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RECENT DEVELOPMENTS IN THE METHODOLOGY OF EFFECTIVENESS STUDIES
— NEW APPLICATIONS AND STATISTICAL MODELS FOR QUASI-EXPERIMENTAL
DESIGNS

Ekkehard Brihning and Gabriele Ernst
German Federal Highway Research Institute

The aim of effectiveness studies is to describe the type, direc-
tion and extent of the effects of safety measures on the number
of accidents, i.e. its particular objective is to quantify the
effects. Because experiments under laboratory conditions are
generally not possible, studies of traffic safety measures are
carried out as quasi-experiments. In such guasi-experiments the
experimental groups are studied one or several times, before
and/or after application of the measure.

Quasi-experimental designs always raise the question of whether
or not measured changes are due to effects of the particular

measure or can be explained by other effective influences.

The control efforts required to take care of such possible
interferences or distorting influences are connected with the
particular experimental design. When there are no control groups
it is necessary to carry out extensive and very costly control
experiments to take into account all distorting influences-. This
additional control effort can be reduced considerably if it is
possible to achieve design—immanent Controls by choosing an
adequate experimental design.

Effectiveness studies in accident research or on traffic safety
measures are frequently carried out not only at one place but at
several places at the same time. In principle, two different
experimental plans can be associated with such studies:



a) Depending on the underlying design, all observations are
aggregated to form experimental and control groups.

b) In simultaneous studies several experiments are planned and
conducted at different places or different experimental
groups (e.g. road sections) using one and the same experimen-
tal design. Each individual experiment should by itself fur-

nish undistorted results on the effectiveness of a measure.

If simultaneous designs are used, findings on the success and
the efficiency of a measure will be of a better quality than if
the measure is studied only once (e.g. at one place). In princi-
ple, simultaneous comparisons reduce or even eliminate the
threats to the validity of the results and increase their accu-
racy. Simultaneous designs are therefore increasingly employed
for large-scale studies of traffic safety measures.

The adequate analysis of simultaneous comparisons for the
evaluation of the effectiveness of a measure cannot, however, be
carried out by using the conventional statistical methods.

To evaluate the effectiveness of a measure with the previously
available statistical tools, it was necessary to aggregate the
data of the individual experiments. The cell frequencies of the
underlying design had to be summed up from all simultaneous com-
parisons. The statistical analysis was then based on a single
contingency table.

Such an aggregation preserves the advantages of the simultaneous
design concerning the avoidance of dangers and the increase of
the number of cases. But the statistical analysis of simulta-
neous comparisons through this method (aggregation) cannot be
satisfactory because the additional information provided by the

simultaneous design 1s not exploited.

A simultaneous experimental design is based on the hypothesis
that there 1s one true value of the effectiveness of a measure.
The measure factors determined i1n the individual experiments

then appear 1in random distribution around this true value.



Before the simultaneous measure factor is determined a test of
whether the individual measure factors are homogeneous (jointly
compatible) has to be made. Only when this condition is fulfil-
led can the simultaneous measure factor be regarded as consi-

stent and therefore as an adequate solution.

New methods employing loglinear or Logit models have recently
been developed for simultaneous experimental designs. The model
formula in effectiveness studies depends directly on the under-
lying experimental design. Depending on the particular design,
appropriate loglinear models with adequate test statistics have
to be employed: Thus it is possible to formulate adequate models
for simultaneous experimental designs. A simultaneous analysis
can be carried out without aggregation of the data of the
individual experiments. This method makes considerably better

use of the available information.

The evaluation of a measure's effectiveness is based on diffe-
rent types of criterion variables. The frequency of events
(accidents, possibly conflicts) is mostly used as the criterion
variable. But other possible types of criterion variables are:
interview results, measurements, percentage changes, monetary
values and relativized quantities (e.g. the number of accidents
related to kilometers driven = Accident Rate).

These different types of criterion variables are connected with
different assumptions regarding their statistical distribution:
e.g., numbers of accidents usually follow a Poisson distribu-
tion; vehicle speeds, percentage changes, interview results are
often approximately in normal distribution.

Depending on the distribution type, adequate tests can be used
to check whether an observed value is consistent with a hypothe-
tical expected value or some other empirical value.

In the case of percentage changes 1t is, however, not permitted
to check exclusively on the basis of assumptions regarding the
distribution, i.e. without weighting, whether an observed value

deviates significantly from a comparison value. Rather, the



value of the reference variable which was used for determining
the percentage change has to be taken into account.

In the case of relativized or risk quantities (e.g. Accident
Rates) the exposure quantity is frequently taken as a determihi—
stic (non-random) quantity with no error of measurement. In this
case, loglinear models can be used whose parameters can be
estimated by the classic maximum likelihood methods. This proce-

dure is similar to that of weighted Poisson models.

If for the analysis of risk quantities the exposure quantity is
not deterministic but stochastic (random), there are special
problems because the type of the joint distribution of nominator
and denominator of the risk quantity is unknown. But even for
this case a solution can be found by using the recently
developed theory of pseudo maximum 1likelihood estimation
(Gourieroux, Monford, Trognon).

A manual about the statistical analysis of simultaneous effecti-
veness studies has recently been published. On the basis of log-
linear and Logit models solutions are offered in this manual for
a number of simultaneous quasi-experimental desagns as well as
for different types of criterion variables. A detailed descrip-
tion of the analysis methods is given on the basis of applica-

tion examples employing standard software.

For reasons of transport policy and the efficient use of
available funds effectiveness studies on traffic safety measures
are carried out frequently and with considerable amounts of
research money. It is a fact that better results are obtained at
no extra cost 1f methodological knowledge 1s employed early in
the planning phase of a study.



ALTERING THE PATTERN OF TRAFFIC AND ACCIDENTS IN URBAN AREAS
A METHODOLOGY TO DETECT CHANGE

Heather Ward, R.E.Allsop, A.M.Mackie and R.T.Walker

) INTRODUCTION

Since 1982 the Transport and Road Research Laboratory
(TRRL) has been leading an Urban Safety Project which aims to
demonstrate the effectiveness of introducing a package of low~
cost accident countermeasures to improve the safety of residen-
tial areas of typical British free-standing towns. The Transport
Studies Group (TSG) at University College London has been invol-
ved in the development of a methodology for evaluating urban
safety schemes in conjunction with TRRL and Transport Operations
Research Group (TORG) at the University of Newcastle upon Tyne.

The area-wide approach to 1road safety requires low-cost
accident countermeasures to be combined to produce an area-wide
effect, strengthening where possible the hierarchy of the street
system and diverting traffic from primarily residential roads on
to the local distributors and arterials whilst ensuring that sui-
table measures are taken on these roads to ease flow and improve
safety.

The first stage in the planning and development of an urban
safety scheme is the definition of the existing road hierarchy.
This is followed by an appraisal of each route in turn to identi-
fy inadequacies in terms of safety or traffic management. The
next stage 1is to define a new or improved road hierarchy based
upon which safety objectives and strategies can be developed for
each class of route and for the area as a whole. Each category of
route in the hierarchy should be i1mproved in line with its func-
tion, thus making them safer and making 1t practicable to discou-
rage through traffic from residential arcas- The individual mea-
sures should be chosen to support the newly defined hierarchy and
to bring about accident reductions 1n accordance with the safety
objectives. The measures required +to achieve these objectives
are, to a great extent, interactive and are not necessarily sited

at locations which have an accident history.



2. MONITORING - THE DEVELOPMENT OF A METHODOLOGY TO DETECT
CHANGE

A methodology has been developed which is capable of provi-
ding information to enable the assessment of -

(i) the overall objective of reducing the total number of injury
accidents,

(ii) the objectives defined for individual routes or residential
areas in terms of the transfer of traffic to more suitable
routes, the change in traffic flows entering and leaving the
residential areas and reductions in injury accidents of
particular kinds, and

(iii) areas of unforeseen difficulties of operation or inconve-
nience such as increased travel times on main routes, de-
creased accessibility to residential areas, or transfer of

traffic and accidents to areas adjacent to the scheme area.

P | Scope of monitoring

In pursuit of their safety objectives, area-wide schemes are
expected to anffect the pattern of routeing and the speed of tra-
vel along main roads but would not be expected to affect the
total number of trips made. By their nature, however, restrictive
traffic measures are likely to result in increased journey dis-
tances for some residents. A method of estimating the order of
magnitude of this effect has been developed. To establish these
changes fully, it would be necessary to undertake origin-destina-
tion surveys on a before and after basis. Whilst this would pro-
vide a wealth of information, it has not been done because it is
a very costly and intrusive exercise when compared with the bud-

get for the total package of engineering measures of the type
considered here,

2.2 Size of effect - size of sample
The Urban Safety Project

schemes have becen planned as pro-
jects with full experimental design. A pilot study was undertaken

(Dalby and Ward, 1982) in which the variability of traffic and

accident parameters was asseuned to provide 1nput into the sta-

tistical design of traffic sujyeys. Evperimental design encompas -

ses sample size, ®ethods of 4,1, collection and subsequent sta-



tistical analysis to allow the monitoring team to draw conclu
sions about traffic and accident parameters bhefore and after the
introduction of the schemes with a given probability of establi-
shing with a given level of confidence that a certain expected
change has not occurred by chance. In order not to waste scarce
resources, it is important to choose the correct sample size. If
a sample is too small and insufficient data are collected, large
real differences may not be established as statistically signifi-
cant whilst if too much data is collected, real differences too
small to be of practical importance appear statistically signifi-
cant.

The size of areas wused 1in the Urban Safety Project was
determined by taking an expected reduction of 15 per cent in
accidents as a starting point. A sample size of 500 injury acci-
dents a year would be necessary to have about a 50 per cent
chance of establishing a reduction of 15 per cent at the 5§ per
cent level of significance after one year of operation of the
scheme. Five towns, Bradford, Bristol, Nelson, Reading and Shef-
field, participated with study and comparison areas each with
about 100 injury accidents per year, giving the required total

sample size of 500 injury accidents in the study areas.

2.3 Type of surveys and data collected

The surveys undertaken by the monitoring teams were designed
to allow the assessment of the effectiveness of the area-wide
schemes in the five towns with relatlon to the stated safety
objectives for each town. They also had to take into account the
need to identify, in the short-term, areas of unforeseen diffai-
culty of operation or inconvenienCe. The types of survey and data
collected are described below.

Accident records were collected over a five year before pe-
riod. The use of such an extended before period allows the detec-
tion of trends and seasonal variability in the ac¢cident pattern
and enables the range {o be established in which accident totals
might be expected to fall in the after period. It also provides a
basis for detection of effects on the number of road accidents,
their severity and distribution over the road network among

different groups of road users.



A small number of automatic traffic c(ounters provided data
about flows over extended periods which enabled the detection of
trends and overall redistribution of traffic. Classified manual
counts of flows and turning movements were carried out at about
50 key Jjunctions throughout the area over a four-day period at
four times a year before and after the changes in the study areas
of each town. Sites were selected to enable changes to be
detected in the points at which drivers choose to enter and leave
the residential areas and to provide a measure of compliance at
Jjunctions where certain movements have been prohibited but not
necessarily physically prevented.

The redistribution of traffic can affect journey times both
within and adjacent to the area treated. Changes in layout and
control at important junctions and in the type and number of
points of access from residential areas to the main roads can
have a substantial effect on both the duration and location of
delays.

Journey time data were collected using the moving observer
technique (Wardrop and Charlesworth, 1954) on a link-by-link
basis on preselected routes 1in the study and comparison areas.
The use of a portable in-car computer allowed accurate data to be
collected at frequent intervals along the routes leading to a
detailed assessment of delays incurred in approaching junctions
and pedestrian crossings. By incorporating suitable loops 1into
the journey time routes, key junctions could be approached from
each arm and delays to side road traffic subsequently quantified.
This addition is important 1in that extra distance travelled 1in
the residential area may be set against gains made in time taken
to exit from these areas when mini-roundabouts, or other changes
in control, are introduced.

Pedestrian movement 1s difficult to monitor because of 1ts
complex and often diffuse patterns. Schemes of the type described
here are unlikely to have an adverse effect on pedestrian move-
ment within the residential areas but those crossing on the main
roads are more likely to be affectcd by changes in traffic as
well as in the provision and 1location of pedestrian facilities

and local surveys may be appropridte to detect such effects.



3. EVALUATION OF EFFECTIVENESS - THE DETECTION OF CHANGE

3.1 Detection of changes in number and pattern of accidents

In order to test the effectiveness of schemes in reducing
accidents, the accidents in each study and comparison area were
divided into quarterly totals and log-linear models were fitted
to these totals. This enables the effect of the scheme to be
estimated after allowing for trends and seasonal effects, which
may well differ between study and comparison areas. The accidents
occurring in the implementation period should be analysed separa-
tely because the rate of occurrence may be atypical in this
period as road users become accustomed to the changes, especially
when required to find new routes.

Using the Reading data as an example, the log-linear model
which gave the best fit was

vikim = exp{a+[b+(bc)k]j+ck+dr+en+(ce)xn+(de)in
where J 1is time in quarters
k 1is areas, k=1 comparison and k=2 study
1 1is season 1=1 Nov-Jan ....1=4 Aug-Oct
m is period m=1 before, m=2 1mplementation, and

m=3 and 4 two parts of after period

The term which provides information about the effectiveness
of the scheme is (ce)kxm, the inclusion of which means that there
is a difference between before and after periods which is not the
same in the study and comparison areas. Comparison of this para-
meter with 1its standard error of estimate shows how likely this
effect is to have occurred by chance. The size of effect may be
calculated by exp{(ce)zz(ce)z21(ce)ia+(ce)r1}-1.

In the case of Reading, no third order interaction terms
were statistically significant so are not included in the model.
However, these terms should always be tested and i1ncluded where
necessary. The i1nclusion of third order terms i1n period and area
complicates the estimation of si1ze of effect as the second order
term (ce)kxm on its own no longer does this. A method has, how-
ever, been developed which enables the calculation of both the
size of effect and its standard error in such cases.

Log—linear models may be fitted in a similar way to disag-
gregate data, for example to pedestrian, motorcycle or pedal

cycle accidents: The effect of the scheme on severity of injury



may also be assessed, again by fitting linear models. The indica-
tor of severity used has been the ratio of fatal plus serious
accidents to total injury accidents. In this case one appropriate
model is the logit model which is fitted to the proportion, p, of
fatal plus serious accidenils in the following way,
In[(Pxn/(1-Pxm)] = a + ckx + en +(ce)kn

where the indicator of effect on severity is the term (ce)km. 1°f
the reduction in deviance associated with adding this term to the
model 1is statistically significant, this indicates that the
change in severity between the before and after periods in the
study area differs from that in the comparison area. It is
important to consider severity of injury because it may be
possible to reduce it in an area without necessarily

significantly changing the total number of accidents occurring.

3.2 Detection of changes in pattern of traffic movement

The collection of traffic data was undertaken on a before
and after basis extending over at least one year before the
introduction of the schemes and for two years afterwards.

The junctions at which turning counts were made were divided
into four groups which enabled a latin square analysis of
variance to be carried out on the resulting data. This provided
information regarding variations with respect to the time of day,
day of week and week of survey, and whelther these differed
between before and after periods. The count data were not nor-
mally distributed and a standard square root transformation was
used prior to analysis. Analysis of variance enabled junctions
with statistically significant changes in mean flow to be con-
firmed as a first stage in the identification of new patterns of
routeing. The analysis took account of differences at the three
times of day surveyed 1n order to detect, for example, changes
affecting routes into town but not the return journey.

The journey time data were analysed by fitting linear models
to the reciprocals of the link travel times. The effect of flow
was tested using an analysis of «covariance to establish whether
the journey time/flow relationship was significantly different in
the before and after periods.

The final type of survey undertaken was of pedestrian move-

ments. To accommodate the large fluctuation in flows sometimes



found, proportions of pedestrians crossing in each sector of a
site were analysed on a before and after basis. Traffic flows
were observed at each site which allowed logit models of the form
In(p/l-p) = a + bq to be fitted, where p is the proportion of
pedestrians using a crossing or crossing in a given section and q
is the traffic flow during the corresponding survey periods. This
allows the effect of traffic flow on where pedestrians choose to

cross the road to be assessed.
4. THE ECONOMIC EVALUATION OF EFFECTIVENESS

When assessing the cost-effectiveness of a scheme there are
on the benefit side net savings in accidents and there may well
also be net savings in vehicle operating costs and time. On the
disbenefits side are the cost of the scheme, its maintenance and
monitoring, and possibly in some cases a net increase in vehicle
operating costs and travel time and some extra accidents occur-
ring during or just after implementation. Standard values of
accident costs and value of time are provided by the Department
of Transport (annual).

5. IMPLICATIONS FOR FUTURE PRACTICE

In this paper a methodology has been outlined which enables
the monitoring of urban safety schemes. The monitoring programme
allows an economic evaluation to be made of the main effects both
in terms of changes I1n amounts and patterns of traffic and acci-
dents .- However, in routine applications of the resulting area-
wide approach, 1t is not envisaged that local authorities will
have the budget, staff resources or need to monitor on an equiva-
lent scale to that wundertaken in the Urban Safety Project:. Even
for routine monitoring purposes it is i1mportant to consider some
aspects of experimental design described in this paper especially
with respect to monitoring of accident patterns where changes in
number of accidents are often the only input into an economic
evaluation or justification for expenditure on such schemes.

The monitoring teams and TRRIL will continue to learn from
the experience gained in the Urban Safety Project and with

further work, will be in a position to offer guidelines to the



design implementation and monitoring of urban safety schemes by
local authorities as part of their routine accident remedial
programmes.
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AREA-WIDE TRAFFIC CALMING MEASURES: ACCIDENT ANALYSIS

Wolfgang Senk, Ruhr-University, Bochum, West Germany

Introduction

The Federal Office of Environmental Protection (UBA),the Federal
Instititute for Regional Studies and Environmental Planning (BfLR)
and the Federal Road Research Laboratory (BASt) are carrying out a
common long-scale experiment in six German model cities to inves-
tigate the impact of area-wide traffic calming measures on urban
areas and different traffic situations. The Chair of Traffic Engi-
neering I at the Ruhr-University Bochum has been commissioned to
analyse the accidents in the following six cities (see appendix
1l):
- Berlin-Moabit, an area with residential and shopping streets in
the midst of a large city;
- Borgentreich, a rural community in Eastern Westfalia with about
10.000 inhabitants;
- Buxtehude, a town near Hamburg with a population of 18.000 inha=-
bitants;
- Esslingen, a middle order centre situated near the river Neckar;
- Ingolstadt, a town with a historical centre located in Bavaria;
- Mainz, a large city near the river Rhine.

First concluding reports about these six model cities will be pu-
blished in May 1988.

The methodology of this accident analysis was developed in the
course of a pilot study on an area in Berlin-Charlottenburg where
traffic calming measures were carried out and investigated (see
appendix 2). The objective of the study was to prove the practical
applicability of statistical methods that are powerful enough to
recognize changes in accident occurence even in cases of low
accident rates. Furthermore, these statistical methods should also
point at correlations between traffic calming measures and a
decrease of accident rates.



All tests were before-and-after studies with control groups. For
this, an area in Berlin similar to the one in Charlottenburg re-
garding its architectural structure and traffic situation had to
be found. A part of Berlin-Moabit, the later area of the long-
scale investigation mentioned above, proved to be suitable as a
control group. During the pilot study, only sporadic traffic-calm-
ing measures were carried out in this area.

The tests were based on various figures (realizations of the ran-
dom variables of the stochastic model) consisting both of absolute
accident rates like

- total number of accidents

- accidents of a certain kind

- accidents with injuries to persons

- accidents in correlation with certain road users

- accidents of a certain severity

and relative accident rates, i.e. the quotients of absolute acci-
dent rates and suitable exposure values such as

- number of residents

- length of the road network

- kilometres travelled.

These accident rates were analysed as a whole, and they were fur-
thermore differentiated according to

- accidents on road sections and

- accidents at intersections .

Overall accident occurrence

A first survey of the overall accident occurence was gained by
temporally dividing the seven years of the investigated period
into three parts, the time before the beginning of the traffic
calming measures, the time of the architectural modifications and
the adjustment of the residents, and the time after the end of the
measures. Furthermore, the whole area was divided into 8 =zones.
These were a zone of architectural modifications, a zone with a
speed limit of 30 km/h, a zone in which traffic had been calmed
down as a side effect of measures carried out in areas next to it
(zone of passive traffic calming measures), neighbouring ar-



terials, limiting arterials, and a neighbouring area. In the con-
trol area, these zones were a residential area and neighbouring
arterials.

A more detailed subdivision comprised 7 periods of one year and 11
local zones. In the course of this investigation, the access
points to the urban motorway in the investigated area were consi-
dered additionally. In the control area, the "TurmstraBe", a main
road intersecting this zone, and a residential area where sporadic
traffic calming measures had been carried out, were also analyzed
(see appendix 3).

As a result of this, the accident rates were compiled in 8x3 or
11x7 contingency tables. These contingency tables were analysed
using Xz—tests. A Xz-test is based on the hypothesis that the
accident rates of the individual cells of a contingency table de-
pend on accidental variations and are independent of each other.
If the test variable is greater than the corresponding critical
figure, the hypothesis has to be rejected, i.e. it may be conside-
red as statistically proven that there are systematic divergences
between the actual accident occurrence and the accident occurence
expected according to the hypothesis. Since the test variable is
calculated by regression of actual and expected values, one cannot
deduce the cause of deviations from significant divergences from
the expected accident occurrence when rejecting the hypothesis.
This becomes evident to everyone calculating a Xz-test of a 2x2
table with paper and pencil. An abstract of a Xz-test is to be
found in appendix 4.

Thus, more refined statistical methods were necessary to establish
a causal connection between traffic calming measures and a sub-
stantial change in accident rates. For this, a log-linear apprcach
and a Poisson-regression model were used.

The log-linear apPproach is based on the assumption that the acci-
dent rates of each cell of a contingency table result from various
factors. These components comprise a universal factor, the influ-
ence of the area, the influence of time, and the interrelation
between time and place. The name of this model is derived from the
fact that this multiplicative approach is both logarithmitized and



linearized in the course of the numerical evaluation . If the log-
arithms of the interrelation factor are negative in each cell of
the investigated area in the time period after the traffic calming
measures, one may conclude that the measures are responsible for
this decrease. If they equal zero, the measures have no influence
on accident occurrence. If the logarithms of the interrelation
factor happen to be positive, this means that the measures cause
an undesirable increase in accident rates. The values of the in-
terrelation factors also allow for statements on the different ef-
fectiveness of the individual measures, if values in different
cells correspond to different traffic calming measures. The log-
linear analysis is described in appendix &.

The Poisson-regression model is based on four plausible hypothe-
ses:

accident rates in different intervals are independent of each

other;

- accident rates only depend on the length of the interval consi-
dered, but not on certain moments;

- the probability of the occurence of more than one accident du-
ring a very short interval almost equals zero;

- the probability of the occurence of exactly one accident during

a very short interval is proportional to the length of the in-

terval.

Based on these assumptions, one can mathematically derive that ac-
cident rates must be realizations of Poisson-distributed random
variables.

The actual modelling approach, which is similar to the log-linear
model, is founded on hypotheses about the number and kind of fac-
tors influencing accident occurence. Thus, the validity of the mo-
del depends decisively on the choice of the factors considered in
the modelling approach.

For the accident analysis of the area in Berlin-Charlcttenburg, an
approach containing seven factors without interrelationships was
chosen (see appendix 6). The model confirmed the results of the
log-linear approach, however, it will be revised for further eva-



luations. Statements on the effectiveness of the measures were
mainly based on the results of the log-linear evaluation.

In those cases in which the value almost reached the corresponding
critical figure in the X2 -test but did not exceed it, it could be
supposed that changes in the number of accidents had occurred, but
had not been classified as significant in the x? -test, which is
not powerful enough for this. In these cases, the data were once
again examined by means of a Bayes' method, which is a mere be-
fore-and-after comparison based on the assumption that accident
rates are realizations of Poisson-distributed random variables.
The parameter of the Poisson-distribution is assumed to be TI'-dis-
tributed and is calculated from the accident rates of the period
before the traffic calming measures. This information is also
considered when the confidence interval 1is calculated in the
course of the evaluation of the accident rates occurring in the
period after the traffic calming measures have been carried out,
which increases the power of the test. Thus, a significant de-
crease in accidents on the road sections of the investigated area
could be detected with the aid of this Bayes' method. (For further
information on the Bayes' method see appendix 7.)

Individual aspects

Many aspects could not be investigated with the rather coarse 7x11
and 3x8 contingency tables. Although approximately 14.000 ac-
cidents were recorded, the sample sizes were too small to analyze
certain aspects, e.g. how many pedestrians older than 65 years
were killed. Several cells of the contingency tables would have
contained insufficient values or no values at all. In these cases,
the relevant accident rates of the investigated and the control
area were comprised in a 2x2 contingency table for the time before
and after the measures and were evaluated by means of a Xz-test
if there were enough values. If there were values in all cells,
but in at least one cell insufficient values for a Xz-test,
Fisher's exact test was applied. Five actual accidents and five
accidents expected due to the test hypothesis were considered as
sufficient values for a XZ-test. With the help of these tests it
was possible to find out whether statistically valid changes in



accident rates had occurred. As with the larger contingency
tables, the log-linear approach was used again to analyze whether
the measures were responsible for such changes. The results of the
individual analyses were summed up in a large table (see appendix
8).

The evaluation of these aspects made it possible to analyse the
effectivenes of the measures in detail. The measures were more ef-
fective in the zone calmed by architectural modifications (zone 1)
than in the zone with the speed limit of 30 km/h (zone 2). How-
ever, the effects in this 2zone were still stronger than in the
zone calmed as a result of the measures in the neighbouring area.
It can therefore be concluded that architectural modifications are
the most efficient means to reduce accident rates. On the other
hand, the significant increase in accidents with oncoming traffic
at narrowings of streets and staggered lanes indicates that the
design of these architectural measures must still be improved.

Conclusion

The pilot study showed that the Xz—test is a simple means to de-
termine changes in accident occurrence exceeding accidental va-
lues. However, causes for these changes cannot be deduced with a

xz-test, they can only be determined in the course of the log-
linear analysis. Moreover, Poisson-regression models are suitable
means to establish causal connections between measures carried out
and changes recorded afterwards.

Among other things, the study showed that architectural measures
lead to a significant decrease in the following kinds of ac-
cidents:

- accidents with vehicles at intersectlcns (-46%);

- accidents with pedestrians (-78%);

- accidents with children (-62%);

- accidents with motor cyclists (-39%).
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X* - Test

Abbreviations (1<i<I; 1<j<]):
u..: accident-rate in cell (i,})

"
pl;: probability that an accident will ke ckserved in cell (,j)

Expected Values of u,

u * U
g i | with

i=1 j=1

Hypothesis H,:

Pij = Pi. * P

i.e.: if hypothesis Hg Is true, then the rows and columns of the
(IxJ)-contingency-table are stochastically independent

X? - Statistic: : _
- - Au- !
- for (IxJ)-contingency tables: T = Z Z (—E—l-‘-ﬁ-;——‘-l——‘”—

i=1 je=1 ij

u *(u, u,, - u,u,,)
- especially for (2x2) tables: T = — L2212
u, u, u,u,

Critical Region:
-if T> X? (1-1(y-1y+ then hypothesis H, has to be rejected
2 - 2. tioawe .
-X w, U-1(y-1 1S the a-quantile of the X*- distribution with
(I-1)(J-1) degrees of freedom (the exact value can be found in most

statistical books)

Result of the Test:
- if hypothesis H, has to be rejected, then the accident rates have

significantly changed
- there is no hint due to which factors hypothesis H, has to be

rejected
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Log-linear Model

Abbreviations:
Pij: probability, that an accident will happen in the i-th area
during the j-th period of time (1<is<l; 15js))
u;;: accident-rate in cell (i)
u: number of all accidents observed

Log-Linear Model:

, YA B AB
Pij = e}’ edi g} eij
A’ : genaral effect

)«?: ellect of the area

x'j’ . effect of the time period

AB
ij

A" : interaction of area and time effects

Expected Accident Rates:

g A
Gy=uepy=uee* X

AB
TR

Linearisation:

InCd; 0 = X+ A + AR e AAB | with A= dn(u) + 2

Maximum-Likelihood Estimators for the Effects:

I e

X = Te] lzalj;llnluil-)
1 J

2;‘- —_ Zln{uul - %
J j'l

Dt S YT I R

Result:

If there are significant changes in the accident rates and
there are traffic calming measures In the i-the arca and
the j-th period of time, then:

L AB I <0 l cause a decrease in accident rates
ij l =0 I “* measures are irrelevant ]
> 0 c@fe an increase in accident-rates

=
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Poisson-regression model

Abbreviations:

u.u.: Poisson-distributed accident-rate in the i-th local area and the
j-th period of time (1sisI; 1<j<])

ﬁij: expected value of u;;

the Model:
~ 6 ii
u;; = exp{ Z Ak xf"} with
k=so
1, resent
Xy = { 0 factor is l:bsent }

A\x = (unknown) weight of factor x

Linearisation and Lexicographic Ordering of u;;, xl;j and \¥:

representation of the model by vectors g = X

Least-square Estimator of X :
A= (XTX) XTeu with
XT: transposed of matrix X

(XT X)*: Moore-Penrose-Inverse of matix (XT X)

= =
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Baysian Approach

Abbreviations:

u: accident-rate
. » u,) sample of accident-rates

A-priorl Distribution:
- U is Poisson-distributed with parameter g, this means

u
‘F(ul=l’[l.l=u]=%!-e-u with E(U) = ¢ and Var(U) = ¢

- the parameter y is I'-distributed

nP
E am——— p-1 - ng
¥u) T(p) U e

A-priori Estimators for n, p, u:
n_= u/ s2 P, = (u/s)? Bo = Pg 7/ N

A-posteriori Distribution:
I(py+ n) ( Ng )po ( n )u
F(pg) F'lu+l) ‘ng+ n

Y(u) =

A-posteriori Estimator for y:

Ng o+ NUuU
1 =

Confidence Interval for u, :
x2
o

0
M S ¢ n)

X?, : the «-Quantile of the X2-distribution with 2(py+nu)
degrees of freedom
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Summary

zone 1 zone 2 zone 3 zone 4 zone § zexe €
] u g u 0 u
-]
A A A
533:3?:33:33:33:;»5
S 8 ¢ (8 1 S 8 9123 8 §|%8 8 ¢|8 & ¢
number of
acocldents ¢ & 0 |0 o0 ¢ |0 - ® |88 8@ - - - 0 0 -

'UE I-:j::mgrdndﬁ = 0 o 0 = |- - [ ] s - - = - [ es 0

0

giﬂiﬁw se 880 [0 0 - |- - - lsess 0|0 o =1|0 o o

g

=" | children ¢ - e@8|- 0 - |- - =10 0 0|~ o0 -]o o o

=§r;|ﬁougrdud0='00="0'ﬂll"-=-oo-

e

gg?.liﬁ',‘:é’ o ¢« 0o o -|o o =|ss= o0 |0 & =|0 o -
TPty o » olo - olog - slessegl- = =lo o -
vehicles 8 ¢80 & |8 - e®|p - ¢ (s 8o o |- - -|0 o -

L]

E passengercar |8 % €8 |®€ - Se|0 - ® |se® s® - - -lo o -

o bike e ® o |=-0 - - - - |lo - ee| - o - = s

[ ]

£ |pedestrians [+ o eelo 0 -0 = o0 |o e o|= o -|0 seso0
ngand” les sz o = # | g =|s s === |- = @

& destr. cross-

] ] road 0 = & |- = == = =0 0 - |- 0 -|& ss 9

u

%tpr:ﬂlkcﬁ‘:u - = =Jo - o|- - o] + 0|0 o o0 ss -

E ﬂﬁﬁﬂfs 8 0 e8| = @8- = - - - = 0 0 = = - 0

o .

o | trashic"™® ©o o - (o o oo o ofs e o0 = -[- o -

-] .

3 | trtiene - =-90 = 0o -0 o o|= = =|0 0 =|- - -
LT 0 0 5 - 0
acoidents per
1000 residents [0 0 0 0 e 0
and year
Symbols
ss gsignificant decrease in accident rates (x=0.01; X% - test)

l ¢ significant decrease in accident rates (a= 0.05; X? - test)
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] 0 decrease in accident rates, but not significant decrease
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A MODEL FOR EVALUATING EDUCATIONAL ROAD SAFETY MEASURES

Dr. J.A. Rothengatter,
Traffic Research Centre, University of Groningen

Abstract

The purpose of evaluating educational road safety measures is two
fold. Firstly evaluation research serves as a method for obtaining
information that can aid the development process of these measures -
Secondly, evaluation research can provide information about the
potential effects of educational road safety measures both in terms of
behavioural changes and in terms of accident reduction. In practice,
these two purposes are often confused, which leads to use of inapprop-
riate evaluation methods and hence to incorrect conclusions regarding
the development and implementation of road safety education pro-
grammes.

This paper presents a recently developed model for evaluating educa-
tional countermeasures. The model distinguishes process and product
evaluation and outlines a sequential approach in terms of a number of
discrete stages. For each of these stages the suitable research
methodology is specified in terms of objectives, methods and con-
clusion validity. Examples of recent evaluation studies of educational
programmes will be analysed to illustrate the use of the model, and it
will be demonstrated how a stringent use of the model can improve both
the development process and the decision making regarding the imple-
mentation of education measures,
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ABSTRACT

The classical approach to estimating accident rates, and to
testing the statistical significance of changes in accident rate,
involves interpreting accident count data relating to a specific
site over an extended period of time. An alternative approach,
involving the analysis of accident data relating to groups of
sites over a shorter period, has been proposed. This paper
describes both approaches, discusses their strengths and
weaknesses, and suggests avenues for further research.



INTRODUCTION

Much of the recent literature on accident analysis has been
focussed on two problems:

(1) the identification of hazardous locations (or blackspots),
and
(2) the estimation of the effectiveness of treatment.

Both involve estimation of what may be termed the "underlying
true accident rate" (or UTAR); hazardous location identification
requires estimation of the current UTAR only, while treatment
effectiveness estimation requires estimation of the UTAR both
before and after treatment. '

It should be noted that the underlying true accident rate (UTAR)
is not known with certainty, and is almost certainly not equal to
the number of accidents observed per unit time (or per exposure).
The observed number of accidents is merely an indication of the
UTAR, which can only be estimated on the basis of observations.

Accidents are relatively rare, and are subject to both temporal
and spatial variations; at a site where the UTAR is not changing,
there is generally considerable variation in the annual accident
counts about the UTAR, while it is generally accepted that at a
point in time the UTAR varies from one location to another. 1In
reality, it may well be that the UTAR for each specific location
is varying with time.

When analysing accident unt data for many sites over several
years (see Figure 1), it must be remembered that a mixture of
spatial and temporal variations underly the count data, and it is
a difficult task to separately identify those variations, in
order to identify hazardous locations and estimate treatment
effectiveness accurately.
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Figure 1: Matrix of accident counts for I sites and J years.

The classical approach to the problem entails analysing the data
for each site separately, in order to estimate the UTAR for each
(or the pattern of variation of the UTAR, if it is not constant).
One can then identify the sites with an unusually high UTAR
(blackspots), or detect whether there has been a change in the
UTAR since treatment. The longer the time period for which
accident count data is available, the more precise the estimate
of the UTAR (assuming it is constant). If the UTAR is changing,
then the pattern of variation of the UTAR can be identified more
accurately as the time period increases.

Road safety work is invariably undertaken in less than ideal
circumstances, there being considerable pressure upon researchers
and practitioners to adopt procedures which permit responses or
results in a short time. For instance, a sudden spate of
accidents at a site may lead to intense public pressure for
immediate remedial treatment, and the practising traffic engineer
will have difficult convincing the public (or their elected
representatives) that any action should be deferred until it is
known with a reasonable level of confidence that the spate of
accidents did indeed indicate an increase in the UTAR, or is



merely confirmation of the stochastic nature of accident
occurrence. Similarly, there is often a demand for a quick
assessment of the effect of some change to the road environment
upon the accident rate. The development of the traffic conflicts
technique is a reaction to this pressure, as is the development
of statistical analysis procedures involving the analysis of
accident data for groups of sites over a shorter time period.

THE CLASSICAL APPROACH

Estimating the Underlying True Accident Rate

Consider the case of Xiqr Xyor eoer X5 accidents in n years at a
single site, i. If it is assumed that the annual accident counts
are governed by a stationary Poisson process, the mean of which
is the UTAR oy then one can derive confidence limits for o, -
If the accident counts are Poisson-distributed with mean o, then
the sum of the counts is also Poisson-distributed (with mean
nej). Since the cumulative sum of the Poisson distribution is
related to the cumulative Chi-square distribution, it follows
that, with a level of confidence of (1-2k),

1 i u
where
2
= k = 2 2
B, x° ( |Vi Ci) / (2n)
2
= -k = 2 +
Bu x° (1 |vi ci 2) / (2n)
and
n
c = E X

.

Using these relationships and tables of the percentage points of
the y? distribution for integral and fractional degrees of
freedom (Pearson and Hartley, 1976), graphs of confidence limits



for the UTAR ( ai) , for various values of the observed rate of
accident occurrence (ci/n) and time period (n), have been derived
(Nicholson, 1987). An example is shown in Figure 2.

90% CONFIDENCE LIMITS FOR THE MEAN
OF A POISSON PROCESS n=1
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Figure 2: 90% Confidence Limits for the Underlying True

Accident Rate



The width of the confidence interval for the estimate of the UTAR
reduces as the number of years of observation increases, as shown
in Table 1. Clearly, the rate of improvement in precision

decreases as the period of observation increases. A graph of the
width of the confidence interval (as a percentage of the observed
accident rate) versus observation period (Nicholson, 1986)

reveals that in the vicinity of n = 5, there is a marked decrease
in the rate of improvement in precision as the observation period

increases.
Total no. No. of
of accidents years B, Bu B] - Bu
c n (c/n)
5 1 2.0 10.6 172 %
15 3 3.1 7.7 92 %
25 5 3.5 7.0 70 %
50 10 3.9 6.3 48 %
75 15 4.1 6.0 38 %
Table 1: Varlation in width of 90% confidence interval with

increasing observation period

It seems, from the viewpoint of statistical reliability, that
five years is about the optimum time period for estimation of the
UTAR. It might be argued that five years is too long a time
period, in that it would prevent the quick detection of sudden
changes in the UTAR, and many roading/highway authorities use a
much shorter period (Zegeer, 1982; Silcock and Smyth, 1984).

Such an argument implies that annual accident counts are governed
by a non-stationary stochastic process. The procedure described
above is based upon the assumption that the mean and variance of
the accident process are constant and equal. Clearly, if non-
stationarity is assumed, a greater observation period is required
to identify the form of variation of the mean and/or variance of
the accident process (and, hence, the UTAR at some point in time)
than if non-stationarity is assumed.



Testing the Significance of Accident Rate Changes

Consider now the case of X, X, accidents in n years

t Xt et
before some change (remediai trégtment, say) and

Yiqr Yior =+« + Yip accidents in the m years afterwards.
Assuming that the accident counts are Poisson-distributed, with
means o, and By "before" and "after" respectively, then the
corresponding accident totals X and Y are also Poisson-
distributed, with means no and mg; respectively. According to
Feller (1971), the probability distribution for the difference in
accident totals is given by:

a/2
P[(X-Y=d] = exp(-nui —msi) (nai /mBi) I(ai,Bi,m,n,d)

where
-1 (2 +]d|)/2

1(“1'Bi'm'“'d) = (Ab(a +]aDt) (mnao, 8,)

i~ 8

A=0

is a modified Bessel function.

In this situation, one is interested in estimating the
probability that the observed difference in the accident totals
is due to chance, assuming that the UTAR "before" is equal to the
UrAR "after" (i.e., a; =B3). If it is also assumed that the
observation periods are equal then the above expression can be
simplified, to give:

(2x +1d|)

(AL(x +]d !) <.

P[X-Y=d] = exp(—zci) 6 i

N~ 8

A

where

Using this expression, the discrete density function of (X-Y)
can be calculated, from which graphs of the critical change in
accident rate, for various values of the observed rate of
accident occurrence and time period, have been derived
(Nicholson, 1987). An example is shown in Figure 3.
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Figure 3: Critical Change in Accident Rate (90% Confidence

Level)

The greater the number of years of observation, the smaller the
required change in accident rate for statistical significance, as
shown in Table 2. Clearly, the required change in accident rate
decreases as the period of observation increases, with five years
again appearing to be about optimum from the viewpoint of
statistical reliability.

Total number of Number of Critical Critical Change
accidents "before" years change (c/n)

e n

5 3, 4.7 924 %

10 2 68 %

15 3 2.8 56 %

25 5 e 44 %

50 10 1.6 32 %

75 15 1.3 26 %
Table 2: Variation in critical change with increasing

observation period (90% confidence level)



Depending upon the time period and the confidence level, the
change in accident rate required for statistical significance may
exceed the accident rate "before" (i.e. it may not be feasible to
achieve statistical significance). The "zone of infeasibility"
is shown in Figure 3.

When comparing the means of two stationary Poisson processes, it
is easier to make inferences about the ratio of the means than
the difference. If one is interested in testing the statistical
significance of the difference in the UTAR’s, Cox and Lewis
(1966) suggest that one "shall almost always have to fall back on
large-sample approximations". Such approximations are very often
inappropriate for accident data analysis; the above-described
test does not involve such approximations, and may be applied to
the analysis of small numbers of accidents.

It may be thought satisfactory to estimate the confidence
intervals for the UTAR’s before and after a change, and if there
is no overlap conclude that there has been a statistically
significant change in the UTAR. Hence, if one observed 25 and 11
accidents in the five years both before and after a change, then
the corresponding 90% confidence intervals would be 3.5 to 7.0
and 1.2 to 3.6 accidents per year (Figure 2), and given that they
do overlap, it might be concluded that there has not been a
statistically significant change in the UTAR. It can be seen
from Figure 3, however, that the critical change in accident rate
is 2.2, and since the observed change is 2.8 accidents per year,
then it can be concluded that there has been a statistically
significant change. Clearly, the rigorous test is more reliable;
the use of the simple test gives a bias towards incorrectly
concluding that a treatment has not had a statistically
significant effect.

THE ALTERNATIVE APPROACH

The Non-Parametric and Empirical Bayesian Methods

Consider the case of x1j, x2j' S EE xnj accidents in year j at

n sites. The sites may be ranked according to their accident



counts in year j, and those with a high ranking (i.e. a high
accident count in year j) may be selected for treatment because
they seem unusually hazardous in comparison with the other sites.
Due to the stochastic nature of accident occurrence, the sites
with a high ranking based on data for one year may not have a
high ranking if data for another year is used. 1In fact, the
sites with an above-average accident count in one year will tend
to have a lower accident count in the next year. The nature and
extent of the regression-to-the-mean effect is discussed in
detail by Hauer (1980), who has clearly shown that if
(1) sites are selected for treatment because of a history of
many accidents, and
(2) the regression-to-the-mean effect is ignored
then the effectiveness of the treatment will be exaggerated.

According to Persaud and Hauer (1984), there are two analytical
methods which may be used to correct estimates of treatment
effectiveness, in situations where control groups have not been
established. They are

(1) the non-parametric (NP) method, and

(2) the empirical Bayesian (EB) method.

Both methods are aimed at providing an estimate of the total
number of accidents that would have occurred at the group of
sites selected for treatment had they not been treated; this
estimate can be compared with the observed total number of
accidents at the sites after treatment, in order to obtain an
unbiased estimate of the overall effect of the treatment.

The non-parametric (NP) method is based upon the assumption that
the number of accidents at each individual site is governed by a
stationary Poisson process. It has been shown (Hauer, 1980;
Hauer and Persaud, 1982) that if sites which during a period of
time had k or more accidents are selected for treatment, then

Il

A(K) B(k + 1)

where
A(k)

the expected total number of accidents at the
selected sites for an equivalent period after
treatment, if the treatment has no effect



and
B(k+l) = the actual total number of accidents at those
sites having (k+1) or more accidents during the
before-treatment period.

Persaud and Hauer (1984) stated the NP method as follows:

a(k)

]

[ (k+1) Nk+1] / Nk
where

a(k) = the expected number of accidents during an
equivalent after-treatment period at a site that
had k accidents in the before-treatment period

N. = the number of sites having k accidents in the
before-treatment period.

They also stated that the empirical Bayesian (EB) method, first
proposed by Abbess, Jarrett and Wright (1981), could be written
in the similar form

= * %*
a(k) [ (k+1) Nk+1 1/ Nk
where
Ni = the number of sites expected to have k accidents

in the before-treatment period.

The EB method, as proposed by Abbess, Jarrett and Wright,

involved two assumptions:

(1) that the number of accidents at each individual site during
a year, say, is governed by a stationary Poisson process,
and,

(2) that the means of the Poisson processes varies between
sites, according to a Gamma distribution.

Hence, the number of sites expected to have k accidents in a

year, say, is given by the Negative Binomial distribution.



Abbess, Jarrett and Wright examined the actual distributions of
annual accident numbers at blackspots and concluded that the
Negative Binomial distribution gave "a reasonable fit". They
also noted that "there tends to be more sites with zero accidents
than one would expect" (about 33% had zero accidents). They
therefore tried a truncated Negative Binomial, excluding sites
with zero accidents, and claimed to have obtained a "good fit",
although they did not give any goodness-of-fit statistics.

Andreassen and Hoque (1986) reported that a very high proportion
(about 93%) of all intersections in Melbourne have zero accidents
in a year, and they also chose to exclude the zero accident
category. They concluded that the truncated Negative Binomial
distribution was unsuitable, because the parameter estimation
procedure gave a negative value for one parameter. They did
conclude that the observed distribution of annual accident counts
was well described by the logarithmic series distribution. Maher
(1987a) has subsequently claimed that a negative parameter value
is quite acceptable and that the truncated Negative Binomial
gives a much better fit to the Me lbourne data than does the
logarithmic series distribution.

It is hard to imagine any p.d.f. providing a good fit to an
observed accident count frequency distribution for all locations
in a large network, as very many locations, most of which are low
in the roading hierarchy (e.g. low volume roads/intersections in
residential areas), experience zero accidents in any given year.
Even 1f low-hierarchy locations are omitted, it must be
remembered that a good fit of the Negative Binomial distribution
to observed accident count data for the other locations does not
mean that the Poisson and Gamma distributions are appropriate.
It has traditionally been assumed that accident counts at a site
are governed by a Poisson process, and the choice of the Gamma
distribution is really one of mathematical convenience, as it is
the natural conjugate of the Poisson distribution. Hauer and
Persaud (1982) refer to the assumption of the Poisson
distribution as being "empirically unproven", and there is
evidence (Nicholson, 1985) that it is not generally valid, as
some locations have either too much or too little variance in
their accident counts for the Poisson distribution.



Persaud and Hauer éompared the performance of the NP and EB
methods for debiasing estimates of countermeasure effectiveness,
using a large number and variety of data sets, and concluded that
the EB method generally performed better and "should be used in
assessing the safety effect of a treatment". They did, however,
note that for sites having zero or one accident, the NP method
gave slightly better results; this was probably due to the
tendency to underestimate the number of sites having zero or one
accidents when using the Negative Binomial distribution. It
should be noted that Persaud and Hauer did not employ statistical
tests in making the comparison, but relied upon graphical and
numerical descriptive measures only.

One problem associated with the NP method (Hauer, 1980; Abbess,
Jarrett and Wright, 1981) is that the estimate of the bias is
unreliable when the number of systems treated is small. This is
due to the small numbers of sites having x accidents in a year,
and the large variation (from year to year) in the numbers of
sites having x accidents, when x is large. Hence, the sequence
of values for a(k), k=0, 1, 2, ... , can exhibit considerable
random noise. In a recent paper (Hauer, 1986), a procedure for
reducing the random noise is described. It involves fitting a
function to the calculated, unsmoothed a(k) in order to obtain a
smoothed sequence of values for a(k).

A New Method

Another problem associated with the NP method noted by Abbess,
Jarrett and Wright , is that the method can be applied to groups
of sites only. Hauer (1986) has subsequently proposed a
procedure for estimating the number of accidents expected to
occur annually at a single site, given accident count data for
several sites over several years, as follows:

E(x;) =X, + [X/(I(s?X) + x)1[x - X ]

where

E(xi) expected annual number of accidents at site i

xij the number of accidents at site i during year j



T = number of sites
= number of years
- J
X = I x../J
i =1 ij

_ I J

X = I z x,./(1J3)
i=1 j=1 *J
I J 2

s2 = 1§ I (%, 5= x)?/ (1J)
i=1 j=1 J

Like Abbess et al, Hauer assumed that UTAR’s are Gamma
distributed and annual accident counts for each site are Poisson
distributed.

The form of the expression for E(xi) is such that

(1) the first term is the mean accident count for site i

(2) the second term is an adjustment, which depends upon the
spatial and temporal distribution of accidents (over the I
sites and J years) and the duration of the accident history.

It is helpful to consider the accident count matrix (Figure 1),

and think in analysis of variance terms. It can be seen that

(1) x is simply the overall mean accident count.

(2) s? is simply the total sum of squares, divided by the total
number of accident counts.

(3) the second part of the second term is the difference between
the overall mean accident count and the mean accident
count for site i.

Hauer suggests that

(1) the first term converges on the UTAR as J increases;

(2) the adjustment term tends towards zero as J gets large, so
that the more information one has about a particular site,
the less is the effect of using data for other sites.

An analysis of the expression for the expected annual number of

accidents at a particular site (see the Appendix) reveals that

the adjustment term may not reduce to zero as J increases.

Hauer also investigated the error associated with the above
procedure for estimating E(xi). He suggested that the mean-



square-error is comprised of two parts:

(1) the difference between the underlying true accident rate
(UTAR) at site i from the mean of the UTAR’s for the group
of sites having the same total number of accidents;

(2) the difference between the estimated accident rate at site i
and the UTAR at site i.

Using his data and estimation procedure (as described above),
Hauer found that the first component of the mean-square-error was
very much larger (at least one order of magnitude) than the
second component. The first component arises from the grouping
together of sites and Hauer suggests that the only way to reduce
this component is by judiciously changing the criteria for
deciding whether sites are sufficiently similar to be grouped
together.

APPLICATION OF BOTH APPROACHES

Consider the case of ten sites for which there is five years of
accident count data, the accident count matrix being as shown in
Figure 4. Row and column totals and means are also shown.
Years
1 2 3 4 5 Row Row
Total Mean
15 3
25
10
20
15
10
5
15
20
15
150

Sites
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1
0
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4
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Column Total 20
Column Mean 2.5 4.0 2.0 3.5 3.0
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Figure 4: Example accident count matrix



For this case,

(1) the total sum of squares

(3) the variance s?

3.44

= 172
(2) the overall mean accident count x

3.0

so the correction term will reduce as the number of years 1is

increased.

Table 3 shows the results of applying Hauer’s estimation
procedure to the year 1 data, the years 1 and 2 data, and so on.

The values of ii and E(x,) are both shown, and it can be seen

that the absolute magnitude of the adjustment term is quite
substantial even after five years of data; for site 7, after

five years, it is still greater than ii.

It is also evident that

the effect of the adjustment term is to give much less variance

in the values of E(xi), i=1, ..., 10, than in the values of ii.

Number of years of observation
Site 1 2 3 4
1 5, 3.08 3.5, 3.32 2.67, 2.76 3.00, 3.00 3.00, 3.00
2 5, 3.08 6.0, 4.03 5.33, 3.96 5.50, 4.36 5.00, 3.85
3 3, 2.62 2.0, 2.90 2.67, 2.76 2.00, 2.45 2.00, 2.58
4 3, 2.62 4.0, 3.46 3.00, 2.91 4.00, 3.55 4.00, 3.42
5 0, 1.92 3.0, 3.18 2.67, 2.76 3.00, 3.00 3.00, 3.00
6 0, 1.92 2.0, 2.90 1.67, 2.31 1.75, 2.32 2.00, 2.58
7 1, 2.15 1.5, 2.76 1.00, 2.01 1.00, 1.91 1.00, 2.15
8 4, 2.85 3.5, 3.32 2.67, 2.76 3.25, 3.14 3.00, 3.00
9 3, 2.62 4.0, 3.46 4.00, 3.36 3.50, 3.27 4.00, 3.42
10 1, 2.15 3.0, 3.18 2.67, 2.76 3.00, 3.00 3.00, 3.00
Table 3: Values of ii and E(xi) for J 1; 2, sas 5

Table 4 shows the results of using the classical approach,

embodied in Figure 2, to estimate the 90% confidence intervals

for the UTAR’s after 1,

3 and 5 years.

use of data for a longer time period.

As expected, those
confidence intervals are generally reduced considerably by the



Number of years of observation

Site 1 3 5
(2.0-10.6) 2.67, (1.3-4.8) 3.0, (1.9-4.7)
5, (2.0-10.6) 5.33, (3.4-8.1) 5.0, (3.5-7.0)
3, (0.8~ 7.8) 2.67, (1.3-4.8) 2.0, (1.1-3.4)
3, (0.8~ 7.8) 3.00, (1.6~-5.3) 4.0, (2.7-5.9)
(0.0~ 3.0) 2.67, (1.3-4.8) 3.0, (1.9-4.7)
0, (0.0- 3.0) 1.67, (0.7-3.5) 2.0, (1.1-3.4)
1, (0.1- 4.8) 1.00, (0.3-2.7) 1.0, (0.4-2.1)
4, (1.4~ 9.2) 2.67, (1.3-4.8) 3.0, (1.9-4.7)
3, (0.8~ 7.8) 4.00, (2.3-6.5) 4.0, (2.7-5.9)
(0.1- 4.8) 2.67, (1.3-4.8) 3.0, (1.9-4.7)

O 0 N 0 W
o (8]
- -

=
o
=

Table 4: Best estimates (with 90% confidence lower and upper
bounds) for J = 1, 3 and 5.

It is interesting to note that for site 7, the value of E(xi) is
2.15 (Table 3), and this is outside the 90% confidence limit (0.4
to 2.1).

REGRESSION-TO~-THE-MEAN

It is well known that regression-to-the-mean, in combination with
the selection of sites for treatment on the basis of high
observed accident counts over a short period, can lead to biased
estimates of the effect of treatment (Hauer, 1980; Abbess,
Jarrett and Wright, 1981).

When considering whether to treat a site, any one of six possible
conditions may exist:

(1) k<ac<@
(2) k<d<oa
(3) &8 < k<o
(4) o<k < @
(5) a< &<k
(6) &8 < a <k



where

a = UTAR for the site
= observed accident rate for the site
critical accident rate

Ideally, the site should be treated if ¢ > k and should not be
treated if a < k, but in reality o is unknown and is estimated
by @, so that treatment will occur if 4 > k and will not occur if
& < k.

In virtually all discussion of regression-to-the-mean, attention
is focussed upon cases 1, 4 and 5,-whgre a < & and the
regression will be downwards. Abbess et al do mention the
possibility of the regression-to-the-mean effect being
"completely reversed". For cases 2, 3 and 6, where o > g4 , the
regression-to-the-mean will be upwards.

If one has a large number of sites under consideration for
treatment, then one would expect to have the same number of cases
1 and 2, and of cases 5 and 6. Hence, the regression effects of
cases 1 and 2 would be expected to be equal and opposite, and to
thus cancel. Likewise, the effects of cases 5 and 6 would be
expected to cancel. Case 3 sites should not be selected for
treatment and should have no effect, except in certain
circumstances as discussed below. Case 4 sites should be
selected, with the consequence that there is an expected nett
downwards regression effect.

If case 3 sites should happen to be included in the set of
control sites, there will be an expected nett upwards regression
effect in those sites, and this might be taken as evidence of an
accident migration effect. The existence of an accident
migration effect has been a matter of considerable debate since
it was raised by Boyle and Wright (1984), and Maher (1987b) has
suggested that there is a statistical explanation, which seems
essentially the same as that given here.



As the observation period increases, one would naturally expect
the observed accident rate,& , to more closely approximate the
underlying true accident rate,c , and Figure 2 shows how the
confidence interval for o decreases in width as the observation
period increases. If one assumes that accident counts are
Poisson distributed about a constant UTAR, then one can (from
Poisson probability tables or charts) readily derive confidence
intervals for &, for varying observation period length, as shown
in Figure 5. The 90% confidence interval for 4, given o« = 5,
narrows quickly from 2.2 to 9.4 for one year, to 3.5 to 6.8 for
five years. Thereafter the rate of narrowing is much less, and
after 10 years the 90% confidence interval for &4 is 3.9 to 6.3,
or 22% below to 26% above the UTAR.

10-
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Hauer (1980) investigated the effect of both the observation
period and the fraction of sites selected for treatment (the
higher the critical accident rate, k, the lower that fraction) on
the magnitude of the bias. It was assumed that all sites had the
same UTAR, and the selection-fraction was assumed to vary from 1%
to 50%. It was found that the larger the selection-fraction and
the observation period, the smaller was the bias. The assumption
of the same UTAR for all sites may well have lead to
overestimation of the bias, however, for Abbess, Jarrett and
Wright (1981) assumed the UTAR varied between sites according to
a Gamma distribution, and obtained substantially smaller
estimates of the bias. In addition, whereas Hauer’s results
suggest that the bias using three and five years is 50%-55% and
about 40% (respectively) of the bias using only one year, the
results of Abbess et al indicate a much more rapid reduction in
bias as the observation period is extended (55%-60% and about 40%
of the bias using only one year, for two and three years,
respectively).

In a later paper, Hauer and Persaud (1982) again examined the

relationship between the magnitude of the regression-to-the-mean

and the duration of the observation period. An empirical

approach was employed, with a seven year accident history for

rural roads in Israel being treated as follows:

(1) the 7th year was regarded as the "after" period,

(2) years 6, 5 and 6, etc. were regarded as "before" periods, of
duration 1, 2, etc. years.

Comparison of the accident rates (per year) for years 6, 5 and 6,

etc. with that for year 7 suggested that the regression-to-the-

mean effect did reduce as the duration of the "before" period was

increased, but not as quickly as the results of Abbess et al

indicate.

If the accident rates for the "before" period are compared with
the overall accident rates for the "before" and "after" periods,
it can be seen that the effect of increasing the duration of the
"before" period is very marked (see Table 5) -



Number Before Accidents Mean Overall A-B
of Period in 7th Accident Mean B
Sections (yrs) Year Rate Accident
"Before" Rate
A B
337 1 317 530 424 25.1%
258 2 277 393 354 10.9%
231 3 250 321 303 5.9%
191 4 230 292 280 4.4%
178 5 224 272 264 3.0%
170 6 222 258 253 2.0%
Table 5: Regression-to-the-Mean and the Duration Effect.
DISCUSSION

In the frequent references to Sir Francis Galton’s observations
of the height of offspring relative to that of their progenitors,
no mention is made of the ethnic group to which the people
belonged. Clearly, were one to group together the pygmies of
equatorial Africa with an ethnic group noted for their
considerable height, then evidence of regression-to-the-mean
would be difficult to find. In such a case, there would not be
regression to the overall mean, although there may be regression
to the ethnic group means.

Previous discussions of regression-to-the-mean in road safety
literature have been in the context of accldents at groups of
sites, and the grouping together of sites seems to imply that
there is a relationship between the accident processes at those
sites. The grouping of sites is often done on an arbitrary
basis, and there is no basis for supposing that there 1s a
relationship between the accident process at the sites so
grouped, such that there is regressilon to the group mean.

The classical approach entails looking at data for individual
sites, with the accident counts varying about the underlying true
accident rate. 1In thls context, an accident count well above or
below the underlying true accident (or UTAR) is likely to be



followed by a count that is closer to that UTAR. It follows that
regression can be upwards or downwards, and the inclusion of
sites where upwards regression is likely within a control group
may lead to the appearance of accident migration.

The consideration of individual sites shows clearly how one may
improve the precision of the estimate of the UTAR by extending
the duration of the observation period, thereby reducing the
impact of the regression-to-the-mean effect on the estimates of
the UTAR’s before and after treatment. The alternative approach,
involving consideration of groups of sites, also indicates that
the regression-to-the-mean effect dimishes as the duration of the
observation period increases. There is, however, some
discrepancies between the estimates of the effect of increasing
the observation period, and this matter needs to be resolved.

Practising traffic safety engineers now seem aware of the
regression-to-the-mean effect, and the need now is for advice on
how to take proper account of the effect. If they are evaluating
a remedial treatment at a site, one option is to simply increase
the observation period. Alternatively, they may opt for using
data for a large number of sites. The disadvantage of extending
the observation period is obvious; the time to detect a change in
the UTAR is increased, and the corresponding increase in
statistical reliability seems to count for very little. The
disadvantage of considering groups of sites is less obvious. The
results of Hauer (1986) suggest that the error associated with
the grouping together of sites is the dominant one, and it is not
one which can be readily quantified by practitioners, who might
be better off simply extending the observation period and using
the classical approach.

The matter of grouping sites on the basis of their having similar
characteristics (including similar underlying true accident
rates) needs attention. There seems to be scope for trying to
improve the statistical efficiency of the stratification, so that
the between-group variance of the UTAR is maximised and the
within-group variance of the UTAR is minimised. The greater the
ratio of the between-group variance to the within-group variance,
the greater the statistical efficiency of the stratification. 1t



the total number of sites is N and the number of groups is Kk,
then the quantity

[ (between~-group variance)/(within-group variance) ][ (N-k)/(k~1) ]

is F-distributed, and one can test whether there is a
statistically significant relationship between the UTAR and the
criteria for grouping sites. Anyway, such an approach should
give a reduced standard error for the estimate of the expected
annual number of accidents.

Statistical efficiency is, of course, not the only goal. The
criteria for grouping sites should be readily applicable by
practitioners (e.g. the form of intersection control, the
approximate traffic flow), and a compromise is likely to be
required.

It has been noted above that the procedure proposed by Hauer
(1986), for estimating the expected annual number of accidents,
involves terms that have their equivalents in the standard
analysis of variance procedures. Given a matrix of accident
counts, there seems to be potential for using analysis of
variance in order to separately identify spatial and temporal
varilations in accident occurrence. If the mean accident counts
and the variance of those counts for individual sites are
proportional (if the accident counts are Poisson distributed,
then the mean and variance will be approximately equal), then it
is necessary to transform each count (by taking the square root
of the count-plus-one-half), in order to satisfy the assumptions
upon which standard analysis of variance procedures are based.

If one is treating an area containing many individual sites (e.g.
the area studies being undertaken in the UK), then one may be
content with an estimate of the overall effect, in which case one
can use either the non-parametric (NP) or empirical Bayes (EB)
procedure (Persaud and Hauer, 1984). These procedures do not
provide information about the effect of treatment at individual
locations. It may well be that a treatment is not uniformly
effective; its effect may well vary from site to site. 1If so,
then it is important that this be known, so that the reasons for



the variation can be investigated and understood, and the
knowledge incorporated into the detailed design of future
applications of the treatment.

By focussing on the accident counts for individual sites (as the
classical approach entails), it may be found that a site exhibits
unusually low or high variance in the annual accident counts, in
which case use of the Poisson distribution will increase the
probability of mistaking a change'in the UTAR for a simple
fluctuation in the accident counts about a constant UTAR, or vice
versa. There is some evidence (Niqholson, 1985) that a
substantial proportion of sites mq§ have accident counts not
well~-described by the Poisson dis#ribution.

Finally, both the classical and alternative approaches have
strengths and weaknesses. There is further work to do before one
can clearly identify the circumstances in which one approach will
be better than the other, and it seems unlikely that one approach
will be better in all circumstances.
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APPENDIX

The expected annual number of accidents at site i is

where
- J
X, = I x,./J
i =1 ij
F = X(X = X;)/[T(s?-X) + X]
For J = 1,
F = X (i—ii) / s?

and for X > 0 and s? > O,

AV
®xi X
[

L

That is, if the average accident count over J years for site i is
less than the average for all sites, then E(xi) will be greater
than ;i (and vice versa). The adjustment is zero if x = ii.

The absolute magnitude of the adjustment F will decrease with
increasing J if and only if F and 3F/3J are of opposite sign.

Since
(3F/3J) = - X (X=x,) (s2=x) / [J(s2-R) + X]?

then it follows that 3F/3J is

1

(1) <O if X and s? >x , or ;, and s? <
X

(2) >0 if

E AR
}_l.
"1

X <
and s? <x , or x < and s? >
Hence, the absolute magnitude of F will decrease with increasing

J if and only if s? > Xx.

If one has a group of sites with very similar UTAR’s and little



variation in the accident counts about those UTAR’s, then it may
well be that s? < X, and the adjustment F will not tend to zero
as J gets large.
Now,

(aF/38?) = = J X (%-X,) / [J (s?-X) + X]?

and this is, for 3 =1, 2, ... ,

(1) <O if
(2) >0 if

x1 Xl

>
<

E |
e e

1

Since F and (2F/3s?) are of opposite sign for both x > ii and

X < ii , then the incorporation of data from another site, such
that the variance s? is increased will, all other things being
equal, lead to a decrease in the adjustment F. This is
consistent with the result that a lack of variance will lead to F
increasing as J increases.

In order that the adjustment F be

(1) >0 for
(2) <O for

L
AV
L]

it is necessary that
X / [J (s?-x) + x] >0
and for s? < X this may not hold, especially as J becomes larger.

It appears that so long as s? < X , then the estimator of the
annual number of accidents is well-behaved.



EMPIRICAL ESTIMATION OF THE REGRESSION-TO-MEAN EFFECT
ASSOCIATED WITH ROAD ACCIDENT REMEDIAL TREATMENT
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C.C. Wright
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Middlesex Polytechnic
England

INTRODUCT ION

It is well known that the true or long-term mean accident rate
at a blackspot tends to be less than the observed frequency
over any given period. This apparently contradictory
statement is explained by the fact that, by definition, a
*blackspot’ is a site with a high observed accident frequency
relative to the rest of the population; the distribution of
observed accident frequencies for sites as a whole will be
more widely dispersed than the underlying distribution of true
means, sos for sites with observed frequencies which are large
compared with the rest of the population, the observed
frequency is likely to be somewhat greater than the long-term

mean.

It is now known that an appreciable proportion of the apparent
reduction in accidents at a black spot follawing remedial
treatment 1s attributable to the regression—to mean effect.
Several authors have suggested methods for predicting the
effect so that 1t can be corrected for during the evaluation
process: for example Gipps (1980), Hauer (1981), and Abbess et
al . (1981). Abbess (1984) has developed a computer program
PRAYERMATS which processes before and after data and provides
estimates of the effectiveness of treatment for individual

blackspots and collectively for a whole qgroup. At the same
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time, the results are adjusted automatically for trend using

control data supplied by the user.

Most of the existing methods rely on one or more assumptions
about the nature of the distribution of the long-term mean
accident rates between sites 1n the populatian. Foi- a brief
review and comparison of the methodss the reader is referred
to Wright et al. (1985, 1988). One particular method, which
was tentatively suggested by Jarrett et al. (1982), is very
close in spirit to the original concept of “‘regression-to-
mean’y; which was discussed and named as such by Francis Galton
(1889). This method is based on the simple idea of fitting a
regression model to accident frequencies for two sepairate time
periods. The approach calls for little by way of assumptions
about the data, and in principl2 can be made to vyield
acceptable results for cases where other methods would fail.
Because of this, and because it involves the fitting aof a line
or curve to a scatter plot of the data, the approach can be
called an empirical method of estimating the regression
effect.

For many underlying distributions of long-term mean accident
frequencies, it turns out that the appropriate regression
model is a straight line (see Wright et al., 198%). However,
the usual least-squares procedure for estimating the
parameters of the model is not appropriate for accident data
since the usual assumptions of regression theory are violated.
The aim of this paper 1s to suggest a technique for fitting
the regression function and to test it using both simulated
data and accident data from the London area- The suggested
method will be compared with existing methods of estimating

the regression effect.
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IHEORE 1 1CAL BACKGROUND

fThe approach to estimating the regression-to-mean effect
suggested by Gipps (1980) and developed by Abbess et al.
(1981) is based on the following three assumptions:

(i) in a time period of fixed duration (say one vyear), the
number of accidents x at a given site has a Poisson
distribution with mean my independently of other

sites;

(ii) the value of the true mean accident frequency m varies

between sites according to a gamma distribution;

(iii) the mean accident frequencies for different sites are

the values aof independent random variables.
Under these assumptions, the conditional expectation of m
given x, E(mix), is a linear function of x: if the shape
parameter of the gamma distribution is denoted by k, and the

scale parameter by ¢, then

E(mIx) = k + 1 X
c+l c+1

(see Jarrett et al., 1982).

This is the regression function of m on ¥y and the

magnitude of the regression-to-mean etfect 1s the difference
between x and E(mix). The parameters k and c can be
estimated from accident data for a sample of sites using the
fact that the distribution of accidents over all sites has a
negative binomial distribution, which ran be fitted to the
data by standard methods. Abbess et al. (1981) gives full
details of the estimation procedure; this general approach to

estimating the parameters of an underlying ‘prior’
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distribution 1is known as an empirical Bayes method (Maritz,
1970).

Now suppose that data for two time periods are available; for
convenience it will be assumed that the periods are of egual
duration, although the methods proposed can easily be
generalised to periods of different duration. For a
particular site, let x denote the accident frequency in the
first (*before’) period, and Yy the frequency in the second
(*after’) period. Assume that, at this site, x and vy have
independent Poisson distributions with mean m. Then, as is
shown in Jarrett et al. (1982), assumptions (i1ii) and (iii)

above imply the following:

(iv) the joint distribution of X and y 1s a hivariate

negative binomial distribution;

(v) the conditional distribution of Y given X is
negative binomial with mean Elmix) and variance
proportional to E(mix); in addition, the rconstant of

proportionality is equal to 1 + 1/(c+1).
Since the regression function is linear, this result suggests
that the regression function can be estimated from the
bivariate data using a model of the form

E(ylx) = A + Bx, var(yix) = constant*bE(ylx);

the constant is known as the scale factor. The estimation of

such a model can be carried out easily using a statistical

package such as GLIM (Payne, 1985).

lhere are some problems 1n adopting such an approach but also
a number of advantages. First 1t should be realised that
ordinary least squares is not an appropriate method for the
estimation of the regression coefficients A  and Bj since

the variance of Y is not constant, the least -squares
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estimators of A and B will be unbiased but not efficient.
Secondly, if the bivariate negative binomial model 1s
appropriate, then fully efficient estimates of A and B can
be obtained using the fact that X + vy (the total number of
accidents over both periods) has a (univariate) negative
binomial distribution, while direct estimation of the
regression function (even if taking account of the non-
constant variance) will give less efficient estimates of the

regression coefficients.

However, the main advantage of using this regression model is
that it can be derived under much weaker assumptions than
those made above. Most importantly. 1t is no longer necessary
to assume that the mean accident frequencies m have been
drawn independently from a gamma distribution since the
‘before’ data are regarded as fixed; so long as the sites are
selected purely on the basis of the ‘before’ data (or more
generally on features of the sites 1n the “before’ period),
unbiased estimates of A and B will be obtained. In
addition, it 1is no longer necessary to assume that the
accident frequency at a particular site has a Poisson
distribution; it is sufficient to assume that the frequency

has a distribution with wvariance proportional to the mean.

More precisely, we assume the following:

(a) At a particular site, with true mean accident frequency
m in the before period, the before frequendcy x and the
atter frequency y are independent random variables

with

E(xlim) = m, var{(x!m) vm

E(ylm) = rm, wvar(ylm) = vrIm.
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Here v is a scale factor (equal to 1 for a Poisson
distribution), and r represents a multiplicative trend

in the underlying mean.
(b) the distribution of m over sites is such that

E(mix) = A + Bx, var (ml x) = h{(A + Bx).

It is straightforward to prove from these assumptions that:

El(ylx) = rA + rBx, var(ylx) = v(1+rB)E(y|Ix) .

(The parameter h does not appear in this model since 1t can

be shown that the assumptions imply that h = vB.)

This 1is just the regression model above with scale factor
depending on v, r and B. [t is important to realise that

this model is implied by, but does not imply, the bivariate

negative binomial model; moreover s as indicated above, the
model is a conditional one - it does not matter how the X
(before) values were selected. The method can therefore be

apPlied to data for sites where the method of selection
suggests that the negative binomial model will not be
appropriate. This aspect of the method is illustrated in some

of the examples below.

APPLICATION OF THE METHOD

In this section the regression model 1s fitted to four
different sets of data- The first two examples use simulated
data so that the estimates obtained for the regression model
can be compared with those obtained from the fitting of a
bivariate negative binomial distiibutiaon. 1The remaining
examples use real data. One data set 1s that for the City of
Westminster previously analysed 1n Jarrett et al. (1982), and

for which the negative binomial distribution was found to give
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a good fit. The other data set is unusual in that it relates
to a group of f*candidate’ sites which at one time were
selected for remedial treatment, but the treatment was

subsequently abandoned or deferred in each case.

In each example, the regression is fitted to the data using
GLIM. To take account of the fact that the regression 1s
linear, with the variance of the response (dependent) variable
being proportional to its expectation, one defines the model
to have an identity link and a Poisson error term and uses the
$SCALE directive; Appendix 1 gives an example of a GLIM

analysis. (This method of fitting the model can be justified

by the idea of guasi-likelihood - see McCullagh and Nelder .,
1983.) As well as the parameter estimates, GLIM gives
estimates of the standard errors of the coefficients; these

can only be regarded as approximations for small sample sizes.
Note that it is impossible to obtain an estimate of the trend
factor r from the fit; this is not important 1if the
estimate of the regression effect is required for sites
sub ject to the same trend as those sites used to fit the
model . Alternatively, if an independent estimate of r is
available (e.g. as a ‘control factor’) then this can be usead
to obtain estlmates of the regression coefficients A and B

which would apply in the absence of trend.

Examples using simulated data

Two simulated data sets were used, the first representing a
sample of 20 sites, the second a sample of 200. In hoth cases
it is assumed that the before and after fregquencies x and y

were Poisson-distributed with mean m, where m varies fraom

site to site according to a gamma distribution with k = 1.5
and c = 0.5. The theoretical regression function is
therefore

E(ylx) = k/(c+l) + (1/(c+1)) x = 1 + 0.68687 x,
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with scale parameter 1 + 0.68687 = 1.6467.

Plots of y s&against x are shown 1n Figures 1 and 2, and
the estimation results are summarised in Table 1. In addition
to the fitted empirical regression model, the table shows the
efficient estimates abtained from fitting the bivariate
negative binomial model. For the larger set of data, the
model is also fitted to two subsets obtained by restricting to
sites with a limited range of values of %3 this 1s to
illustrate the point made above that no bias is introduced by
selecting sites on the basis of the ‘before’ values. whereas
the bivariate negative binomial model would certainly not be
applicable to these restriced data sets. 1t will be seen that
in all cases the estimated coefficients are well within two
standard errors of both the true wvalues and the efficient
estimates. The standard errors are, however, relatively large

for small sample sizes.
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FIGURE 1: 20 sites (simulated data)
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TABLE 1: Estimation from simulated data
Samples of size (i) 20 (ii) 200 with means independently

drawn from a gamma distrihution with shape parameter k=1.5 and
scale parameter c=0.5

Regression function Scale factor

—————— — ——— ——— ———— —— — i ——— i —— i T e e s

True values 1 + 0.667 % 1.4667

(i) n=2

Efficient estimate

from total 0.734 + 0.662 x 1.4662
Empirical estimate 0.544 + 0.4654 x 1.303
(SEs) (0.311) (0.173)

(ii) n = 200

Efficient estimate 0.873 + 0.686 x 1.468B6
from total

Empirical estimate
(whole sample) 0.916 + 0.717 x 1 .452
(SEs) (0.1386) (0.0394&)

Subsample 1: 2¢&xg12

Empirical estimate 1.052 + 0.705 x 1.937
(SEs) (0.532) (0.1186)

Subsample 2: 28gx£7

Empirical estimate 0.613 + 0.848 x 1.584
(SEs) (0 .666) (0-.173)
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Westminster data

This set of data consists of accident frequencies at “nodes’
(major junctions on the Greater London road network) in the
City of Westminster, for the years 1976 and 1977. It was
investigated in Jarrett et al. (1982), where the negative
binomial distribution was found to give a reasonably good fit.
A plot of the data is shown in Figure 3, and the results of
the estimation procedure in Table 1; the empirical method is
again compared with the efficient estimates aobtained from the
negative binomial fit. The fitted negative binomial
distribution was truncated at zero, thus ignoring those sites
where there were no accidents in either year, since the total
number of zeros in the data 1s larger than would be expected
from the negative binomial. Similarly, those sites for which
the “before’ frequency x was zero were excluded from the fit
of the empirical regression functiong as explained above,
this does not i1nvalidate the method. Again 1t should be noted
that the empirical estimates are fairly close to the efficient

estimates.

FIGURE 3: Westminster data
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TABLE 2: Westminster data (n = 470)

Regression function Scale factor

—— e — —— i ———— ————— T ——— ————— —— . o o o o o i e e i

Efficient

estimate 1.01 + 0.788 «x 1.788
from total

(omitting sites

where x+y = 03

n = 307)

Empirical

estimate

(omitting sites

where x = 03

n = 281) 0.959 + 0.856 x 2.020
(SEs) (0.249) (0.0544)

Candidate sites

The final example cancerns a set of data collected by Viola
and Wright (1983) for the specific purpose of 1nvestigating
the regression-to-mean phenomenon for sites which had been
selected for remedial treatment but where treatment had
subsequently been deferred or abandoned. For the purposes of
their study it was decided to 1limit coverage tao a randaom
sample of 16 of the 32 London boroughs; the data consist of
accident frequencies for 167 sites, for a ‘before’ period
1975-77 and an ‘after’ period 1978-80. The magnitude of the
regression effect observed for these sites 1s of special
interest, since it can be argqued that sites which are selected
for treatment will display a quite different statistical
behaviour from the population as a whole, because their
selection implies not only a relatively high accident
frequency, but a consistent pattern in the type of accident
observed. In other words, the engineer will have taken 1nto

account some additional 1nformation which can be regarded as
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evidence that the high accident frequency observed at the site
in question 1is not merely a random fluctuation. The
distribution of accident frequencies can therefore be expected
to be different from that for the population as a whole, and
very possibly not of a negative binomial form. Moreover the
regression—-to—-mean effect should be reduced, and provide a
more satisfactory estimate of the effect for those sites which

are treated.

A scatter plot of the data is shown in Figure 4. It will be
noted that, in contrast to the earlier examples, there are
comparatively few sites with small accident frequencies; one
reason for this 1is that «x and Y are now accident
frequencies over 3-year periods. The empirical method 1s
particularly appropriate here, because of the way 1n which the
sites were selected, and the results of the estimation are
shown in Table 3. Also shown are the coefficients after
correction for trend: the estimate of the trend term r was
obtained as a contrel ratio obtaimed from the numbers of
accidents in the two periods at all the untreated sites in the
16 boroughs. The constant term in the regression function 1s
considerably larger than in the other examples, reflecting the
absence of low accident frequencies; however s whan account is
taken of the fact that the accident frequencies are 3-year
totals, the results do not appear very different from those
for the Westminster data. Thus. perhaps surprisingly, the data

do not reveal the different behaviour predicted above.
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FIGURE 4: London candidate sites
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Empirical

—————— i ——

Regression function Scale factor

D T —

estimate 2.827 + 0.815 x 2.322
(SEs) (0.723) (0.0498)

Corrected for

trend (based on 2.887 + 0.8B32 x

r = 0.9792)
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CONCLUSION

In this paper, a new method of estimating the regression-to-
mean effect has been proposed. Unlike other approaches to
this problems; the method is based on the simple idea of
fitting a straight 1line to a scatter plot of ‘*before’ and
‘after’ accident frequencies. Althaugh the methad gives less
efficient estimates of the regression coefficients than
approaches which require a negative binomial distribution to
be fitted, it is wvalid under less restrictive assumptions and
can therefore be regarded as a more “robust’ estimation
method. Furthermore, the method gives similar results to the
negative binomial approach in cases where the latter is wvalid.
However, the standard errors of the regression coefficients
produced by this method are relatively large, even for
moderate sample sizess thus considerable uncertalnty will
remain about the size of the regression effect. The relative
efficiency of different methods of estimating the regression-
to-mean effect requires further 1nvestigation, as does the
development of techniques for determining the validity of the
underlying model. Some progress has been made 1n eatch of

these areas and it is hoped to report on this at a later date-
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APPENDIX 1: EXAMPLE OF A GLIM ANALYSIS

Eo% GLIM 3.77 update 0 (copyright)1985 Royal Statistical Zociety. London
o

[1] ? $INPUT 7%

[i] Secho

[i) Soutput 6 80

[i] $C Empirical estimation of the regression-to-mean effect:
Eig simulated data for ZI0 sites

i

[i] Sunits 20

[i] s$data bef S$read

(il 093110163 1000702412232

[i] $data aft $read

[i1J] 07 41110510002415513@0

[i]

[i] $plot aft bef &

[o] 7.600 |

[o] 7.200 | A
(o] 6.800 |

{o] 6.400 |

[o] 6.000 |

[o] 5.600 |

o] 5.200 | A A &

[o] 4.800 |

[o] 4.400 |

[o] 4.000 | A

[o] 3.600 |

o] 3.200 |

[o] 2.800 |

[o] 2.400 |

(o] Z2.000 A

[o] 1.600 |

[o] 1.200 2 2 A A

[o] 0.800 |

(o] 0.400 |

[o] 0.000 3 Z A

o e s e e
[o] 0.00 z .00 4 .00 6 00 B .01 10 00
i

E;g $error p £link i $scale

i

[i1] $yvar aft $fit $
[0] deviance = 48.208 at cycle 3
ED% df =19

o
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[i]

[i] sC Use RECYCLE to guard against the possibility 3f negative
[i] fitted wvalues

[i] $recycle $fit + bef $dis me §

[o] deviance = 23 .455 (change = -24 .75) at cycle <
[o] d.f. = 18 (change = -1 )

[o]

[o] Current model:

(=)}

[o] number of units is 20

(o]

[o] y-variate AFT

{o] weight *

[o] offset *

(o] _

[o] probability distribution 1s POISSOH

[o] link function is IDENTITY .
ED} scale parameter is to be estimated by the mean deviance
ol

[o] terms = 1 + BEF

[o] _

[o] estimate 5.8, parameter
[o] 1 0.5440 0 .3112 1

[o] 2 D 6548 0 .1730 BEF

Eu] scale parameter taken as 1 303

o]

(1]

[i] $stop



