accidents leading to a reduction of
accidents later. Traffic growth leads to building motorways, which after
long periods of building-time attract traffic to these much safer rovads.

In our view counter—effects may only partially occur by risk campensation
(Wilde, 1982), such as present in gradually rising speeds of road
traffic. These rising speeds are made possible by better roads and cars,
but the cars are not only constructed for higher speeds; they are also
inherently safer by crash zones, soft interior materials, better or semi-
automatic breaking mechanism and so on. Helson's adaptation theory states
that behavioural adaptation is the pooled effect of classes of stimuli,
such as focal, contextual and internal stimuli. The level of adaptation is
a geametric weighted mean of all kinds of stimili. Helson's theory of
adaptation level is different from hameostasis theory, as expressed by
Wilde (1982), "because it stresses changing levels" (quotations from page
52, Helson, 1964). The fact that adaptation level is a weighted mean of
different classes of stimuli implies that influence of cne class may be
counteracted by other classes of stimuli, but also that the influence of
one class of stimuli may dominate over other classes of stimuli. Since in
the period of emergence of motorized traffic the nature of man did not
change so much, while the physical and social envirorment has changed
dramatically, the apparent drop in risk as the change in level of
adaptation must be contributed mainly to the inherently safer external
conditions.

Taking into account the graduality of change in traffic envirorment, the
lagged and over many years integrated safety effects and the eventually
partial and lagged counter-activity of human behaviour, we conjecture that
adaptation to safer traffic is better described by a function of time,
than as a function of cumulative traffic volume.

4.2. i theory and adaptation

Referring to the incorporation of Helson's theory in the theory of social
ard learning systems (Hanken & Reuver, 1977) one possibility is to assume
that the adaptation process reduces the probability of a fatal accident
under equal exposure conditions by a constant factor per time-interval.

. Hence

t+1 t (15)
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Camparing this equation with mathematical learning theory, we assume a
model similar to Bush and Mosteller (1955) in their linear-operator
learning theory or to the generalized and aggregated stimulus-sampling
learning theory of Atkinson and Estes (Stermmbery, 1967; Atkinson & Estes,
1967) . The difference is that now time is the function variable, instead
of n, the number of (passed) relevant learning events, since in the Bush-
Mosteller or linear-operator learning model the probability of error is
reduced by a constant factor at any learning event.

Recursive application of (15) gives

_ .t
Pey1 =6 B
Denoting P, = eb and § = & , we arrive at the basic expression of
the
linear-operator model
P, = 2t (a < 0) (16)

Sternberg (1967) campared the existing learning models and summarized that

generally these models are based on a set of axioms, characterized by

- path independence of events

- camutativity of effects of events

- independence of irrelevant alternatives or arbitrariness of definition
of classes of outcames of events

while aggregation over individuals (mean learning curves) also postulates:

- valid approximation of mean-values of parameters or scales assuming
distrilbutions over individuals concentrated at its mean.

On these assumption two other learning models have been developed, the
so-called beta-model from Ince (1960) arnd the so-called urn-model from
Audley & Jonckheere (1956). The urn-model has its roots in the earliest
mathematical learning models of Thurstone (1930) and Gulliksen (1934).
In the same way as for the linear-operator model these models can be
reformulated as time-dependent adaptation models.

. Luce assumes the existence of a response-strength scale v, in the
. tradition of Hullian learning theory (Hull, 1943), for a particular
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type of reaction. The error probability at the nt+l event is reduced
by a reduction of the response strength for that error by a factor g
( B <1) in such a manner that

BV P
n n
P S= e ————— am v =
ml - 1+ BV, n- 1-P
Fram which it follows that
B P,

P =
nl ~ (1-PB) +B P,
Similar aggregation over response classes and individuals as for the
linear-operator model by Helson's adaptation-level theory, allows us
to assume an aggregate safety scale Ve for the community that charges
according to our social self-organizing system description by a
factor g with time and arrive at
B v
p t

t+1 1+ B8 Ve (17)

Recursive application of (17) leads to

P=[1+ ﬁ'tvl 17t

Substituting v, = e and g = e we cbtain the basic expression as
beta-model
Po=[1+ 2t 41 (a < 0) (18)

The wrn-model in its earliest description by Thurstone assumes that
the reciprocal of the error probability increases with an additive
constant a per learning event, such that

P;il = P;1 +a

One of the many possible reformulations of the urn-model as described
by Audley & Jonckheere (1956), in the spirit of cur renewal and
growth process of traffic, could be as follows.

The probability of a fatal accident in time interval t, is
proportional to the ratio of situations liable to fatal accidents
(re ) and the sum of situations liable to fatal accidents and all
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. other safer situations ( r, + W, ) (red ard white balls in the urn).
. Through self-organizing the mumber of safer situations is enlarged

. with c situations in time interval t. Assuming that self-organization
. by growth (adding safe and dangerous situations) and renewal

. (partially turning dangerous situations into safe ones) leaves the

. number of situations liable to fatal accidents unchanged, we cbtain

r,
o P = -—————E——-——
t+1 r + Ve + c
. Recursive application leads to
P = 1'1
t+1 r, + W +ct

. Denoting b = (r1+wl) /rl and a= c/r1 we arrive at the basic
. expression for the
. urn-model
_ -1
. Pt—[at+b] (a > 0) (19)

. which is equivalent to the Thurstonian model with t instead of n.

In Figure 9 we demonstrate the behaviour of these adaptation models.
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Figure 9. Namogram for models of adaptation.
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It will be noted that time has no origin nor a unit of scale. Therefore
linear transformation of time (generally with positive small scaling
factor and large negative location displacement if t is taken in years
A.D.) are permissible and do not change the general algebraic expressions
for the functions of adaptation with time. Taking the parameters of the
time axes, dencted by X, in such a manner that Pt=0.25 ard Pt=0.75
coincide for the three models in Figure 9 (monogram taken from Sternbery,
1967, p.51), we are able to inspect the different behaviours of the models
more closely.

4.3. Generalization of adaptation models

Just like the growth curves of the growth-models we may generalize our
adaptation expressions by a similar transformation.

. A power-transformation of Pt is equivalent to a monotonic time-

. deperdent transformation of the reduction factor of the decrease in
P with respect to P,. Thereby we replace the axiam of path
independence by a semi-independence axiaom, which is appropriate to

. our time related functions.

Since this transformation is absorbed in the parameters of (16) the
linear-operator model remains unchanged; but in (19) and (20) the
power of -1 for the beta-model and urn-model has to be replaced by a

. negative parameter.

According to these mathematical descriptions, the probability of a fatal
accident will reduce to zero with time progressing infinitely.

Along the lines of Bush and Mosteller (1955) we may also introduce
imperfect adaptation to a non-zero level as ancother generalization.

. This results in multiplication with (1-7) and addition of 7 for cur
model expressions.

. Rewriting the adaptation models for these two generalizations, we

. abtain

. generalized beta-model

at+b .-1/r

. P = (1) [1+e ] +r (21)
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. deneralized linear-operator model

X P, = (1-m) L (22)
deneralized urn-model
) Po=(1-m) [at+b ] /M4r (23)

Koornstra (1987), Oppe (1987) and Haight (1988) used the linear-operator
model for the fit of the fatality rate on the assumption of reduction to
zero and of fatality rate as the probability of fatalities (Pt) . They
found a remarkable good fit for the data of time-series for the USa,
Japan, FRG, The Netherlands, France and Great-Britain over periods ranging
from 26 to 53 years.

Minter (1987) used Towill's learning model (Towill, 1973), which as
Koornstra (in Oppe et al., 1988) proved, is essentially the beta-model
under the condition that time as the independent variable is replaced by
the cumilative sum of vehicle kilameters as an estimation of the
collective muber of past learning events.

The fatality ratio is defined as a probability. It is, however, by no
means assured that the fatality rate is a probability measure. In order to
be a probability the number of fatalities should not be related to traffic
volume but to exposure as the expected number of possible encounters
liable to fatalities.

Among others Koornstra (1973) and Smeed (1974) argued that exposure is
quadraticly related to the density. The strict arguments for a quadratic
relation are based on independence of vehicle movements. On theoretical
grourds increasing dependence of vehicle movements in denser traffic is
conjectured by Roszbach (in Oppe et al., 1988), stating that exposure will
grow slower with increasing vehicle kilameters than assumed on growth of
density without queue's and platoons. Since dependence increases with
increasing density we assume that dependence reduces growth of exposure by
a power-transformation of the squared density itself.

. Referring to (4) it follows that exposure also develops in time
. according to power-transformation of V-
. DemtirgexposureattjneirrtezvaltasEt,wewrite



Et=gD12__z=dVi (z<1) (24a)
. With reference to (4) we see that 2 cz=s, whilec<land z<1,
. so whether V, as vehicle kilameters is a fair approximation of
. exposureasEtdeperxisontheapproximationofstounity.Franthe
. assunptions made it is deduced that 0 < s < 2 and that s will be
the smaller the denser traffic is.
. If we assume as in (4b) that growth of density is lagged with respect
to growth of vehicle kilameters, the alternative expression becames
= 22 _
E, = g D —dvi. (z<1) (24b)

Now the probability of a fatality legitimately can be written as the
ratio of the number of fatalities and exposure.

This is written as

P, = == (25a)

where d and s are parameters according to (24a) or in accordance with
(24b) written as

P =~z (25b)

By taking this ratio of fatalities and exposure as the probability measure
for the adaptation models we complete the mathematical description of
adaptation.
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5. RELATIONS BETWEEN GROWTH AND ADAPTATTION

5.1. General mathematical relations

Instead of analyzing and fitting curves to cbserved data for the different
models of growth and of adaptation separately, we concentrate on the
conceptually postulated intimate relation between growth and adaptation.
In the spirit of our system-theoretical approach we directly express
mathematical relations between acceleration and adaptation. We
demonstrate that such a relation can be established in a fairly general
way, more or less independent from the particular growth model or
adaptation model. We regard the generality of this relation between
adaptation and growth as the basic result fram ocur theory.

In the paragraph on the mathematical description of growth curves we
stated that the expressions for acceleration curves are monotonically
decreasing curves and as such are candidates for the description of
adaptation. Indeed, if we compare on a phenomenal level Figure 8 with
graphs of the three models of growth and Figure 9 with the three
adaptation curves we see, apart from differences in location and scale of
time, identical shapes of curves for

logistic acceleration &% beta-model adaptation
Gampertz acceleration & linear-operator model adaptation
log-reciprocal acceleration = urn-model adaptation

Comparing the expressions for acceleration with the expressions for
adaptation, we see a one to one correspordence (if m = 0 assuming zero
fatalities at the end of the process) between the above-mentioned pairs of
curve expressions. This mathematical correspondence enables one to express
adaptation as mathematical function of acceleration, which is in fact
based on the same relation as in the ecological system between the mumber
of mature survivors and immature non-survivors pictured in Figure 2.

The task is to relate time in the growth process (expression (ot+8) of

Qt) in a meaningful way to time in the adaptation process (expression
(at+b) of P,). Since both expressions are linear functions of time with
two parameters we need two other parameters to relate these expressions
linearly without constraints. Because of the linear nature these two
parameters are one parameter for difference of location of time and cne

parameter for ratio of scales in time.
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The difference of location of time can be interpreted as a time-lag
between the growth process and the adaptation process. In our closed-
system description growth precedes adaptation, hence a time-lag of 7 in
units of t for the time-scale of adaptation with respect to t° the time-
scale of the growth process. The ratio of units of time-scales, defined by
q, will be unity if the processes develop with the same speed in time.
This seems most likely, but is not a necessary assumption. If q should be
unequal to unity either growth or adaptation is a faster process. Within
the closed adaptive self-organizing system interpretation, however, we are
inclined to think of adaptation as a lagged process at approximately equal
speeds, conpared to the growth process.

Formally writing t° for time in the growth expressions, we obtain

at+b=(at " +8) q (26a)
t=t +7 (26b)
stating that the relation between parameters is given by
a=oq (27a)
b =g + arg (27b)

We conjecture on the basis of the above given interpretation as a
closed adaptive system that
g=x1 (28a)

. ' T20 (28b)
Substituting (26a) in (12), (13) and (14) we write these expressions
in t° and t, assuming 7 to be known or to be estimated independently.
Relating these expressions to (21), (22) and (23) we obtain between
Q- and Py equations which only deperd on q and some free parameters,
but are no longer dependent on a and b or a and 8, sinceeat+bas
function of P, is substituted in e{®" )9 as function of Q..

For one part we write according to the generalized beta-model of

. (21) for m=0

eat+b I 4

P -1 (29)

and to the generalized linear-cperator model of (22) for m=0

Gat+b = P (30)

. ard lastly to the generalized urn-model of (23) for m=0

~m
eat+b - ePt (31)
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For ancther part we write the acceleration curves in t' for the
three growth models with the exponentional term on one side.
This results for the asymmetric logistic acceleration of (12) in

B _ Q;.l -1 o=(a/c) L (32)
for the Gampertz acceleration of (13) in

oo q. o=t (33)
and at last for the log-reciprocal acceleration of (14) in

ot s _ oo/ e (34)

By substituting (26a) into (32), (33) and (34) we cbtain nine

relatively simple equivaléme relations for all pair-wise
cambinations with (29), (30) and (31).
This is summarized in Table 1 as direct expressions of P, into Q-

A DA PTATTIUON

eat+b gen. beta-model lin.-oper. model gen. urn-model
° PY -1 P P
e(at‘+[3)q' . t t
A]| logistic
C
-r . ,.~"1_..9 =119 il -1_
L
E| Gampertz
X (00,17 P, -1=(0g, . } P=(0Q,.- )9 P "=q(1n(0Q, . }]
T
I
O|log-recipr.
N - (k+1) -q/ (k+1) -1 (k+1
oo (D) In(P;E1)=00, ¥ In(P, }=00,S P, og, & (K1)

Table 1. Relations between adaptation curves ard acceleration curves
( in the last row o isr'edefinedasa_q/(k+1) )
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. With help of the well-known generalized power-transformation,
In Xt =0

gxg) =X = [ ([-1)/1 170

. based on the limit given in (10), and often used in transformations

. (see Box & Cox, 1964; Krzanowski, 1988) for normality of

. distribution, for additivity or hamogeneity of variance, in all cases
of Table 1 the relation between Qt and P, can be written as

general assumption
9ol 9{ P 1) =00 x (95 Q) +w )P +y (35)

. Hereby the respective logistic, logarithmic or power-transformations
. in Table 1 of 1 and/or Q.. can be generated.

The general conclusion therefore is that the curves of acceleration for
all models of saturating growth for positive outcomes are monotonically
related to the curves of adaptation models for negative outcomes in the
same system.

5.2. Simplifications

From our closed self-organizing adaptive system-interpretation we
conjecture corresponding processes for growth and adaptation. This implies
not only correspording model descriptions, but at least also equal speeds
of processes (viz. g=1).

For the pair-wise relations of the diagonal of Table 1 it follows
. that the relation simplifies to our

. basic ion

P =6 d; (37a)

. where § and u are free parameters. Referring to Table 1 we see that

. (for g=1), if the generalization parameters for power-transformation

. of Qt or Pt are process-related (viz. r=1, m=1/[k+1l] ), u=1; stating
thatinthesecasasptisevenproportionaltoQt..



34

Based on correspondence between models for growth and adaptation, this
plausible simplification leads to the basic assumption of our theory,
which states that the monotonic relation between acceleration and
adaptation is a proportional power-function.

.

Substituting (25) and (11), the definitions of P, and Q- into (37a)
the expression becames either by (25a)

*
F v,. m
e (37b)
d vy V-
or by (25b) for equal time-lags in (37a) and (24b)
*
F v,. M
-t _ - [ t :I (37¢)
d V. Vi

Since d and é§ are both free proportionality parameters we can set d&=1
without loss of generality.

Further simplifications are possible by same approximations.

Noting that if
a) - either t ® t° (violating the time-lag assumption)

-or Q. is proportional to Q- (which is exactly true for the
Gompertz acceleration)

- or P, is proportional to P. (which is exactly true for the
linear-operator model)

-orV, is proportional to Vt‘ (which is exactly true for
exponentional growth of vehicle kilameters, but violates our
saturation assumption)

- or approximate proportionality applies to or is well
approximated by corresponding departures of proportiocnality for
Pt and Q‘t

we can by redefining §, as including the proportionality-factor,

replace t' by t in (37b) as a simplification of ocur basic assumption;

or if

b) - either proportionality for Ve holds approximately (again
violating the saturation assumption)

- or the time-lag assumption of (4b) holds and the equivalence of
time-lags for (37c) is well approximated,

we ocbtain by (37c) itself or by replacing t by t* for Vt in (37b)
another simplified form of our basic assumption
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simplified basic assumption
1 ~ * IJ' -l“

. in case a) Fp® 6 [V ] vf: (38a)
. * -
in case b) Fp~ 8 [ V. 1 v:.“ (38b)
If s = 4 this simplifies to ocur
specific assumption
. %*
in case a) Ft =5 [ vt ]“ (39a)
in case b) Fom 6 [ v:. * (39b)

If also s = 1 , thereby assuming that exposure is well approximated
by vehicle kilometers, it follows that u = 1. Thereby equivalence of
process speeds (g=1) and related generalization parameters (g/r=1 or
@/ (k+1)=m for growth and adaptation as well as the validity of some
cordition in case a) or b) is assumed. The ultimate simplification
under these restrictive assumptions becomes the

simplified specific assumption

in case a) Ft ) Vt (40a)
. *
in case b) Ft =) Vt‘ (40b)

These last simplifications result in a proportional (power-)relation

between fatalities and the increase in vehicle kilameters. Although all

these restrictions may seem to be based on rather strong assumptions, the

data analyses for several countries by Oppe (1987) and by Koornstra (in

Oppe et al., 1988) support such ultimately simple relations.

This suggests at least that

- growth and adaptation can be conceived as closely related and that
the mathematical theory has validity

- some strong simplifications in the theory are adequate

- the transformations to density and exposure is such that exposure is
well approximated by vehicle kilcmeters.
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5.3. Generalized simplification

Although we generated no cother adaptation models than the ones
corresponding to (a generalization of) the well-known learning models, we
could refer to our extension of growth models as functions for the
proportion of growth taken from cumilative probability functions. In line
with such an extension we conjecture that legitimate adaptation models,
having all the referred properties of the learning models as discussed by
Sternberg (1967), are formed by any function described by a single-peaked
prabability-density function divided by its cumulative function.

Enlarging the set of growth models and that of adaptation models in that
way it is tempting to assume that for any growth model, there always
exists an adaptation process in such a manner that the basic assumption
holds.

Our generalized basic assumption, irrespective of the type of growth model
or adaptation model, for any self-organizing system characterized by
growth of positive ocutcames and adaptation to (a near zero level) negative
outcomes, can be formulated as follows:

The ility of a negative outcome is rtional to a -
transformation of the acceleration of the growth process of positive

outcome in any self-organizing system.

Positive and negative ocutcomes in this system description are related and
cannot be defined arbitrarily. Negative outcames therefore must be
defined as self-defeating events for positive outcomes. In biology this
may be premature non-survival defeating growth of population; in the
traffic system it may be events (fatal accidents) that wash ocut mobility.
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6. EMPIRICAL EVIDENCE

6.1. Calculations and approximations

The validity of the basic assumption can be investigated by the analyses
of data from several countries. We do this by graphical presentations of
data on fatalities and fatality rates, and after same simple calculations
and approximations from the data, also on growth and acceleration of
vehicle kilometers. This is possible without curve fitting for growth or
adaptation separately, since the main elements of (37b, 37c) can be
constructed from or consist of cbservable values.

The right-hand side of (37) contains the increase of growth as the
derivative of vehicle kilameters. Without fitting a particular growth
model to vehicle kilometers, this asks for the calculation of an
approximation of the value of the increase directly from the data. We
choose to compute the increase by approximate values for the derivative
through finite difference calculus.

However, camputing the increase from differences in vehicle kilameters
per year may lead to negative estimates due to (economic) fluctuations of
vehicle kilameters from year to year, whereas the number of fatalities is
always positive. Moreover, in our theory fatalities are cutcomes of a
lagged and with respect to time integrated process of the traffic system.

We therefore use smoothed interpolated values of vehicle kilameters and
smoothed interpolated values of differences for the calculated
approximations. Since our main interest lies in the "prediction" of long-
term developments in fatalities from the growth in vehicle kilameters
smoothed interpolated values also will serve cur macroscopic approach.

. Let the smoothing of vehicle kilometers be performed by Newtonian
. interpolation as

-~ =l v 41
Yt TE41"n Ve (41)

. wherean=1amiwnisdecreasirgbackwardandforwardbythe
binomial reciprocal of n. For ocur analyses we have chosen Newtonian



38

interpolation with 1=3; however any other well-established smoothing
method would have served our purpose as well.

. A quite accurate approximation of the value of the derivative is
given by Stirling's interpolation of central differences as:

~ -

Ve ¥ AV = VKV Vegd/2 = V60,500 Ve 0/4)

. where we choose k=3. Again we smooth by identical interpolation as in
. (41)

-~

_ =i
AVe =X Wy ANVeyn (42)

Here we choose i=5 because of the larger apparent irregularity of
/\V, . In order not to lose too many values at the end and beginning
of the series, we used also some forward and backward extrapolations
for Vt-j and Vt+j , where j rarnges fram 1 to k+i. Because of the
exponentional nature of the growth curves we used second order
Newtonian extrapolation on the logarithmic values of V-
For the above methods of smoothing, extrapolation and approximation

we refer to standard textbooks on the calculus of finite differences.

Substituting (41) and (42) into (11) we cbtain

Qt. = Qt. = e (43)

. The variables of (41), (42) and (43) as such can be used as dbserved
variables in the equations of (37) to (40), since no estimation of
any parameter was involved in their calculations.

Now, apart from the transformation of vehicle kilameters to exposure, we
are ready to plot all the relevant pairs of variables for several
countries against the time axes in order to inspect the validity of ocur
assumptions.
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6.2. Federal Republic of Germany

Figure 10 plots the vehicle kilameters (defined by (41)) and the increment
in vehicle kilameters (defined by (42)) for the FRG frum 1953 to 1985.
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Figure 10. Growth and increase of veh. km. in the FRG.

We see from the development of increments that the hypothesis of
saturation of growth is not falsified, although the rise at the end may
cast same doubts. Surely economic fluctuations (1974 oil-crisis and 1981
despest point of recession) may form an additional explanation.
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Figure 11. Increase of veh. km. and fatalities in the FRG.
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In Figure 11 we present the developments of fatalities and again of
increments in vehicle kilameters. The figure reveals a remarkable overall
resemblance in development. As predicted from our adaptive system theory,
the apparent shift for fatalities with respect to increment of vehicle
kilometers, indicates a time-lag. The time-lag for fatalities seems to be
about 9 years. The coinciding lagged development of fatalities and
increase of vehicle kilometers seems to sustain the simplified specific
assumption of (40b).

Since growth in vehicle kilameters in the FRG is definitely not
exponentional, this points to a lagged enlargement of roads in the FRG.
The existence of a time-lag also suggests that proportional decrease in
fatality rate and acceleration is not valid. The nearly proportional
relation between fatalities and increments seems to sustain the hypothesis
of equal speeds of growth and adaptation and the simplifications by the
equivalence of power-parameters in the equations of growth and adaptation.

Finally, in Figure 12 we plot the fatality rate (defined in (25a) for s=1)

and the acceleration against time.
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Figure 12. Fatality rate and acceleration in the FRG.

The shapes of the curves are quite well in agreement with same of the
mathematically hypothesized curves, illustrated in Figures 8 and 9. The
logistic type of curves (beta-model and logistic growth) is only
applicable if the inflexion point lies before or around the start of the
time-series available. Since exponentional decrease is in conflict with
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(40b) , while Figure 11 agrees with (40b), the linear-operator model and
Gampertz growth are not likely applicable. Therefore, generalized log-
reciprocal growth and adaptation along the generalized wrn-model seems
most likely. Remembering that the time-lag in Figure 11 was about 9 years,
the resemblance of the shifted curves strongly supports the basic
assumption of (37) developed from the adaptive system theory.

In conclusion, we see the case of the FRG as a nice illustration of the
validity of the general theory. For the FRG, moreover, some conditions for
the simplification of at least (39b) are fulfilled while the additional
cordition for (40b) is quite well approximated. If the theory is true and
has predictive power, the time-~lag enables one to predict a stagnation in
the drop of fatality rate in the nineties due to the almost increasing
acceleration curve after 1981 in FRG.

6.3. France

For France the data from 1960 to 1984 are plotted in the same way as for
the FRG in Figures 13 and 14.
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Figure 13. Growth and increase Figure 14. Increase of veh. km.
of veh. km. in France. and fatalities in France.

From Figure 13 we see that the sigmoid growth curve for vehicle kilameters
is a well-suited assumption. Figure 14 shows a fair correspondence in
curves, but does not show a time-lag. This is, however, quite in agreement
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with the simplified specific assumption of (40a) or rather with the
specific assumption of (3%9a) and surely with the simplified basic
assumption of (38a), since in the latter case by curve-fitting, we may
achieve a better correspondence for the recent 10 years in Figure 14.

In Figure 15 we plot fatality rate (again defined in (25a) for s=1) and
acceleration against time. With regard to the small irregularities of the
curves for fatality rate and fatalities one has to bare in mind that no

smoothing of these curves was performed.
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Figure 15. Fatality rate and acceleration in France.

The most striking aspect of Figure 15 is the marked divergence fram the
monotonically decreasing functions illustrated in Figures 8 and 9, while
the correspondence between the plotted curves in Figure 15 remains
apparently intact. This common departure seems to justify the conjecture
that the relation between adaptation and growth expressed in the basic
assumption of (37) will hold irrespective of the functions by which
adaptation and growth are expressed. Since at least (38a) explains the
results from Figure 14, while Figure 15 clearly violates a proportional
decrease, the simplification for (38a) in case of France must be found
either in the absence of a time-lag for adaptation or in corresponding
departures from proportionality. In our opinion the latter option seems
most likely in view of the common departure fram the hypothesized curves.
Because of the non-steady decrease in the plotted curves no particular
type of curve will fit nicely, although the corresponding departure from
proportionality points to the Gampertz curve for growth and the linear-
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operator model for adaptation. From a macroscopic point of view one may
judge this satisfactory.

We conclude that the validity of the general theory is fairly well
illustrated by the data from France since certainly (37) holds. Moreover,
at least same of the conditions for the simplified basic assumption of
(38a) seem to be fulfilled and the additional condition for the specific
assumption of (39a) is approximated.

6.4. The Netherlands

For the Netherlands the data from 1950 to 1986 are plotted in Figures 16
ard 17 in the same way as before.
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Figure 16. Growth and increase Figure 17. Increase of veh. km.
of veh. km. in the Netherlands fatalities in the Netherlands

Again the sigmoid growth curve appears; as in the case of the FRG some
caution with regard to the contradictory increasing increments in the
latest years is in place. Again the econamic recession with its deepest
point in 1981 may be an additional explanation for temporary departures.
Figure 17 shows again a remarkable resemblance in the develcpment of
fatalities and increase of vehicle kKilameters. There is an apparent time-
lag of about 6 years. This strongly supports the applicability of (40b)
ard possibly also the validity of same conditions that lead to that
simplification. Surprisingly, this does not imply a close resemblance of
curves for fatality rate and acceleration as exhibited in Figure 18.
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Figure 18. Fatality rate and acceleration in the Netherlands.

The fatality rate could follow any adaptation model. The acceleration
curve shows a remcte resemblance to a logistic curve. Only if adaptation
is of the same type the basic assumption will hold. Since this assumption
is supported we have to investigate the beta model for adaptation as well.
Assuming only (39b), we may transform these curves by a free power-
parameter. As an illustration Figure 19 shows the square root of the
acceleration shifted by 6 years and the fatality probability as rate by
exposure measured by the square root of vehicle kilameters.
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Figure 19. Transformed curves of rates for the Netherlands.
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Doing so we kept the condition for (39) intact since s = u = 1/2. Both
curves are clearly of the logistic type and the predicted close
correspondence is restored and could even be improved by a samewhat
smaller time-lag than 6 years.

For the Netherlands we conclude also that the illustrative results
sustain the validity of the general theory since the basic assumption of
(37) surely applies. Moreover, the specific assumption of (39b) seems to
be justified.

6.5. Great Britain
The data for Great Britain from 1950 to 1984 are shown as before in

Figures 20 and 21.
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of veh. km. in Great Britain
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Figure 21. Increase of veh. km.
and fatalities in Great Britain

Fram the curve for the increase in vehicle kilameters we see that the
hypothesized sigmoid curve with saturation is violated by the incremental
increase after 1976. Moreover, there is no close resemblance in
development of fatalities and increase in vehicle kilameters. Clearly the
equivalence cordition for (39a) in contrast to other countries is not
satisfied . In Figure 22 we show the curves for fatality rate and
acceleration in the usual way, while in Figure 23 without optimization we
illustrate these curves after theoretically allowable transformations.
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The fatality rate of Figure 22 confirms the adaptation models; the
acceleration, however, violates the proposed growth models. Apparently
Figure 23 still sustains the basic assumption of (37b) in a macroscopic
sense (bare in mind there is no smoothing for fatality-rate curve) and
there seems to be a time-lag of less than 4 years. The shape of these
curves is not of the predicted decreasing type and thereby violates the
interpretation given in the theory. Apparently growth and acceleration
behave not as predicted in the case of Great Britain. However, same
caution is necessary since the recorded vehicle kilameters include
falling bicycle kilometers in the post war-period too. Although
conceptually Figure 23 is not well camprehensible, the mathematical
expression for the basic assumption of (37) still seems to hold.
Therefore, we may see Great Britain also as a justification of the
conjecture that the basic assumption of (37) mathematically holds
irrespective of the type of functions for growth or adaptation. The
general theory with respect to growth, however, is not well supported in
the case of Great Britain.

6.6. United States of America

For the USA we have the lorgest series of data, from 1933 to 1985. In
Figures 24 and 25 we display these data in the usual way.
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Figure 24. Growth and increase
of veh. km. in the USA.

Even ignoring the war-period the increase of the vehicle kilameters does
not show a clear sigmoid curve. Despite this non-saturating growth we see
from Figure 25 after the war a macroscopic resemblance in the development
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Figure 25. Increase of veh. km.
and fatalities in the USa.

of fatalities and increase of vehicle kilameters. There is no apparent

time-lag. This sustains the simplified specific assumption of (40a) and
makes a proportional adaptation and or acceleration probable.

Finally, in Figure 26 we plot again acceleration and fatality rate.
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Figure 26. Fatality rate and acceleration in the USA.
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Again we see a remarkable correspordence between both curves after, say
1946. This cammon curvature after 1946 can even be improved, flattening
the acceleration curve samewhat more than the fatality rate by taking both
the power-parameters u and s samewhat below unity. Thereby, we fall back
on the specific assumption of (39a) keeping s = y as the condition for
this assumption intact. As was already implied by the absence of a time-
lag some proportionality has to be the case; we see fram the fatality rate
that this may be quite appropriate since the linear-operator model for
adaptation could be satisfied very well. The sharp drop for the
acceleration in the war-period to even negative values indicates that
temporary external influence on growth, without disturbing the total
system, has no direct effect on the process of adaptation. This can be
seen as justification for the conjecture that adaptation is a lagged and
over many years integrated process.

In conclusion, we take the case of the USA as an indication for the
validity of ocur general theory since the basic assumption certainly holds.
Moreover, at least same sufficient conditions that lead to the specific
assumption of (39) are fulfilled in the case of the USA.
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7. EXTENDED ANALVTTCAL CONSIDERATIONS
. From (37) and (43) we write by taking logaritim
lnFt=ln6+u1th.+sant (44)

This can be fitted by ordinary multiple regression for different
time-lags of t-t° in order to find optimal parameters. One can also
find similar ways for the optimal fitting procedures for curves of
growth and adaptation. It also could be shown that by alternating
least-squares procedures a fitting procedure for the non-diagonal
cases of Table 1 can be developed in order to find optimal parameters
ard to select the optimal models.

The statistical and numerical analyses will be presented elsewhere
(Koornstra, 1989 forthcoming). One very interesting extension of the
theory already outlined by Koornstra (in Oppe et al., 1988) and more fully
to be presented in the forthcoming publication, is mentioned here as the
general basic assumption.

1et the number of any type of negative cutcomes of traffic events between
pure encounters and fatalities, divided by exposure be defined as R,.
Then the general basic assumption states that this rate, for example the
injury rate, is a sum of a constant 7 and the with (1-7) weighted
fatality rate as defined by (37).

. This is written as

. general basic assumption

. Rt=7r+(1-1r){6dé.} (45)
Substituting the expressions for Q‘é, from (12), (13) and (14) into
(45) we cbtain apart from the time-lag the generalized adaptation

. models of (21), (22) and (23) for 1 > 7 > 0. Clearly for exposure

. itself m=1 and for fatalities m=0.

This states that at the end of the growth process when the increase in
vehicle kilometers is zero due to saturation, the fatality rate should



reduce to zero too. This is quite in agreement with the just shown results
where the proportional relation between acceleration and fatality rate was
validated. In contrast to fatality rate the rates for less severe ocutcames
of accidents will not reduce to zero, but to a constant according to (45).
Applying the simplifications made before on fatalities it turns out that
the development of such quantities as the mumber of injuries is described
by a weighted sum of vehicle kilameters and the increase in vehicle
kilometers. We do not develop this matter further here, but we show,
merely as an example, the abserved injury rate in the Netherlands
(injuries defined as being at least one day in the hospital) in Figure 27.
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Figure 27. Injury rate in the Netherlands.

Clearly a logistic type of curve is present. Therefore, we fitted the
generalized beta-model of (21) as the adaptation model in place and find
the optimal parameter for m = 0.445 . So at least there is same validity
for the general basic assumption of our theory given in (45). It will be
noted that the development of ocutcames of events between mere encounters
and fatal accidents are in the general case of (45) an additive function
of the development of (power-transformed) vehicle kilameters and the
product of (power-transformed) vehicle kilameters and their (power-
transformed) acceleration.
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8. CONCTIISTONS

e

The developed mathematical theory of self-organizing adaptive systems
applied to traffic states that
~ the development of fatality rate is a simple mathematical function
of the rate of increase in vehicle kilometers.
Same plausible simplifications reduces this statement to
- the development of fatalities is proportional to the increase in
vehicle kilometers.

The latter was demonstrated to be approximately the case for data fram
the Federal Republic of Germany, France, the Netherlands and the United
States of America. The former applies to data from Great Britain.

The time-series of data ranged from 25 years (France) to 53 years (USA).
The validation holds for long-term trends in the developments.

The theory predicts a fatality rate reduction to near zero. This
reduction to near zero is not predicted for rates of less severe cutcames
of accidents.

-TI-

Camparison of the fatality-rate curve and the curve for rate of increase
of growth in vehicle kilometers, with respect to overall level and overall
steepness of descent of these curves for the mentioned countries,
reveals: '
- a perfect rank-order correlation between the levels of both curves
(high = France -> FRG -> Netherlands -> USA -> Great Britain = low)
~ a nearly perfect rank-order correlation between steepness of descent
in both curves
(flat = Great Britain = USA -> France -> FRG -> Netherlands = steep)
and subseguently
- a moderate negative rank-order correlation between level and steepness
of descent of the fatality-rate curve.
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-III-

The above summarized findings support the proposed theory of adaptive
self-organizing systems with respect to the emergence of traffic safety.
If this theory is correct it follows that the best policy for safety is:

- A controlled moderate growth of traffic leading to a reduced rate of
increase for growth of vehicle kilameters, which in turn leads to a
lower total number of fatalities.

- Analogous to mutations in biological systems: enhancement of variety
and creativity in safety measures (possibly by decentralization and
planned experimentation as well as creative research).

- Analogous to selection in biological systems: objective long-term
evaluation of effects and selection of effective safety measures.

- Replication of effective safety measures in other places and domains.

-TV~

The last part of conclusion -II- and conclusion ~III~- point to the fact
that adaptation in the self-organizing traffic system is not an autamatic,
even if possibly an autonomic, process in society. Unlike biological self-
organizing systems, adaptation is governed by decision-making bodies and
individuals and their decisions do matter.
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