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GENERALIZED LINEAR MODELS IN THE ANALYSIS OF ROAD ACCIDENTS
- SOME METHODOLOGICAL ISSUES

by
G. MAYCOCK and M. J. MAHER
Transport and Road Research Laboratory

1. INTRODUCTION

In recent years, generalised linear modelling has become a popular tool for
the analysis of road accident data. This summary paper briefly presents the
application of this technique .o the analysis of data assembled during a study
of accident-involved drivers at the Transport and Road Research Laboratory as
a means of illustrating some of the methodological issues which have arisen
during the modelling process. The final paper will include examples taken
from recent analyses of junction accidents (see for example, Kimber and
Kennedy, 1988).

2. THE 'ACCIDENT- INVOLVED’ DRIVERS STUDY

In order to explore the relationship between the road accident frequencies of
drivers and relevant individual characteristics, 229 car drivers who had been
interviewed during the course of an 'on-the-spot’ accident study, were invited
to take part in further tests at the Laboratory. The visual, perceptual and
performance abilities of these drivers were measured. They also completed a
'cognitive failure’ questionnaire - to assess how forgetful or indecisive they
were - and underwent hazard perception tests in a simulator to measure how
long it took them to recognise hazards on the road. Basic information on age,
estimated miles driven per year (exposure) and the number of accidents the
subjects had experienced in the last 3 or 5 years of driving, were obtained by

interview,

Details of the study and of the various statistical investigations carried out
are reported elsewhere (Quimby, et al, 1986). The Generalized Linear
Modelling analysis presented briefly here takes the frequency (accidents per
year) of the self-reported accidents obtained by interview as the dependent
variable, and relates this to other potential 'explanatory' variables measured
in the study. The analysis relates to 145 drivers for which full data was

available, and to the accidents they reported as experiencing in the last 3



years (excluding the 'on-the-spot’ accident by which they were sampled). The

form of the systematic component of the model fitted was:
-8
E[Ai] = K Ti M0 exp$ [byFijl (1)

where, Ai is the number of accidents reported by the ith individual in Ti
years (in this case 3), Mi is the estimated annual average mileage relevant to
the T: years, and Fis are j other explanatory variables; K,o{ and the bs’s are

to be determined.

Equation (1) was fitted using GLIM (Baker and Nelder, 1978) with a LOG link
and an OFFSET equal to the natural logarithm of the number of years (T:i) of
accident data. The number of accidents is assumed to be a Poisson variable.
The results are shown in Table 1, which includes a measure of the sensitivity

of the various components, and an analysis of deviance.

The average frequency of accidents reported by the subjects in this study was
0.14 per year. Table 1 shows that age is an important determinant of accident
frequency - accidents per year fall by about a factor of 2.8 over the 20-60
year age range. More interestingly accident frequency appears to be
relatively insensitive to annual mileage travelled (exposure) - indeed in this
small sample, the exponent of mileage is not statistically significant.
(Mileage travelled proved however, to be significant in larger samples, though
the exponent was still very much less than 1.0; the term is included here for
completeness).

The remaining variables in the lower half of Table 1 are the laboratory
measures which proved to be significant correlates of an individual's accident
liability. The movement in depth test is a test of decision making ability.
The sign of its coefficient is however noteworthy; it implies that the safer
drivers took longer to respond to this particular test - a result which may be
explained in terms of caution in decision making style. Median latency is a
measure of the time it takes a driver to respond to a hazard in the simulator,
and subjects reporting fewer accidents proved quicker at recognising hazards.
The positive correlation shown between accident frequency and cognitf&e
failure is also intuitively reasonable - though this may have something to do
with the fact that the accidents were self-reported. The practical
significance of these findings are discussed elsewhere (Quimby, et al, 1986);
here we are concerned with the statistical methodology.



The figures shown in the upper half of Table 1 illustrate the kind of results
to be expected from the analysis of a survey of self-reported accidents for
which the measures of performance included in the lower half of the table are
not available. (They could also - with different variables - represent a
model relating accidents per year at a range of junctions to site specific

var iables). 1In the present example, after fitting a model which includes age
and exposure, Table 1 shows that the residual deviance (139.6) is reasonably
close to the number of degrees of freedom (142). Of course with a sample size
of only 145 these statistics are not well defined, but this is a result which
taken at face value, would suggest that the fitted model has accounted for all
the systematic variation in the data leaving only a random Poisson error
component (see 3.1 on. goodness of fit statistics). We know in this case
however, that significant systematic components are omitted from the model.
The conclusion that the model ’'fits well’ is thus incorrect. Moreover, even
though in general we may not have direct measures of all the explanatory
variables likely to be useful model predictors, we might still like to obtain
an estimate of the residuﬁl between- individual (or between-site) variation in
accident frequency which could potentially arise from such unobtainable
variables. The fol]l owing section suggests a strategy for dealing with this

si1tuation.

3. MODEL FITTING
3.1 Goodness of fit statistics.

The principal statistic calculated by GLIM for the purpose of testing
significance and goodness of fit is deviance. Deviance is a likelihood ratio
statistic and is asymptotically distributed like ¥?. It has additive
properties'enabling an analysis of deviance to be presented analagously to
analysis of variance. 1In general, the calculation of deviance from observed
and estimated data values involves a scale factor which is dependent on the
error distribution from which the data is assumed to be drawn.

In the case of Poisson errors the scale factor is 1, and in models where a
constant term is fltted the scaled deviance is y[ln(y/fa)] where y are the
observed values and‘p-are the model ’'fitted values'. If this error

distribution is correct, and providing the fitted values {/1) are generally



greater than 1.0, the differences in scaled deviance obtained by fitting null
terms to the model should be distributed like X;*. This fact can be used
directly as a test of the statistical significance of added terms. Moreover
an overall ’goodness of fit’ assessment can be made by reason of the fact that
for a well-fitting model with an appropriate link function, error distribution
and functional form, the expected value of the residual scaled deviance should
approximately equal the number of degrees of freedom. (Appendix A of
McCullagh and Nelder, 1983, provides a correction to deviance which seems
useful for values ofj?—lying between 1 and 20; this correction should not

however be used when values ofJ;»in the vector of fitted values fall below 1).

Although the expected value of deviance is approximately 1 per degree of
freedom whilst the model fitted values are greater than 1.0, it fa]ls
dramatically (at least for Poisson and Negative Binomial data) as;rt falls
below 1.0. Fig. 1 shows how the expected value of scaled deviance for Poisson
and Negative Binomial distributions varies with/ﬂ. Thus a data set which has
a high proportion of estimated accident frequencies less than 0.5, will have
an expected value of the scaled deviance for the data set as a whole
considerably less than the number of degrees of freedom. This is the case
shown in Table 1. The expected value of deviance (calculated from the fitted

values) is 129 - considerably less than the number of degrees of freedom
(142).

An alternative test of overall goodness of fit is provided in GLIM by means of
the 'generalised Pearson’ X ? statistic. Assuming each data point to be unit
weighted, this statistic (X?) is:

X2 = (y -}¢)= , where the 'variance function’ is the

(Variance function)

variance of the assumed error distribution expressed as a function of the
mean., In the case of a Poisson errors X? is: fi(y -)i)‘/ % . Differences in
X? as between nested models are not '113 variables, so that this statistic
cannot be used for testing the significance of adding terms to a model - note
for example, the increase in X? as the movement in depth term is added.
Moreover the variance of X2 is a function of‘f\fbr small values so that
difficulties arise in using this statistic for overall goodness of fit. By
definition however, for a well fitting model with the appropriate error

distribution (and variance function), the actual value X? should equal the



number of degrees of freedom irrespective of the value of A ., In the case
of the accident involved driver data presented in the upper part of Table 1,
it will be seen that the value of X? for the simple model 1s 163.2 -

considerably exceeding the number of degrees of freedom and indicating over

dispersion in the residuals compared to Poisson errors.

It wyll be seen therefore that the agreement between the final model deviance
and the number of degrees of freedom for the simple model (upper part of

Table 1) is coincidental. It arises from over dispersion (which inflates the
deviance) in combination with low values of accident frequency (less than 1.0)

in the vector of fitted values (which reduces the deviance).
3.2 Jver dispersion

The existence of over dispersion in real data is well known and the simplest
technique for dealing with it is the use of ’'quasi-likelihood’ (McCullagh and
Nelder, 1983). Such methods assume a common dispersion parameter which is
independent of /& - rather like the residual variance in a least squares fit,
In the present context an alternative treatment may be preferred. Over

dispersion can arise in three ways:

(i) the systematic component of the model may be incorrect -
available variables have not been included, or have not been included

in the most appropriate form,
(ii) significant variables have had to be omitted from the model
(iii) the assumed error structure is inappropriate.

Normally, we would have hoped to eliminate the first as far as possible by
attention to the range and the form of the explanatory variables used, and by
experimenting with alternative model specifications. The most appropriate
representation of the structure of the residual variation will be one which

handles the combination of (ii) and (iii) sensibly.

As was suggested earlier, in analysing the accident data, we may be interested
in estimating not only the effects of measured variables (eg. age and exposure
in the case of drivers, or traffic flow and layout features in the case of

junctions), but also the magnitude of the residual variability arising from



other factors. The question here is - what sort of distribution of residual
between- individual or between-site effects are we dealing with? Fig. 2 shows
a histogram of the between-individual variation in accident frequency arising
from the three factors represented in the lower half of Table 1. As expected,
the distribution is positively skewed, and a Gamma distribution has been
guperimposed to represent the between-individual component of the accident

variability corrected for age and exposure,

The Gamma assumption is a very convenient one, since it means that providing
the within- individual accident generating process can be assumed to be
Poisson, the sampling distribution of accidents is Negative Binomial - a
distribution traditionally used to represent between-individual variations in
observed accidents (Arbous and Kerrich, 1951). The variance of the Negative
Binomial distribution is)~yk-+ k)/k, where is the mean and k is the
parameter of the underlying Gemma distribution. (Note: as k tends to
infinity, the Negative Binomial distribution approximates to the Poisson). The
value cf k in the Gamma distribution can be regarded as a measure of the
potential unexplained between-individual variation in accident liability once
known variables and factors have been allowed for. It is a convenient
representation as it implies that the unexplained variation has a constant
coefficient of variation (equal to I/Jﬁh which can in principle, be

calculated as a function of sub-sets of the data.

The Gamma-Polsson model needs to be checked. The crucial test would be to
check that the relationship between the variance and the mean within the data,
corresponded to the Negative Binomial variance function given above. Some

evidence on this point will be presented in the final paper.

The OWN fit facility in GLIM allows the Negative Binomial error distribution
to be fitted directly. The scale factor for this distribution is 1, and the
simplest estimator of k is that value which when a Negative Binomial fit is
carried out makes the generalised Chi-square statistic (X2) equal to the
number of degrees of freedom. This is equivalent to determining k by the
method of moments, and since the expected value of X? is independent of/a i
the value of k so determined is not affected by low mean values. There are
however other methods of estimating k which might be preferred. If e is the
residual (y —;1), then E [e?] = /i +/u;7k and an estimate of k is given by
Z/f,.‘/ i (e? -;;); a plot of e? against/k should look like a quadratic passing
through the origin. k may also be estimated by maximum likelihood methods.



These alt ernatives will be discussed in the final paper.

Clearly, determining k by equating deviance to the number of degrees of
freedom as has been done previously (Maycock and Hall, 1984) is only
satisfactory if low mean values (see 3.3 below) are not a problem. The use of
Mean Deviance Ratio as an F statistic can also be misleading i1n these

cir cumstances.
3.3 The low mean value problem

Once the problem of over dispersion has been satisfactorily resolved by either
a quasi-likelihood method or the use of a Negative Binomial fit, a
satisfactory method is required for testing the significance of extra terms in
a model in the presence of low fitted values. We know in this situation that
even if the Negative Binomial model is satisfactory, the calculated deviances
will not be ¥ ? (degrees of freedom) variables. There is however some
evidence that the deviance differences are Xi3 variables, and this property of

deviance difference is currently being studied in greater detail.

As a alternative to the use of deviance difference, significance of extra
terms may be assessed by means of estimates of standard errors obtained either
from the Negative Binomial model, or from the Poisson model using the

! jacknifing’' technique. It is hoped to be able to incorporate an assessment

of the relative usefulness of these alternatives in the final paper.

4. 1IN CONCLUSION

Some methodological issues which arise in the application of the Generalized
Linear Modelling methodology to the analysis of between-individual accident
liabilitieé of drivers or to the between-site variations in junction accident
rates have been discussed. The issues have been illustrated by means of an

analysis of the accident histories of accident involved drivers.

Two problems relating to the use of deviance as a test of significance and
goodness of fit have been raised: the presence of over dispersion in the data
due to between-individual systematic effects omitted from the model, and the
reduction in the expected value of deviance when there is a predominance of

fitted values less than 1.0 in the data set (or a high proportion of zeros in



the observed accident frequencies),

Quasi-likelihood methods provide a simple method of dealing with over
dispersion, The use of the Negative Binomial distribution for residuals may
however be preferred, although further checking of this model is required.
work 1s in hand to investigate alternative methods of estimating the parameter
k of the Negative Binomial model, and for judging the significance of extra
terms in a model in the presence of both over dispersion and low fitted

values,

S. ACKNOWLEDGEMENTS

The work described in this paner forms part of the programme of the Transport
and Road Research Laboratory :nd the paper is published by permission of
the Director.

Crown Ccopyright. The views expressed in this Paper are not necessarily those
of the Department of Transport. Extracts from the text may be reproduced,
except for commercial purposes, provided the source is acknowledged.

6. REFERENCES

Arbous, A. G. and Kerrich, J. E. (1951) Accident statistics and the concept of
accident-proneness. Biometrics, 7 (4), pp 341-432.

Baker, R. J. and Nelder, J. A. (1978) Generalised linear interactive
modelling. The Glim system. Release 3. Rothamstead Experimental Station.
Harpenden.‘

Kimber, R. M, and Kennedy, J. V. (1988) Accident predictive relations and
traffic safety. Conference: Treffic Safety Theory and Research Methods, April
26-28, 1988, Amsterdam.

Maycock, G. and Hall R . D. (1984) Accidents at 4-arm roundabouts. Department
of Transport, TRRL Report LR 1120: Crowthorne, (Transport and Road Research
Laboratory).

McCullagh, P. and Nelder, J. A. (1983) Generalised linear models. Monographs
on statistics and applied probability. Chapman and Hall.

Quimby, A. R., Maycock, G., Carter, 1. D., Dixon, Rachel and Wall, J. G.
(1985) Perceptual abilities of accident-involved drivers. Department of
Transport, TRRL Report RR 27. Crowthorne (Transport and Road Research
Laboratory).



TABLE 1

'Accident-involved' drivers
Model for individual accident frequency (accidents per year)
145 drivers ~ Poisson errors

Regression Sensi- S Deviance
Explanatory Variables Coeffic ients tivity /degrees Expected X?
(S.E. ) of freedop devy ance
(1) (2) (3) (3)
Constant (ln K) -1.17 148.1/144 168.8
Mi] es per year (1000’s) 0.11 (0.23) 1.4 147.4/143 166.9
Age (years) . -0.026 (0.013) 2.8 139.6/142 129.0 163, 2
Movement in depth -2.10 (0.84) 4.1 132.5/141 166.1
Median latency in the
driving simulator 0,009 (0.004) 2.2 126.7/140 156.0
Cognitive failure
questionnaire 0.030 (0.014) 2.7 122.2/139 118.3 141.2

1) The regression coefficients and standard errors relate to the full model.

) Sensitivity is the ratio of the predicted accident frequencies at the 5 and 95
percentile points of the distribution of the relevant variable,
(3) Scaled deviance, degrees of freedom and X? relate to models containing terms
up to and including the term on the current line of the table,
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STATISTICAL SUPERPOPULATION MODELS IN TRAFFIC SAFETY RESEARCH

Heinz Hautzinger

1. Statistical Concept

In classical sampling theory the population values
vi,...,Yn of the characteristic under study are
considered as fixed. Consequently, the population

total Y and mean Y are also fixed quantities.
Atochantic elementa are introduced -into the
analysis by randomly selecting n out of N

elements and using the sample mean y as an
estimator of Y .

In traffic safety studies this concept is often not
really adequate since the population values
Yi,...,¥Yn are properly to be regarded as
realizations of certain random variables Yi,...,¥y.
As a simple example consider the case where the
population consists of all road crossing in a
certain region and where y: 1is the number of
accidents at the i-th c¢rossing during a specified
period of time.

The distribution of Yi,...,¥Yyx 1is usually called a
"superpopulation” and in practice this distribution can
often be specified up to some parameters. In our example,
a simple specification would be to assume Y1 ,...,¥n

to be independent Poisson variables with expectation

g > 0 . It depends on the research aim whether we are
interested in the parameters of the superpopulation

model (which in our example is the "accident rate" p )

or in the population mean ¥ = ¥ Y1 /N , which is of course,
a random variable.

In both cases we shall select n units from the
population and observe the realisations y*i of
the corresponding random variables Y*y
(i=1,...,n). The mean

(1) ¥* = I y*1/n



of these realisations can then either be
interpreted as an unbiased estimate (in the usual
sense) of the fixed model parameter p or as a
"model-unbiased" prediction of the realisation of
the population mean Y in the sense that E(Y*) =
E(Y) , where the operator E refers to the
superpopulation (and not to the sampling procedure).

Two results are of importance: If our
superpopulation model is wvalid

1. the prediction interval for ¥ is narrower than
the confidence interval for p , and '

2. unbiased estimation and prediction does not
necessarily require random selection of units.

Superpopulation models are especially useful, if in
addition to yi1 the values xi of an auxiliary (or

explanatory) variable are available. The following

rather general superpopulation model is of special

importance:

(2) Y = Bxi + &(x1) U (i=1,...,N)

where the U; are independent identicially
distributed random variables with E(U;) = 0 and
var(Ui;) = o2 for i=l,...,N . The parameters 8
and o > 0 need not to be known. Moreover, the

X1 are assumed to be positive and known. The
function &(x) is also assumed to be positive for
positive x-values and must be chosen according to
the structure of the data. Typical examples are

(3) d(x) =1 , 5(x) = ¥x , and S (x) = x

Which functional form is to be preferred can be
decided on the basis of a scattergram of (xi,y:1)-
values. CASSEL/SARNDAL/WRETMANN (1977) give a
simple procedure how to construct a best linear
unbiased prediction of the population mean Y .



It has been mentioned that the above results are
independent of the way the sample units have been
selected. Actually, under the superpopulation model
certain (non random) systematic or purposive
sampling procedures are suggested by statistical
theory in order to minimize the expected squared
prediction error. Obviously, non random sampling
bears the risk that our prediction is biased if the
assumptions of the superpopulation model are not
valid in reality. Therefore, robust random
sampling strategies are recommended such that with
probability close to 1 the eventual bias is
small.

The concept of a superpopulation is a flexible way
to incorporate a-priori-information into the
estimation procedure. As such it is an ideal
combination of theoretical and statistical
considerations (accident model and sampling model).
Actually, the concept has been developed in the
context of ratio estimation. See BREWER (1963) and
ROYALL (1970) . The assumption.of a certain type of
superpopulation model yields an unbiased ratio
estimator and variance formula which are both
simple and exact for any n > 1

2. Superpopulation Models and Mixtures of Poisson
Distributions: a Comparison

By the notion "superpopulation" we mean the joint
distribution of Yi,...,Y¥y , where Y; 1is a random
variable associated with the i-th element ("entity")
of a population of size N . Thus far, this
concept is related to the concept of "mixtures" of
Poisson distributions developed by GREENWOOD/YULE
(1920). There are, however, important differences
between superpopulation and mixture models:

(a) In the case of a superpopulation model the
population is assumed to be finite (N < o)
and existent, whereas in the mixture model we
often assume that the population is
hypothetical and not finite,



(b) The expected value E(Yi) is in the
superpopulation model thought to be a fixed but
unknown quantity, which might, of course, vary
from one unit to the other. In contrast to
this, E(Yi1) is treated in the mixture model as
a random variable following a Gamma distribution.

(c) Within the superpopulation concept we imagine
our finite populatyon to be a random sample of
size N from a superpopulation and,
additionally, we assume that a sample of n (n < N)
units has been selected from the population.
In the mixture model on the other hand we only
have an infinite hypothetical population and
from this population a sample of size n .

In Section 1 the assumption was made that Y:i,...,Yw
are independent identical Poisson distributed random
variables. This is, of course, one of the most
simple superpopulation models, It can be

generalised in a variety of ways. One possible
modification would be, for instance, the assumption
that the Yi: are Poisson distributed with
expectation \

(4) g1 = exp(Bxi) (i=1,...,N)

where xi1 1is the value of an explanatory variable
observed at the i-th unit and £ is a parameter
to be estimated. If the units were, for instance,
crossings, the explanatory variable might be the
volume of traffic flow at the crossing. Sampling
theory under generalised linear models of the type
described above is, however, just developing.

From (4) another difference between superpopulation
models and mixtures of Poisson distributions
becomes evident, namely, that the superpopulation
model contains an explicite hypothesis on E(Y:)
For instance, this expectation can either be
regarded as



(1) being identical for all units in the
population or

(11) being identical for all units belonging to a
cer tain stratum of the population (but
differing between the strata) or

(III) being a function of a certain explanatory
variable (analogous to a regression model).

In contrast to this, the concept of a mixture of
Poisson distributions does not contain such a
hypothesis on the expected value of accident
frequency of a specific unit. It merely contains an
assumption on the distribution of the expected
value in the population of units. From this point
of view, the superpopulation model has the
potential of being an explanatory model, whereas
the mixture model is merely descriptive.

Of course, under the superpopulation model each of

the three alternative assumptions (I), (II), (III)

also generates a specific frequency distribution

(not a probability distribution) of the expected

values in the finite population of units:

Case (I) One-point distribution (degenerate
distribution)

Case (II) Discrete distribution with relative

frequencies equal to N;/N , where Nj
denotes the number of units in the j-th
stratum.

Case (III) Distribution of the expected value
depends upon the distribution of the
x-variable.

There is a further difference in the two concepts
as far as statistical inference is concerned. Under
the superpopulation model we may on one hand
forecast the total number



of accidents in the population or the mean number
of accidents per unit, i.e. the quantity

¥ = Y/N

(both Y and Y are random variables). On the
other hand, we may estimate the expected value

E{(Y) = E(Yi1) + ... + E(¥Yx)

of the total number of accidents or the expected
value

E(Y) = E(Y)/N

of the mean number of accidents per unit. Both
forecasting and estimation is based on a sample of
n units (n < N). Under the mixture concept we do
not have this distinction between forecasting and
estimation.

Of course, we can think also of other forecasting
or estimation problems. For inétance, we could
forecast the number N(z) of units with exactly =z
accidents. Obviously, N(z) is to be regarded as
realisation of a random variable. The proportions

f(Z) = N(Z)/N (z=0r1¢2a---)

describe the distribution of the variable "number

of accidents" in our population of N wunits. Under
the superpopulation model the frequency distribution
f(z) of the characteristic "number of accidents

per unit" in the population of size N is, of course,
a stochastic quantity. Compared with this, within

the framework of a mixture model f (z) 1is a
probability distribution in the usual sense (in the
mixture model mentioned above £(z) is a negative

is a negative binomial distribution) and statistical
analysis concentrates on estimation of the parameters
of this distribution.



3. Applications of Superpopulation Models
in Traffic Safety Research

In traffic safety research various types of
populations are encountered: populations of
individuals, vehicles, road sections, crossings,
residental areas and so forth. Among the
characteristics we observe at the single units of a
population there is nearly always the number of
accidents or some related veriable. Since the
number of accidents of an individual, a road
section or crossing and so forth is a random
variable, the superpopulation model is a quite
natural concept for traffic safety studies. It
allows for a clear distinction between the fixed
parameters of an underlying theoretical accident
model and the random average number of accidents
occuring under this model. This is of special
importance for group comparisons which are
frequently to be conducted in empirical traffic
safety research.

Superpopulation models are also useful, if risk
exposure quantities are to be estimated, e. g.,
from household travel surveys. For instance the
total length of all car trips made by a population
of individuals during a certain year may properly
be regarded as a random variable. If we draw a
random sample of households and ask for their
travel behaviour on a specific day of the year
(also randomly assigned to the houshold) we have
to deal with two sources of random fluctuation:
One due to sampling and the other due to the
stochastic nature of the phenomenon under
consideration.

A variety of other applications of superpopulation
models exist. For instance, the author has based a
large scale empirial survey, which was designed to
quantify the accuray of official road traffic
accident statistics on a superpopulation model for
response errors. See HAUTZINGER et al. (1985). The
basic idea was as follows: If we define the
variable Yi to be one and zero if an error occurs
at the i-th accident or not, repectively, the
total number Y of errors in the population of all
accidents recorded by police is a random variable.



On the one hand, we are interested to estimate the
probability that an error arises (which is a fixed
model parameter) and on the other hand we would
1ike to have a prediction of the random proportion
of accidents which are affected by an error. It is
shown in the full paper how traffic safety related
surveys can be designed to be robust and efficient
within the superpopulation framework.
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ACCIDENT PREDICTIVE RELATIONS AND TRAFFIC SAFETY
P M Kimber and J V Kennedy

Transport and RPoad Resarch Laboratory, UK
1, INTRODUCTION

1,1 This paper is concerned with the development and use of accident predic-
tive relations. Such relations enable the annual frequency of accidents at a
road junction, for example, to be predicted from the road layout (widths,
markings and so on), the traffic and pedestrian flows, and a range of o*her
factors.* They can be used

= to identify potential design improvements,

= to provide accident estimates for economic appraisal of road

improvements;

and, in conjunction with traffic assignment models,

- to enable the effects on accidents of traffic management schemes to

be predicted, and to identify casualty-reducing schemes.

1.2 The cost of accidents in Great Britain is about £2850m per annum; 80 per cent
or so, some £2400m, is in built-up areas. A recent Government review of road
safety2 concluded that substantial savings could come from rajor new reseasch in
two areas: traffic management for safety, and behavioural research. Haycocks
takes up some issues in behavioural researcn in another paper. Acciden’” predic-
tive relations are crucial to traffic management for safety, since they allow

the accident consequences of measures to redistribute traffic and pedestrian
flows to be estimated quantitatively. They can also point to hehavioural issues,
by focussing attention on the traffic manoeuvres at junctions which emerge as

particularly accident prone.

1.3 The methods described here have been developed by the Transport and Road
Research Laboratory in a series of cross-sectional studies to establish acci-
dent predictive relations for roundabouts, rural major/minor T-junctions and
urban traffic signal junctions. Each of these junction types was tackled be--
cause of particular interest in design improvements to reduce casualties.
Their places within the national accident picture are outlined later, in

Section 4.

*By "accidents" we mean accidents involving death or personal injury; formal
definitions are given for Great Britain in Reference 1.



1.4 This paper essentially sets out a broad methodology for such studies and
examines their role in future applications, 71t is structured as follows.
Section 2 sets out the methodological basis of the cross-sectional studies,
and Section 3 gives illustrations from the results of the three studies that
have been completed. Section 4 discusses future needs in the national acci-

dent context and work in progress, Section 5 summarises,

2. METHODOLOGY

2.1 Cross-sectional accident studies consider many junctions under a particu-
lar form of control. They provide a powerful means for identifying accident
determinants by drawing together the accident types and numbers, the junction
layout and control characteristics, and the traffic and pedestrian flows as
they vary from one junction to another across the sample. The methods we des-
cribe here come from the TRRL studies; they were formulated fipst by Maycock
and Halld, and expanded and developed by Pickering EE.EE?* and Halls. Analy-
tically, they draw heavily on generalised linear modelling techniques7'8’g’lo.

They allow the development of relations of the general form.

A= F(g-}_’:g:g) LTI (1)0

where A is the frequency of injury accidents per year within 20m of the junction,
and q,p,g,c are respectively the relevant sets of traffic flows (24 hour flows,
expressed in thousands of vehicles), pedestrian flows, geometric layout vari-
ables (road widths etc), and, at traffic signal junctions, control variab)es

(timings, stage sequences etc). F is a function to be determined.

Sti~ucture of studies; samples

2.2 The studies each divide into three main phases: (a) drawing a sample of
Jjunctions of a given type, stratified by traffic flow within the main movements
(for example, on the major and minor arms of a T-junction), and by main junc-
tion features, so as to ensure a wide range in the important variables; (b)
conducting a detailed survey of: accidents over the previous several years,
junction layout and control variables, and traffic flow; and (c) statistical

analysis of these data, and development of accident relations.

2.3 The sample has to be constructed carefully, and extensive prior recon-
naissance is necessary before the first phase, (a), so as to ensure freedom
from bias. Within each of the sample strata junctions are selected randomly,
taking no account of accident numbers. A minimum of three years of acciden*

data are needed - more if the accident frequency is low - but there should



hase been no major layout changes during the period.
necessarily limited in size by constraints in data collection, since the

requirements are extensive for each junction.

of the TRRL samples.

Howeve- ,

the sample is

Table 1 shows the main features

TABLE 1+ Accident statistics by Jjunction type within the samples
Rural T junctions |Signals Roundabouts
Small |Conventional All
Number of sites 302 177 36 48 84
Period studied
(months) 58 48 72 72 72
Junction years 1392 670 166 265 431
Number of accidents 674 1772 647 780 1427
Accidents per year 0.48 2.65( 3.89 2.94 3.31
Severity (% fatal or
serious) 36 20 17 16 16
Accident rate (per
108 total vehicle
inflow)* 17.0 | 34.4 | 34.8 23,5 27.5
L [} L
*But see Section 3.3
Analytic methods
2.4 The methodology is based on the usual generalised linear form,7'8’g'10 con-

sisting of: (i) a systematic component n= . Z:aixi. vhere n is a linear
predictor variable, x; are explanatory variables (i =1, 2, ...), and ai are
regression coefficients; (iy ) a random component representing the distribution
of data about the reg}ession line, which may come from a fanily of exponential
functions; and (iii) a link function, f, n= f(u) specifying the link between

n and the mean values, u, of the dependent variable. In 'classical' linear
regression an identity link, n=p, is used and the random component taken as
Gaussian with variance independent o ;. But inmodelling accidents it is usual

to assume Poisson errors and a log link function, n = &ny.

2.5 The most rudimentary models for the accident frequency contain flow
variabl es only, in some simple algebraic combination - for example, as the total
junction inflow Q. Allowing that without flow there would be no accidents, the
power function

[+

A = kQ wee (2)

is about the simplest logically consistent form, where k and a are to be

determined.



2.6 Observations are of the numbers of accidents (AT) in a period of severzl
years, T. Although such numbers are commonly regarded as Poisson variabhles,

the frequencies, A, obtained from them by division (AT/T) are not. As it stands,
therefore, equation (2) would have a non-Poisson error structure if the sample
values of A were obtained in this way. It is easy to restore a Poisson structure

by multi plying both sides of the equation by T:
AT = T.kQ% o 5o (3)e
Then, taking a log link function
n = nAT — 1)
the coefficients a and k can be estimated from
2nAT = n =anT + &nk + anQ e £85)s

anT is an 'offset' variable whose coefficient is constrained to unity.

2.7 More elaborate flow models, A = k'Q: Q;

y 1nvolving products of flows

can be set up similarly. Q, and Qm can either be sums of component flows, as
in a 'cross-product' model where each represents the sum of inflows on opposite
arms of a junction, or individual crossing movements, in which case A becomes
the frequency of those accidents directly associated with the particular move-

ments.

2.8 With a log link function, the simplest form of general relation incorporating

geometric layout variables and junction control variables as well as flows is:

AT = T.kQy Q° exp Y b.g, .ee (),
1

where the g i=1,2, ..., represent layout and control variables, and bi are
coefficients to be determined. gi can be of two types: continuous variables
(eg road width) or discrete variables (usually 2-level) denoting the presence or
absence of a feature (eg a road island). The effects of the latter can be put
in a somewhat clearer form when their coefficients have been determined, by
writing exp bjgj = (1 - cjgj) where Cj = (1 - exp bj) and gj is the variable,
taking the value O or 1. This shows directly the percentage reduclion (100cj}

when the feature is installed.

2.9 For clarity we have omitted pedestrian flows from equation (6), and do

so for the remainder of the paper. The principles applying to them are
essentially similar, and though they are a very important part of the accident
picture, in methodological terms they would over-complicate the outline analysis

we present here.



2.10 Maximum likelihood estimates of the coefficients in these models can bhe
determined by means of the programs GLIM9 or GENSTﬁTlo. given the link function
and error structure, For relations of the type in equation (6), the method
employed has been first tc enter the flow variables alone; then to enter the
geometric and control variables one at a time, taking first those which produce
the largest reduction in the discrepancies between the fitted and observed
values of AT. To explore the whole of the sample space means examinjng the
effects of many variables, The most appropriate functions in the TRR], studies
were chosen as those which combined simplicity, functional aoppropriateness, and
statistical validity. Maycock and Hall examined in some detail the robustness
of the functional form of equation (6) and found it superior to the alternative

forms tried. Readers are referred to the TRRL Reports 1 for a full discussiop,

Significance testing; goodness of fit
2.11 Significance testing is based on scaled deviance, a general ised goodness-
of-fit statistic D defined by

D = -2 {mn(mach) - ﬂn(mafo)} s (7).,

where‘ln(mach) and 2n(mafo) are respectively the log likelihood of the current
model and of a 'full' model which fits all of the data points exactly. For

Poisson distributed data

D= 2Ziltyip.n(.vi/ui) T el (8),
where 1 =1,2, ... n runs over the n data points. For pure Posson errors and
p>0.5 accidents per year, D is asymptotically distributed like X2 with n-p-1
degrees of freedom for a model with p parameters. For a well fitting model
with such errors, the expected value £(D) is approximately equal to the number
of degrees of freedom4. For two nested models with df., and df

1 2
freedom respectively, the difference in D is distributed like x2 with (df1 - dfz)

degrees of

degrees of freedom. In principle this provides a basis for significance
testing. However, the data do not alw:ys conform to the assumption of pure
Poisson errors and 1> 0.5, and other strategies have then to be employed.
Consider first deviations from Poisson errors, which arise from unexplained

between-site variations in the accident frequency.

2.12 Extra-Poisson variation. Residual between-site error is conveniently

represented by a probability density of I'-form. Taken with the within-site
Poisson errors, the sampling distribution over all sites can be shown corres--
pondingly to be negative binomiallz. D calculated from equation (8) is then
no longer distributed like Xz. In these circumstances the mean deviance ratio,

MDR, can be usedg instead of D:



Deviance dlfference/(dfl-dfaJ .. (9)
MDR =
Residual deviance/df

where the residual deviance and df correspond to the best fitting model. MDR
is distributed approxinately as an F-statistic. An alternative is to specify
negative binomial errors directly in GLIM; since the negative binomial distri-

bution has two parameters, p and S:

r(S+y) s \° u
P(y) = 'ﬁ‘é‘j‘%{ (m) (;‘_'_—S‘)y ... (10)

and S is unknown, the process requires some assumption about S. Maycock and

Hall assumed all unexplained between.site error belonged to a single I'-distribution
and adjusted S progressively until, for the best models, the deviance, D',

became equal to the number of degreees of freedom, the condition for a well-

fitting model with negati#e binomial errors-,4 D' is given by

D = 2Z{yim(yi/pi) - (y; + S)anfy; + S)/(n; + s))} WP 5 A
1

and is distributed like X2. The coefficient estimates derived in this way for
roundabout accident models were almost identical to those using a Poisson
structure and the MDR statistic; estimates of the standard errors were about
25% greater. When S is determined in this way the within-site and between-

site components of error can be separated in the models.

2.13 Cases when K<0.5. Here, values of D fall below those expected for Xz.

Maycock3 takes up this issue in another paper. l‘vlaher11 has shown that for such

cases the quantity
(D - £(D))/ {Var(D)}yz .. (12)

may be used as a t-statistic, where D is as before and £(D) and Var(D) are

calculated using the fitted estimates of u, ﬁi for sites 1i:

N . 2
€)= 2 2 4, (y.8,).PyIE) N EE)
i y:o
var(p) = £(0°) + [£(0}]° e (14)
and N
£0%) =X X a2(y.8,).P(yIE,)
i y=0

d,(y.;) = 2{yln(y/ﬁi) + i - y}

Plyliy) = 0¥ e-fl; /0



It is usually sufficient to take N=20 for conputational purposes,

3. SOME RESULTS FROM THE THREE STUDIES

3.1 The three TRRL studies completed over the past several years each produced
extensive and detailed results for a wide range of accident types and vehicle
manoeuvres, and it 1s possible only to give some brief illustra’;ve examples

here, The full results are given in detail in the original Reports.

3.2 Traffic flows and turning products proved fundamental, and in all cases
they were very significantly associated with the accident frequency. Their
effects can be represented within a hierarchy of models from 'global' total in-
flow models, equation (2), to disaggregate flow/geometry models, equation (6;.
However, it is only when accidents are brought into association with the rele-
vant manceuvres and intersecting flows that any lasting insight begins to emerge,
Figures 1, 3 and 4 illustrate the many interactions involved, Iloreover, though
they are useful in some applications, the coarser flow models inevitably sub-
sume correlations between flows and junction design features within the sample -
for example higher flows tend to be associated with wider roads in the popula-
tion, and a properly representative sample will reflect that. It means the

flow dependence in such 'flow-only' models will continue to hold only so long

as these correlations are maintained in future design practice, and this in
part circumvents the objective, which is to discover potential] improvements in
des:gn. Such implicit constraints are not obvious unless the effects of geo-
metric variation are separated. The separation of geometric variation in the

'flow-geometry' models is thus of fundamental importance.

3.3 Both total inflow models and cross-product models suffer from these draw-
backs. For total inflow models, the interpretation is further complicated by
the different priority status of the inflows on different roads - for example
at a T-junction where accident numbers vill depend strongly on the distribution
of flows between non-turning major road traffic and minor road traffic. A total
inflow model for a roundabout with balanced inflows between arms is therefore
not comparable with one for a T- junction with very heavy major road flows.

Total inflow models are not given here mainly for these reasons, and cross--
product models are given as the coarsest level of modelling. For the models
described in the following Sections, all terms and coefficients are significant

at the 5% level or better.

Four-arm roundabouts

3.4 Figure 1 shows the primary accident types and traffic flows at roundabouts.



Q. - Entering flow on arm
Q. — Circulating flow
D — inscribea circle diameter (m)
C — Central island diameter (m)
v — Approach width {m)
e — Entry width (m)
8 — Angle between arms (degrees)
RF = 1/{1 + expl{4K - 7))
where R is D/C
Pm — Proportion of motorcycles
g — Gradient category

Entering-circulating

7

=2
=

‘Shortest’ ahead
vehicle path

Fig. 1 Entering-circulating accidents at roundabouts showing
the important safety parameters and defining the vehicle
path curvature C, (nght)
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Because of the symmetry of the priority system the problem of accident and flow
classification by manoeuvre reduces essentially to that for a single entry arm,
Table 2 gives percentages of accidents by type. Tt shows a very clear difference
in accident patterns between small island roundabouts and conventional rounda-
bouts (ie those with a large central island), At small island roundabouts 71%
of accidents were of the entry-circulating type whereas only 20% were at con-
ventional roundabouts, where single vehicle accidents (30%) and approaching

accidents (25%) were relatively more important.

TABLE 2: Percentage of accidents in the samples by accident type and junction

category
Rural T-junctions Traffic Signals Roundabouts
Small |Conventional

Rear shunt 19.7 |Approaching 8.7 | Approaching 7.0 25.3
Right turn 22.1 |Principal right|26.5 |Entering- 71.1 20.3
from major turn circulating

Right turn {274 lother right turn| 6.5

D 'Right angle' 13.2

Left turn 3.4 |Left turn 3.2

Single vehicle '14.4 |Single vehicle | 8.7 [ Single vehicle | 8.2 30.0

|

Pedestrian 1 1.8 [Pedestrian 28.8 | Pedestrian 3.5 6.4
'Other!’ 11.2 | 'Other’ 4.3 | 'Other! 10.2 18.0

3.5 Total accident frequencies for the whole roundabout could be predicted by the

simple cross-product model
A = Kl(QP)O.GB «es (15)

where Q and P are the sums of inflows on opposite arms. The constant Kl was
determined separately for small-island roundabouts and conventional roundabouts,
and differed between them: Kl = 0,095 for the first, K = 0.062 for the second.
3.6 As an example of a particular accident type, we consider entry-circulating
accidents. These were associated with the intersecting flows Q, and Qc (Figure 1)
and could be predicted by

_ 0.68 . 0.36 \
Ao = KoQ Q, .es (16)

Again the constant was determined separately for the two classes of roundabouts
with the result K, = 0.088 for small-island roundabouts, K2 = 0.017 for conven-
tional roundabouts. The difference arose from characteristic differences in
geometric layout between the two classes, wvhose effects were resolved by the

full model where the layout parameters defined in Figure 1 are represented



explicitly:

A, = 0.046 qe°°650c°'36 cexp(-40.3C_ + 0.16e(1 - v/18) - 1.0(RF))... (17)

This expression consists essentially of three parts. The first is the flow
function; the second, « = exp(O.Zle ~ 0.0086 + 0.09g) is a multiplier repre-
senting the effect of layout and traffic parameters in effect 'fixed' from the
designer's point of view; and ther third - the re,ainder of the expressioy - is a
multi plier determined by the parameters Ce. e, v, and RF which can be adjusted by
the designer. The most important of the adjustiable parameters to emerge was the
minimum vehicle path curvature on entry Ce: increases in Ce produce marked

reduct ions in the accident frequency,

3.7 Expressions of similar general form were derived for the other accident types.
A common feature to emerge from this study, and the others, was that some geonetric
parameters influenced several different accident types in different ways, p~oducing
a compound effect depending on flow. Figure 2 summarises the results for the
effect of Ce on all accident types at one arm of a roundabouwc, It can be seen
that although its effect is slightly to increase single-vehicle accidents and
approachi ng accidents, the reduction in entry-circulating accidents dominates,

and overall accidenis are reduced very significantly.

Rural T- junctions

3.8 These lackthe symmetry of the priority system at roundabouts and accident
types and flow interactions are rather more complex. Figure 3 shows the main
classes. From Table 2, right-turning accidents form the largest accident cate-
gory, account;ng for almost half the accidents. Layouts with painted areas on

the major road to separate turning traffic ('ghost islands', see Figure 3) were
associated with 35% fewer accidents overall at the high flow sites. Table 1 shows
the accident rate to be much lower than at the other junction types, but this reflects
mainly the relatively high proportion of non- iturning major road flows compared

to the minor flows (see 3.3 above). Accident severities were substantially higher
than at the other junction types. The simple cross—-product model for total
accident frequency took the form

0.49

A = 0.24(QP) eee (18)

where Q is the sum of the flows into the junction from the major road arms and
P is the inflow from the minor arm.

3.9 Ve use two main accident types to illustrate the disaggregation into

components — simple rear end shunts in the major road stream approaching fron
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Entering flow 7500 veh/day
Circulating flow 7500 veh/day
10 Entry width 15m
Approach half width 5m
Angle between arms 90°
\ Proportion of motorcycles  2.25%

€ 08 Approach curvature 0

= & \ D/C 1.75
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g 06 - \

N . . .

§ 0.4 Entering-circulating \

\ Single-vehicle _J
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~~ ~ J, —
D. 2 j=— - M
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Entry curvature, Ce(m=1)

Fig. 2 The predicted effect of entry curvature on roundabout accidents
(from Maycock and Halth)
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left to right on Figure 3, and right-turning accidents from ‘he minor road. For
the first, the frequency AS was strongly associared with the flows Ql and 02 and
could be predicted by

1.14 _0.33
AS = 0.026 Ql 92 wice: {19)

Submodels of this form developed for two classes of junction, one with ghost
i slands on the major road and the other without, indicated lower frequencies
with ghost islands. The full analysis also showed that the accident frequency

dec reased as the width of the major road, v increased. These effectis are

1)
represented in the flow-geometry relation:
1.39 . 0.46 ,
AS,: 0,18(1 - 0.715G) Ql Qa exp(_o.dsvlj ... (20)
where GG = 1 for sites with a ghost island and zero for those without. As is

thus less by 71% at sites with ghost islands. The interaction between flow and
geometric variables is illustrated by equations (19) and (20): in equation (19)
correlations between flows and geometry are subsumed within the indices; in
equation (20) the indices represent the dependence of A, on flow ai constani geo-
metry. The statistical separation of the two types of variation, with flow and

E
with geometry, is described fully by Pickering et al”.

3.10 The second example is the right-turning manoeuvre out of the minor road.
The accident frequency Ar' was associated with the flows Q3 and QB' and the simple
flow model took the form:

0.32 0.82
A, =0.215 Q3 " Qg snw (81)
and the flow-geometry model:
A =o.o:-38<:.3°'21 060'72 < exp(0.14¥ + 0.37N_) ee. (22)

where the symbols are as in Figure 3. «' is a 'fixed' term determined by the
gradient 32: k' = exp 0.075g2, and is unity at flat sites. The accident frequency

is higher at the larger junctions where VW and Ne are larger.

Four-arm urban traffic signal junctions

3.11 These are more complicated still: the symmetry of priorities of the rounda-
bout case is again missing, and there is now a wide range of signal control
variables to add to the basic geometric variables. Moreover, pedestrian activity
is very significant, though we do not take tha. up here. The accident types and
flow interactions are many, and accidents have to be carefully grouped to provide
a basic structure. Jerry 22_21}3 discuss this problem and provide an analysis of
accidents at Canadian junctions. Figure 4 shows the main accident groupings
adopted by Hall6 in the TRRL study, and the corresponding geometric and flow

variables. We can only present a small f;achion of the full results here.
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Q3 R-L ahead flow on major

Q1 L—R ahead flow on major
Qg I Qj Right turn from major
Qg Right turn from minor
| V1 Major road ha f-width (m) at 30m
Arm 3 W Major road width at junction (m)

Ng Number of entry lanes arm 3
gy Gradient arm 2
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Fig. 3 Accidents at rural T junctions showing: rear shunts on the
major road (left to right) and accidents between right turners
from the minor road with vehicles travelling from right to
left on the major road
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3.12 The simple cross-product flow model for total junction accidents gave:

A = 0.152(qp)°+63 ... (23)

where Q and P are as in the roundabout case.

3.13 As an example of one accident type of many, we take the principal right. turn
acc idents, this is the largest single group, accounting for about a quarter of
all accidents, and has preoccupied designers for many years in trying to achieve
safe and efficient designs. The accident frequency Apr per arm was associated
with the flows Q3 and QB: the simple flow model gave:
A = 0.103 Q 0.5 Q 0.61
pr 3 8
and the model with all significant layout and control variables gave the relation-.

vos (24)

A = 0.179 an'sg Q80'4B k(1 + 0.3260)(1 - O.QGS)exp(O.BSC

pr .12C,

+ 0 )
i 12 (25)

This relation is essentially in four parts: the first is the flow function; the
second k" = exp(-0.017y- 0.1DISP + 2.76PT8) is a multiplier representing the
effect of 'fixed' layout parameters; the third (1 + 0.3260) and the fourth

(1 - O.QGB)eprO.SSC18 + 0.13012) are multipliers representing respectively the
effects of a central island (an 'adjustable' layout parameter), and of the signal
control variables. Accidents are higher by 32% with a central island (Bc =1)

than without (Gc = 0), and lower by 90% with a separate right turn stage (68 =1)
than without (6B

fl

0). They increase as ClB' the arrival rate per second of
green, increases, ie if the proportion of green time is decreased, and as the

intergreen C increases.

12
3.14 In all some fourteen predictor relations of this general form were developed,
according to accident type, and are expounded in detail by Hall. The balance
between the accident changes they produce as a function of the design variables,
within the total frequency, has yet to be fully explored, as has the trade-off
between accidents and vehicle delays. Taken together, they provide considerable
insight into the accident risks, and how they might be reduced by design changes.

4, FUTURE NEEDS

The role of accident predictive relations

4.1 In the Introduction, we gave three important uses of accident predictive
relations. The first, to identify potential design improvements, is fairly
self-evident. As to the second and third, to allow economic appraisal of road

improvements and to investigate traffic management strategies, it is not obvious
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a priori that they might not be achieved at a rather more modest level by the use
of "aggregate" rates (by road or junction type). In fact, the evidence points to
the conclusion that for urban traffic safety appraisal they cannot. The reasons

are these.

4.2 It is quite clear that traffic flow variables are crucial in determining
accident frequencies. The relations are non-linear in the flows; simple rates
per unit of traffic are not therefore sufficient to define accident numbers inde-
pendently of flow. Moreover, the functional dependence on traffic flow is
different for accidents associated with the various different traffic manoeuvres
at a junction, This means that the accident consequences of traffic redistribu
tion within a network of roads can only be satisfactorily predicted by means of
accident-flow relations which apply to the relevant intersecting flows themselves,
For example, a simple total inflow model cannot predict the accident reductions
from banning right turns at a series of traffic signal junctions. Neither can a
cross-product model. Similarly, the effects of changes in junction layouts on
accidents, which depend upon the flows, will simply not appear in anappraisal

unless sufficiently discriminating accident predictive relations are used.

4.3 The same will apply for pedestrian activity. Pedestrian accidents are very
significant: one-third of fatalities in GB are pedestrians, and 95% of pedestrian
fatalities are in built-up areas. The provision and siting of crossing facilities
will influence the patterns of intersecting vehicular and pedestrian flows, and
hence the accident totals; but unless the accident predictive relations treat
tiese interactions explicitly, the appraisal of traffic management schemes will

appear neutral to such things, and possible casualty reductions will be lost.

Traffic management for safety

4.4 These arguments point towards two needs:
(a) a need for methods to predict traffic and pedestrian redistribution effects

in road networks following traffic management changes, and

(b) a need for sufficiently discriminating accident predictive models for the
major components of road networks - the main types of junction and road
link.

4.5 Redistributional effects. Traffic assignment models already allow the

effects of traffic assignments to be predicted, given a matrix of origin-
destination demand flows. Pedestrian activity is more difficult to cope with,

because of the adaptability of pedestrian travel patterns, and it is unlikely
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+hat a directly equivalent form of modelling will prove feasible: but because of

the extent of the pedestrian accident problem in built-up areas, and the poten*ial
effects of junctions, crossing facilities, and strategic traffic re-routing on it,
it will nonetheless be necessary *o make explicit allowance for changed in pedes--

trian activity following traffic managemen?! changes.

4.6 Junction types and accidents. The distribution of accidents between the main

junction types and road links within bujlt-up areas is shown in Table 3. The data
are for 1983, equivalent figures have not been collated for later years, but
although absolute costs have risen by about 50% since 1983, the distribution of
costs between categories can be expected to be similar. Junctions generate nearly

two-thirds of all accident costs, and links just over a third. Most accident costs

TABLE 3: Analysis of accidents in built-up areas in GB. The data are for 1983;
broadly similar distributions of cos%s can be expected for current
conditions; absolute costs have increased by about 50%

Road fantiire Accident Personal injury accidents
(yonction unless cost | Fercentase opr—
otherwise stated) £m .
pedestrians [cyclists

On single carriageway roads
Pajor minor T 514 | 34 I65,286 30 17
‘ " " cross-roads 111 7 14,734 23 14

1" L 4 21 1 ! 2,960 28 15
[Private drives 51 3 i 7,449 9 22
Signal cross-roads 62 4 I 8,501 30 11
Signal Ts 24 | 1.5 | 3,371 36 12
Roundabouts 42 3 7,499 12 23
|Other junctions 48 3 | 6,110 34 15
Links 516 34 55,383 39 12
On dual-carriageway roads I }
IMajor minor T L 40 3 3,970 | 30 14
Signal cross-roads ! 20 1 v 2,305 ! 22 i 8
Other . 26 1.5 3,208 23 | 17
LLinka : 55 4 5,085 . 51 ‘ 9
are on single-carriageway roads, primarily at T-junctions (34%) and on the
links themselves [34%). Four-arm tra®™Tic signal Jjunctions and roundabouts
together accouav o 7%. Fu: <n forrula®ing recea:cli programmes,
these percentages only vcrovide broad incica’ons. They say nothing
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about the susceptibility of the figures in the different categories to possible
accident reduction measures, Such susceptibilities are by their nature difficult
to estimate until the accident risks associated with particular vehicle and
pedestrian manoceuvres, flows, and road layout and land-use characteristics have
been established. The studies outlined in Section 3, which were mounted primarily
to i1nvestigate potential design improvements also go some way to providing
accident predictors for urban accident appraisal; but “che analysis of Table 3
shows that some 87% of the urban junction accident bill remains uncharted in

these terms. The largest costs, £514m pa come from urban T-junctions, Urban

road links generate a further £516m pa. So between them these two features alone

account for more than £1000m pa in 1983 costs,

4.7 Studies of urban T-junctions and road links. Urban - junctions differ

substantially from rural ones in a wide range of factors, including vehicle
speeds, on-street parking, pedestrian densities, layout features, and land-use
characteristics. It is not feasible therefore to translate the results of the
rural T-junction study into the urban context. Neither do any link accident
models exist at the appropriate level of discrimination. We have therefore
embarked on a major study of urban T-junctions and road links. The boundary
between the two is a fine one, because of the multiplicity of minor access points
along any urban link, ranging from very lightly trafficked junctions to private
drives and retail access points. The sample will encompass about 300 stretches
of urban road links totalling around 150 km in length overall. Within this

length we expect around 3600 very lightly trafficked minor prioritv junctions.
Stratification will be primarily by traffic flow and pedestrian flows across the
road, but will take account of land-use type and parking activity. This sample
will be complemented by another comprising a further 300 busy T-junctions strati-
fied by major road flow, minor road flow, and pedestrian crossing flows, Accicent da'a
will be collected for the last five years (personal injury accidents), and a
comprehensive set of measurements made .5 flow (by turning movement at junctions),
pedestrian flows, layout, and land-use variables and traffic behaviour variables

(speeds, parking practices). The study will take about two years.
y

5. CONCLUSION
5.1 This paper has outlined new methodologies which can be used to

develop relations between accidents, traffic and pedestrian flows, and road
layout features by means of cross-sectional studies. Although the mininum data
requirement is quite large, the yield, in terms of clearly differentiated
results for a range of important traffic and pedestrian conflicks, is high.

Past studies have pointed to positive design improvements encapsulated at several
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points in British Department of Transport Advice and Standards. The accident
predictive relations are, or will be, incorporated in the widely used DTp
computer programs for junction design ARCADY2 (Assessment of Roundabout Capacity
and Dela¥)'?, PICADY2 (Priority Intersection Capacity and Dela¥)'>, and OSCADY
(Optimised Signal Capacity and DelaY)lG, Traffic management appraisal calls for
relations, of the type developed, to be used in conjunction with traffic assign-
ment models. There is substantial work to be done to establysh a satisfactory
basis for appraising the safety aspects of traffic management in built-up areas,
and developing casualty reduction strategies. A major study is now in progress

to investigate urban T- junctions and road links.

5.2 Whilst there are substantial international differences in road user behaviour
and in accident numbers and patterns, much of the basic methodology of the studies
described here could be applied elsewhere. Studies conducted on a similar basis
in different countries could not only bring out similarities in accident causative
processes but also provide valuable indications of which successful national
practices could be tried elsewhere. It is planned to explore some of these issues

in a short Workshop at the end of this Conference.
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AN EXPOSURE-BASED TECHNIQUE FOR ANALYZING
HEAVY TRUCK ACCIDENT DATA
By i
Snehamay Khasnabis
and

Ramiz Al—Assar2
INTRODUCTION

Measures of exposures used in accident analysis are complex and not
well understood (3,6). In accident studies one must establish at the
outset an appropriate exposure measure to compute accident rates (8,10).
The development of such a measure might appear to be a simple task;
however, certain conceptual problems must be resolved when the objective
is to separate accident data into two or more vehicle categories (e.g.,
trucks, passenger cars, etc.). The problem arises from a lack of agree-
ment among traffic experts as to what constitutes exposure to accident,
particularly when a comparison of accident data by different vehicle
categories is the object of the analysis. Current literature on acci-
dent exposure indicates little agreement among experts on how to incor-
porate exposure factors in accident analysis (9,15).

Exposure in accident analysis can be regarded as "opportunity or
risk of accident involvement," and can, in its simplest form, be mea-
sured by Vehicle Miles of Travel (VMT) generated on a given facility
over a specified period of time, usually one year. Implicit in the
designation of VMT as exposure is the premise that increased travel
generated on a given facility results in greater accident risks. There-
fore, the measure of performance or the accident rate must reflect the

effect of varying amounts of travel.

Professor, Department of Civil Engineering, Wayne State
University, Detroit, MI 48202.

2 Graduate Assistant, Department of Civil Engineering, Wayne State
University, Detroit, MI 48202.
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The above rate is appropriate in comparing temporal or spatial
trends in accident experience. However, certain methodological problems
would arise if one were to use the same measure in comparing accident
data for different vehicle categories, e.g., heavy trucks vs, light
trucks, The object of this paper is twofold: first to address this
methodological issue, and second to present a procedure for analyzing
accident data involving trucks of varying sizes, along with a casestudy
application.

BACKGROUND INFORMATION

By extrapolating the definition of exposure for the purpose of ana-
1yzing truck accident data, one could compute the following:

. _ Number of Accidents Involving Trucks
Truck Accident Rate = VMT Generated by Trucks (A)

The use of the above measure implies that for a specific vehicular
category, exposure to accidents is caused by travel generated only by
that type of vehicle. It can, however, be argued that exposure to acci-
dent for a particular vehicle type i is caused not only by travel gene-
rated by type i itself, but also by travel generated, in part, by all
other types of vehicles present in the traffic stream. For example, a
total of 70,000 truck accidents was recorded in Michigan in 1982, where
a truck accident is defined as one that involves at least one truck.
Note that these accidents involved approximately 76,000 trucks and
48,000 non-trucks (dRstly passenger cars). An argument could be made
that truck accidents are, at least in part, the result of conflicts
between trucks and nontrucks, as evidenced by the involvement of 48,000
non-trucks. Thus, the measure used to compare accident data should
reflect the exposure effect of these non-trucks or, alternatively, the
rate should have in the numerator those accidents that involved only

trucks.

Khasnabis, et al., in their earlier research, discussed the above
methodological issue, and presented three possible approaches for analy-
zing accident data involving specific vehicular categories (11). In the
above study, the authors used "trucks'" and '"passenger cars'" as the
specific vehicular categories and demonstrated the application of these
approaches using an accident data base for the state of Mjchigan. The

three approaches, presented briefly, are as follows:
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Approach 1
Approach 1 requires the categorization of the accident data into

truck accidents (accidents involving at least one truck) and passenger
car accidents (accidents involving at least one passenger car). Next,
the percentage of passenger cars in truck accidents is computed, and the
VMT attributable to passenger cars is included in the denominator along
with the VMT for trucks. A similar procedure is followed to include the
truck VMT in the compilation of the passenger-car accident rate. Thus,
by the above definition:

Accidents Involving at Least One Truck

Truck Accident Rate = fouck VMT + Contribution of VMT by Pass. Cars)

Note that the purpose of including the contribution of VMT by pas-
senger cars in equation (B) is to account for the increased opportunity
of interaction resulting from the presence of other vehicles in the
traffic stream. In computing the accident rate for passenger cars by
this method, a similar contribution by trucks in the VMT attributable to
truck-car accidents must to be added in the denominator.

Approach 1 has one inherent deficiency. Comparison of the accident
rates for the two vehicle categories by this method does not ensure the
use of mutually exclusive data bases. Specifically, an accident between
a truck and a passenger car (which is considered a typical truck acci-
dent) would be accounted for in both categoreis by this method, thus

leaving the analysis open for interpretation.

Approach 2
Approach 2 requires the development of a rate based on a numerator

containing the number of vehicles involved in accidents rather than the
number of accidents. This approach represents a significant departure
from the traditional practice used in most accident analyses, where the
number of accidents (as opposed to the number of vehicles) has been used
in the numerator. Thus, according to this approach:

_ Trucks Involved in Accidents
Truck Involvement Rate = Total Truck VHT

306-G 3

(B)

(©)



Note that equation (C) ensures the use of mutually exclusive data
bases with no overlap of sample space in the two rates to be compared.
However, the method totally disregards the concept of "opportunity for
interaction'" between different vehicles by separating trucks and passen-
ger cars into the two distinct categories. Also, the use of number of
vehicles in the numerator may unrealistically "inflate" the rate for
passenger cars due to the fact that most multi-vehicle truck accidents
involve a passenger car as the second vehicle, while most multi-vehicle

passenger car accidents do not involve a truck as the second vehicle.

Approach 3
Approach 3, an outgrowth of approach 1, attempts to incorporate

into the analysis the use of mutually exclusive data bases, ensuring
that a given accident is considered only once as an entity in a compari-
son pair. The procedure requires the computation of three sets of
accident rates, as follows, even though the objective is to compare

accident involvement by two types of vehicles.

i X _ Number of Accidents Involving Trucks Only
Truck-Only Accident (TOA) rate = (Ft x Truck VMT) (D)

Passenger Car Only Accident (POA) Rate = AccldenE; I:“;i:;:ﬁggisgzgg%ﬁf%ffs Only
P

(E)
. c _ Accidents Involving All other Vehicles
Combined Accident (CA) Rate = tour—gee T vable to AIL Other Vehicles)
(F)
where
F = Number of Trucks Involved in All Truck Accidents )
t Number of All Vehicles Involved in All Truck Accidents
and
F - Number of Passenger Cars Involved in All Non-truck Accidents (H)

Number of All Vehicles Invovled in All Non-truck Accidents

Note that in equations (D) and (E) the numerator is the number of
accidents in which all of the vehicles involved (as opposed to at least
one vehicle, as used in equation C) are vehicles of a given category,
i.e., truck or passenger car. The numerator and the denominator in

equation (F) are the complements of the accidents and exposures, respec-
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tively, considered together in equations (D) and (E). Thus, all acci-
dent and exposure data not considered in the previous two equations are
contained in the last equation. Further, in equation (G), a truck
accident is one that involved at least one truck. Similarly, in equa-
tion (H), a non-truck accident is one that does not involve any truck at
all. The advantage of using equations (D), (E) and (F) 1s that each of
the three categories represents mutually exclusive and homogeneous
subsets of the data base, with no overlap in the sample space. Note also
that the limiting value of Ft and Fp is between 0 and 1, In reality,
however, Ft is likely to be within a range of 0.6 and 0.7 and Fp between
0.85 to 0.95, with very litt]le year-to-year variation.

Scope of This Paper

The procedure developed by Khasnabis, et al. was used to analyze
truck and passenger car accidents in Michigan (11). However, it can be
used to study any two or three accident categories, where the assessment
of the relative role of these vehicular groups is the object. In Mich-
igan, trucks have historically accounted for only 15% of all travel
expressed in VMT, and yet at least one truck is involved in 25% of all
accidents (10,14). The increasing number of highway fatalities in
recent years has causéd researchers to question the relative role of
trucks (particularly heavy trucks) in the incidence of traffic accidents
(4, 5, 17). Additionally, the passage of the 1982 Surface Transpor-
tation Assistance Act, which made it possible for heavier, longer and
wider trucks to operate on selected national highways, has raised com-
cerns in the minds of many safety experts (12, 16).

The purpose of the research from which the paper is developed was
to adapt one of the three procedures to gain an understanding of the
phenomenon of heavy truck accidents in Michigan, by analyzing the his-
torical accident and exposure data. The following definitions have been
used in this study:

Accident: An incident for which an official accident report was
filed. In Michigan, all accjdents involving personal injury or property
damage exceeding $200 require an official report,
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Truck Accident: An accident for which at least one vehicle was

coded as being either a straight truck (single unit) or a semi-tractor.
Double-Bottom (DB): A combination of a truck or truck-tractor and
two trailers, with an overall length exceeding 55 feet (up to a maximum

of 65 feet).

Single-Bottom (SB): A combination of a truck or truck-tractor and
one trailer.

The specific objectives of this paper are as follows:

1. To present a procedure for analyzing heavy truck accident data by
proper incorporation of exposure factors involving vehicles of
different categories.

2. To determine if there is any significant difference in the accident
experiences of the three truck categories, Double-Bottom Trucks,
Single-Bottom Trucks, and al] other trucks, as reflected by the
13-year data base (1971-83) in the state of Michigan.

METHODOLOGY

A mody fied form of approach 3 was used to gain an understanding of
heavy truck accident phenomena. In equations (D) and (E) the factors Ft
and Fp were introduged partially to discount the effect of other vehic-
les in the exposure estimation. Using the same approach, the following

rates can be derived:

- -y L}
Double-Bottom Only (DBO) Rate Number of Accidents Involving DB's only

FD x DBO VMT
; _ _ Number of Accidents Involving SB's only
Single-Bottom Only (SBO) Rate = Fs < SBO VNT
_ Number of Accidents Involving AOT's

All Other Trucks (AOT) Rate = AOT VT
where F. = Number of DB's Involved in all DB Accidents
T® *D T Number of ALl Vehicles Involved in DB Accidents
and F. = Number of SB's Involved in all SB Accidents
S Number of ALL Vehicles Involved in SB Accidents
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Note that in equation (K), a DB accident is one that involved at least
one DB truck and similarly in equation (L), an SB accident is one that
involved at least onme SB truck. Unfortunately, during the study of the
heavy truck accident data, relevant information to compute the parameter
FD and Fs was not available. Hence the numerical values of FD and Fs
were assumed unity. The authors recognize that the validity of this
assumption is questionable, because it partially ignores the "oppor-
tunity for interaction" concept associated with measurement of exposure.
However, since the emphasis of this paper is on methodological aspects
and the case study is for demonstration of the proposed approach only,
the above assumption appears acceptable. It was felt intuitively that
numerical values of FD and FS would not be drastically different from
each other; hence the conclusions of the case study are likely to remain
unchanged, even though there could be some changes in the accident rates
computed, if realistic values of FD and F_, were used.

S
A two-stage analytic procedure was used to conduct the study:

a) In stage I, an overall statistical analysis of the truck acci-
dent data was performed for the analysis period 1971-1983. A
two-way analysis of variance was performed to obtain a broad
understandifig of the most significant factors contributing to

truck accidents.

b) In stage II, accident data were categorized into three groups:
Class of Trafficway, Severity of Accidents, and Type of Vehi-
cle. The purpose of this categorization was to create a more
uniform data matrix to permit a better comparison of the

accident data.

Development of Database

Two major databases were developed on an annual basis for each of
the 13 years of accident and exposure data. These are briefly discussed
below.

Accident Data: Accident data were collected for three different

categories, namely, Double-Bottom truck accidents, Single-Bottom truck
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accidents, and All Other truck accidents. This data was divided into
three categories according to severity: Fatal, Persona] Injury, and
Property Damage. The accident data were furthered categorized into 3
classes of trafficways.

VMT Data: There were two primary sources for calculating truck VMT
data: The Highway Statistics (7) and the American Trucking Trends (1),
For each of these two sources, total VMT was calculated by multiplying
the number of trucks registered in the State of Michigan by the average
travel rate in miles per truck, computed from nationwide data, The
implicit assumption was that there is no significant difference in the
nationwide and statewide travel rates. No information on travel rate
for trucks for the State of Michigan was available. An assumption was
necessary,

The VMT data generated were compared with a third independent data
source, namely, the five-year census data based on information collected
through the "Truck Use and Inventory" survey, available for the years
1972, 1977 and 1982 (2). The relative closeness of the data from these
three independent sources indicated that the information generated was
realistic. It was also assumed that the travel generated by out-of-
state trucks was balanced by travel generated outside the State by
vehicles registered within Michigan. No effort was thus made to account
for truck travel generated in the State by out-of-state trucks, or to
discount travel generated by Michigan trucks outside the State boun-
daries.

Truck VMT data thus obtained was divided into two categories,
Double-Bottom Trucks and Single-Bottom Trucks, with the assumption that
the travel generated by these two vehicular categories is portortiomal
to their corresponding registration. Lastly, the VMT data compiled for
each of the three vehicular groups was further categorized into three
class of trafficway follwing a similar estimation procedure. In the
absence of any information on truck VMT by functional classification of
highways, the only way to derive estimates was to use the classes of
trafficway (CTW) used in the census data; these were:

Long range: [Those traveling more than 200 miles.]

Short range: [Those traveling less than 200 miles.]

Local: [Short distances.]
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It was assumed that long-range trafficways are facilities with the
highest design standard (i.e., interstates and expressways), while those
in the shorter range categories are major and minor arterials and/or
collectors.

Data Analysis

A three-step process was followed to compute the accident rates.
First, information on the number of annual accidents was classified into
a three-dimensional matrix, "TOV" (Type of Vehicle), "CTW" (Class of
Traffic Way), and "SOA" (Severity of Accident) (27 cells, with three
levels for each dimension). Next, VMT data was categorized into three
classes of Trafficway (CTW), following the procedure described above.
Finally, accident rates were compiled according to equations (I), (J),
and (K), with data obtained from the first two sets.

Two types of statistical tests were performed. In stage I, a
two-way Analysis of Variance (ANOVA) was conducted following the princi-
ples of factorial design, using the Statistical Package SPSS. Standard
t-test were conducted in Stage II, which compared the differences be-
tweens the mean accident rates of the two vehicular groups, categorized
by the class of trafficway and severity of accident. A null hypothesis
was set up and tested” for the accident rates as follows:

NULL HYPOTHESIS (HO:): There is no significant difference between

the mean accident rates of a specific severity group and class of

trafficway of the compared types of vehicles,
A 5 percent level of significance ( @ = .05 ) was used for these sta-
tistical test. The analysis of variance and "t" - tests required the
assumption of the normality of the distribution of accident data. The
authors recognize that the validity of this assumption is questionable
and suggest either a pre-testing of normality of distribution or loga-
rithmic transformation of the variables to ensure normality in future

studies.
RESULTS

The results of the statistical analysis are presented here for each

of the two stages:
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Stage I: An analysis of variance (ANOVA) was performed following
t he "Factorial Design'" type of statistical experiment, as follows.
Factor Level
1. Type of Vehicle (TOV) 3 levels - Single Bottom (SB),
Double Bottom (DB), and All
Other Trucks (AOT)

: B Class of Trafficway (CTW) 3 levels - Long Range, Short

Range, and Local

The ANOVA performed for total accidents and fatal accidents are
reported separately in Tables 1 and 2. A total of 119 observations is
included in each of these ANOVA tables, being the result of three TOV
levels, three CTW levels, and thirteen years of data; the measure of
performance is the number of annual accidents per vehicle miles of
travel, computed according to equations I, J, and K.

Table 1 shows that for total accidents, both the main effects (CTW
and TOV) and their two-factor interaction (CTW x TOV) are statistically
significant at the 5 percent level. To provide a more direct interpre-
tation:

(1) Accident experience changes significantly with changes in the

three vehicular categories for the same class of trafficway
(TOV main effect).

(2) Accident experience changes significantly with changes in the
classes of trafficway for the same type of vehicle (CTW main
effect).

(3) Accident experience changes significantly with changes in the
vehicular categories as the class of trafficway changes, or

vice versa (TOV x CTW interaction).

Table 2 shows similar data for fatal accidents. Contrary to pop-
ular belief, neither the type of vehicle, nor the class of trafficway,
nor their interaction appear to have any statistical significance. The

lack of significance here, the authors feel, should not be used to infer
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that the variables are not important. Perhaps ANOVA is a crude tool
used for a delicate operation, when the data base suffered from low
frequencies. The test presented in Stage II addresses this question in

greater detail.
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Table 1

ANOVA Results: Effect of Class Trafficway (CTW)
and Type of Vehicle (TOV) on Total Accident Rate

Source of Variatiom Sum of Squares DF Mean Square F
Explained 1. 026 8 0.128 11.919%
-Main Effect 0,507 4 0.127 11.782%
-CTV 0.218 2 0.109 10.145%
-TOV 0.289 2 0.144 13.420%*
- Interaction 0,519 4 0.130 12.056%
Residual 1.162 108 0.011
Total 2.188 116 0.019

306-G 12



Source of Variation

A. Explained
- Main effects

Total
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Table 2

Sum of Squares
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Effect of Class of Trafficway (CTW)
and Type of Vehicle (TOV) on Fatal Accident Rate

DF Mean Square
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0.006
0.006
0.006
0.006
0.006
0.006

0. 006

1.013
0.962
0.959
0.964
1.065



Stage II: In this set of analyses, statistical comparisons of
annual accident rates in various severity groups between DBO's and SBO's
and between DBO's and AOT's for long-range and for short-range type
facilities are presented. Tables 3 and 4 show that for the long-range
facilities the DBO's have experienced significantly higher accident
rates than SBO's and AOT's respectively. The above conclusion is borne
out by the rejection of the Null Hypothesis in all the tests,

Results of similar analysis with short-range types of facilities
are presented in Tables 5 and 6, In all the cases analyzed, the DBO's
have experienced higher accident rates than SBO's or AOT's. From an
inspection of the data presented, it is also clear that the accident
rates for compatible cells are much higher for short-range facilities
than for long-range ones. This finding supports an earlier finding in
Stage 1, that class of trafficway is an important variable in explaining

changes in accident rates.

CONCLUSIONS
This study was conducted as part of an unsponsored research project
i1n the Department of Civil Engineering, Wayne State University, during
the period 1985-86. The objective of the study was to develop a pro-
cedure for evaluating*the relative role of heavy trucks in highway
accidents, to demonstrate the feasibility of the approach by applying it
to an actual case study, and to assess whether the type of facility has
any effect on heavy truck accident experience.
The procedure used is a modified version of an exposure-based
method used by the principal author in an earlier study in conjunction
with factorial design techniques, to compare truck accidents with
passenger car accidents. Analysis of variance and ttests of means were
used to examine the accident data for the State of Michigan, and conclusions
are as follows:
(1) The procedure developed is a viable approach for analyzing heavy
truck accident data and, for the most part, lends itself to the use
of data commonly available from state transportation agencies, the

U.S. Department of Transportation, and the U.S. Bureau of Census.
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Accident Type

Fatal

P.I.

P,

Total

HO:

Between DBO's and SBO's at Long Range Facilities

Table 3

Comparison of Mean Accident Rates

Mean Rate* Test
0.0001 SBO's
vs
0.0005 DBO's
0.0005 SBO's
Vs,
0.0071 DBO's
0.019 SBO's
vs.
0.0160 DBO's
0.0017 SBO's
vS.
0.0242 DBO's

tcalculated

5.04

8.99

9.19

10.04

teritical DF Conclusion

1.782

1.782

1.782

1.782

No difference between accident rates of compared class

* Expressed as Number of Accidents Per Million VMT.

306-G

15

12

12

12

12

(Reject Ho)

(Reject HO)

(Reject HO)

(Reject HO)



Table 4

Comparison of Mean Accident Rates
Between DBO's and AOT's at Long Range Facilities

Test tcalculated

Accident Type Mean Rate* critical DF Conclusion

0.0005 DBO's

Fatal vs. 4. 57 1.782 12 (Reject H )
0.0001 AOT's °
0.0071 DBO's

P.I. vs. 4. 93 1.753 15 (Reject HO)
0.0032 AOT's
0.0160 DBO's

P.D. vs. 5.99 1.734 18 (Reject Ho)
0.0070 AOT's
0.0242 - DBO's

Total vs. 5.80 1.734 18 (Reject HO)
0.0096 AOT's

Ho: No difference between accident rates of compared class

* Expressed as Number of Accidents Per Million VMT.

306-G
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Table 5

Comparison of Mean Accident Rates

Between DBO's and SBO's at Short Range Facilities

Accident Type Mean Rate¥*

e o e e e e e e o e e e e e e e e e e e e e s T e i T e e T e e e =gt T e e s e

0.0001
Fatal

0.0049

0.0003
P.I.

0.0721

0, 0008
P'D.

0.1770

0.0011
Total

0.2542
Ho:

No difference between accident rates of compared class

SBO's
vs,
DBO's

SBO's
vs.
DBO's

tcalculated

2.92

3.01

3.00

tCritical

1.782

1.782

1.782

* Expressed as Number of Accidents Per Million VMT.

306-G

17

12

12

12

Conclusion

(Reject Ho)

(Reject Ho)

(Reject HO)

(Reject HO)



Table 6

Comparison of Mean Accident Rates
Between DBO's and AOT's at Short Range Facilities

Accident Type Mean Rate* Test tcalculated Yeritical DF Conclusion
0.0049 DBO's

Fatal vs, 2.61 1.782 12 (Reject Ho)
0.0005 AOT's
0.0721 DBO's

P.I, vs. 2.0 1.782 12 (Reject HO)
0.0225 AOT's
0.1770 DBO's

P.D. vs. 1.97 1.782 12 (Reject HO)
0.0605 AOT's
0.2542 DBO's

Total vs. 1.99 1.7182 12 (Reject HO)
0.0844 AOT's

HO: No difference between accident rates of compared class

* Expressed as Number of Accidents Per Million VMT.

306-G 18
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(2)

(3)

(4)

(5)

(6)

Both type of truck and type of facility as individual factors, as
well as their interaction, appear to have significant effects upon
truck accident experience in Michigan.

For all severity categories of accidents considered (Total, Fatal,
Personal Injury and Property Damage), DBO's appear to have exper-
ienced higher accident rates than SBO's or AOT's.

Generally, truck accident rates on long-range facilties appear to be
lower than those on short-range facilities. This trend is expected
because of the better design standards associated with long-range
facilities.

Because of problems associated with the availability of truck acci-
dent data, it was not possible fully to incorporate the concept of
"opportunity for interaction" in exposure measurement in the case
study analysis. The proposed procedure, however, allows for incor-
porating this effect if appropriate data is available.

Further studies are recommended to refine the procedure to include
the contributions to exposure by other vehicles involved in heavy
truck accidents in a manner compatible with the available data
base. Also, in future studies effort should be made to pre-

test the normality of distribution of accident data, before

ANOVA and ttest are used. If necessary, operations such as
log-transformation of accident rates should be conducted to

ensure normality. Lastly, the "t'"tests conducted on DBO's vs
SBO's, are equivalent to performing multiple contrasts.

Future research should use multiple range tests (e.g.,

Duncan's LSD) for such purposes.
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ABSTRACT

This study is concerned with identification and quantification
of the complex relationships among geometric design elements and
accidents, and with the construction of a predictive model of
traffic accidents based on these physical factors and other
operational characteristics. A complete data set covering 2-year
period of accidents occurred on major two-lane rural highways in
Taiwan is used for the analysis. To relax the more strict
assumptions of normality and linearity, it begins by creating
categorical variables through a series of statistical procedures.
S8everal intercorrelated variables are either grouped into new
variables to conform with design practice, or represented by single
variables to produce meaningful results. Automatic Interaction
Detection (AID) technique is then used to explore the structure of
the refined data and to reveal interactions between variables.
Prior to the construction of Multiple Classification Analysis (MCA)
model, the interactions have to be identified and their
significance tested. A graphic method accompanied by statistical
tests has been developed in this study, which uses information

directly obtained from the AID analysis. Consequently, the



interactive terms are introduced in the MCA model to replace the

corresponding raw variables. The model thus formulated performs
reasonably well on the data set in spite of its inherent

imperfections.



A PREDICTIVE ACCIDENT MODEL FOR

TWO-LANE RURAL HIGHWAYS IN TAIWAN

INTRODUCTION

Accidents on two-lane rural roads have been examined by many
researchers and are of great concern to highway engineers of many
countries in the world. These roads constitute a large portion of
highway facilities and involve relatively high accident rates.
Geometric design, traffic use, frequency and charactar of
intersectional and access conflict points, and physical condition
on these routes vary widely. Thus, without some understanding of
their interactive effects on safety on these roads, choices from
among many possible improvements and locations are particularly
difficult, to achieve the greatest safety benefit from investments

in highway modernization.

Degpite many studies, the understanding of the effects of
geometic design on safety has not been adeguate to predict the
accident response to individual geometric design element changes.
The effects of a few dominant elements have been identified;
however, the obviously complex interactions among geometric
elements and characteristics on accidents are neither well known

nor adequately understood.

The objectives of this research were to explore the
interactivwe effect of geometric design elements and traffic

characteristics on accidents on two-land rural roads, and to



jdentify some promising prediction models useful in engineering
decisions. Attention is limited to the provincial hjyghways in
Taiwan with average daily traffic (ADT) values of 2, 000 p.c.u.'s or
greater. A procedure of joint use of two multivariate techniques,
AID (Automatic Interaction Detection) and MCA (Multiple

Classification Analysis), was applied in the modeling phase.

In the following section, previous studies and recent
met hodological developments in the area are reviewed. The proposed
method is then explained, followed by the analysis procedure and
model results based on real-life data. This paper is concluded with

a summary of the major findings and extensions of the research.
BACK GROUND

Among many variables associated with accident analysis,
traffic volume is usually considered the most important explanatory
variable. Its effect on road accidents is somewhat better
understood and it is generally accepted that there is a positive
relationship between VMER (vehicle-mile exposure rate) and ADT
(Kkihlberqg and Tharp, 1968; Shannon and Stanley, 1978). However,
different éelationshlp has been reported for tangent sections of
road (paldwin, 1946), or for single vehicle accidents (Zegeer and
Mayes, 1979). When accident measures other than VMER are used, such
as accldents per mile-year (MYER), the effects of traffic volumes
are even stronger (Zegeer and Mayes, 1979; Billion and Stopher,
1957; Versace, 1960; Cleveland and Kitamura, 1978; Cleveland, et.
al., 1984 and 1985). The effect of access point density and its

interactive effect with ADT were also 1mportant, especially in



predicting multi-vehicle accidents (Cleveland, et. al., 1984 and
1985).

The discussion of other variables, such as geometric design
elements, speed limit, etc., in the explanation of different type
of accidents are enormous (for example: Gupta & Jain, 1973; Polus,
1980; Cleveland, et. al. 1984 and 1985). The findings from these
studies about the effects of geometric design elements on safety
are mixed and conflicting, especially for lower range of ADT
(8choppert, 1957; Perkins, 1956; Rinde, 1977). The effect of a
single geometric elemant is difficult to identify because of the
mixing or confounding of these elements in actual highway
installations (Rinde, 1977; McBean, 1982). This probably results in
overest imating the positive effect of better individual geometric
improvements because higher-quality alignments are found more
frequently with better cross-section geometric elements on high ADT
facilities (Zegeer, et. al., 198l1). The interacting effects of the
individual elements and the high correlations among these elements
were clearly shown in an early study using factor analysis

(Versace, 1960).

Mathematical models relating accidents to geometric design
elements have been constructed by several researchers (Gupta and
Jain, 1973; Roy Jorgensen and Associates, 1978; Blackburn, et. al.,
1978; Graham and Harwood, 1982). The functional specifications of
these models are generally of linear form; the model fit in terms
of variance explained has been relatively poor. Exceptions to this
can be found in the multiple linear interactive model developed by

Dart and Mann (1970) and the flexible models using second



der ivatives suggested by Jara-Diaz and Gonzalez (1986),

In contrast to these models using continuous explanatory
variables, a descriptive model rather than an explanatory one, has
been constructed by Cleveland and Kitamura (1978) to predict off-
road accidents. Same type of analysis using AID technique for
exploration appeared in later versions of the model, with an
attempt to fit simple categorical or mathematical models
(Cleveland, et. al., 1984 and 1985). The grouping of design
elements frequently used together as a result of design policies
into sc-called bundles has been recommended for effective modeling.
In an earlier application of AID technique, Snyder (1974) used a
broader, but less-detalled set of explanatory variables which
include the adjacent land use and physical and social
characteristics of the region, as well as physical characteristics
of the roads. With separate analysis applied to different type of
facilities, no interaction terms are found in the additive MCA or

regression model.

METHODOLOGY

A complex set of relationships exist involving travelers,
vehicles, roadways and environments in a transport system for
making trips, and thus in each accident occurrence resulting from
occasional system failures that are not compensated for. Because of
the complexity of the relationships as well as the large number of
characteristics assoclated with accident occurrence, the traffic
safety profession has discovered that direct theoretical analysis

is of limited value. Hence, data developed from accidents



themselves are analyzed to search for these characteristics and
relationships, called inductive modeling. The effort has been
directed toward ideritifying the relationships between accident
occurrence and geometric and traffic characteristics. The sample
studied will be of site rather than accidents for obtaining the
likelihood of accident occurrence under certain conditions. The
data file is thus road-segment based, which contains the accident
history as well as the physical descriptors of the site. This data

is to be analyzed by appropriate multivariate techniques.

A model should be formulated to include the most significant
explanatory variables or predictors and to combine them in an
accurate structural form, sometimes called a construct. The
selections of variables and the fucntional form are generally
guided by prior knowledge or based on theoretical considerations.
To construct an inductive model based on a large number of
predictors, an analyst always faces with problems such as: mixing
of continuous and categorical variables; non-linearities in
relationships; intercorrlations between the predictors; the
interaction effects, etc. Nevertheless, the nonlinear effects and
interactions among predictors are more difficult to deal with. The
use of cross-classification tables (contingeny tables) can relax
some of the more restricted assumptions imposed by many other
multivariate techniqgues. Despite its general simplicity and thus
wide use, the method of cross-classification tables presents a
serious problems in the analysis with a large number of predictors,
each having several categories. The sample is soon segmented to

subgroups characterized by sparse observations.



The approach proposed here is to use AID as a preliminary
search tool, followed by MCA for model parameterization, each
compensating for other's limitations. Both techniques have
advantages over conventional analysis of variance or multiple
regression technique in that the programs can accept predictor
variables in form as weak as nominal scales, do not require
linearity or somewhat restricted assumptions, and accept unequal

number of observations in cells.

The AID Technigue

Since its introduction in the mid-1960's (Morgan and Sonquist,
1963; Sonquist and Morgan, 1964), the AID technique has been widely
adopted by marketing researchers (for example: Assael, 1970;
Armstrong and Andress, 1970; Green, 1978). Besides its limitations
and inexpert use in the area being criticized by Doyle and Fenwick
(1975), the technique draws on no sample theory; thus no
information can be obtained on the relative importance of the

statistical significance of the predictors.

The basic concept of the AID method is to partition the total
sample into the most homogeneous groupings in terms of the variance
in the dependent variable. All independent variables are
categorical. The algorithm considers each variable in turn as the
possible basis for splitting the sample into two subgroups. Thus
for each variable that partition is found which maximizes between

group sum of squares, defined as:



_2 -2 2
BSS = N1Yl + N2¥2 - NY

where N and Y are the sample size and mean of the dependent

variable in the parent group.

Nl and Y1 are the sample size and mean of the dependent

variable in split group 1.

N2 and Y2 are the sample size and mean of the dependent

variable in gsplit group 2.

The program then splits the sample on that variable which affords
the largest such between sum of squares. The two groups so found
then become candidates for splitting. The process continues until
termina ted by one of the three stopping rules: a group becomes too
small; the variance in a group is too small; or no possible split

can s ignificantly reduce BSS.

The MCA Technique

The MCA technique examines the interrelationships between
saeveral predictor variables and a dependent variable within the
content of an additive model (Andrews, Morgan, and Sonquist,1967).
MCA is directly related to analysis of variance in its more complex
form; it can also be viewed as the dummy variable multiple
regression, but with easier interpretation of the model
coefficients. Mathematically, the model specifies that a
coefficient be assigned to each category of éach predictor; thus
the score on the dependent variable for each unit can be calculated



Yij...n =Y + Af + B} + ... + Eij...n

where Yij...n =

|
]

Al

Bij...n

the score of unit n who falls in category i of

predictor A, category 3 of predictor B, etc.

grand mean of the dependent variable

the effect of membership in the ith category of

predictor A

the effect of membership in the jth category of

predictor B

error term for this unit

This set of coefficients can be obtained by solving a set of normal

equations so that the sum of the squared errors is minimized. The

normal eguations can be solved by matrix inversion or by a series

of successive approximation in an iterative procedure, which are

available in most statistical analysis packages. The method assumes

that the data being examined can be understood in terms of an

additive model.

¥When interactions are known to be present, one can

use 3 combined variable, sometimes called a pattern variable, to

replace individual variables.

The Proposed AID/MCA Approach

The basic concepts of using AID and MCA jointly are derived

from the work by Cleveland, et.al. (1981), based on the search

strategy suggested by Sonquist (1970) and Sonquist, et. al. (1971).
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It has been applied in the area of marketing research by Newman and
Staelin (1971). A similar approach of using AID as the preliminary
search tool, but followed by a logit model, was used for the
analysis of dichotomous dependent variables (Green, 1978). The
basic concept of the joint use of two techniques is for them to
serve complementary functions. The former technigque provides
guidance on which predictors, which categories within predictor,
and which types of interactions to be included in the second-stage
analysis. The latter provides an explicit parameterization of the
model and appropriate significance tests. The approach proposed

entajils the following steps:

1. All the predictor variables are expressed categorically.
The continuous ones have to be transformed by the least
singificant difference method, one of several methods
avallable today. The number of categories within various
predictors should be as large as limited by the AID

program.

2. AID is applied as a screening procedure prior to the second
stage of MCA. The results will suggest the existence and

general pattern of interactions.

3. The interactions are located by a graphic method and tested
for significance by ANOVA. Only significant interaction

terms are to be considered.

4. The variables having strong interactive effects are

grouped, becoming a pattern variable to be included in the

11



MCA analysis.

5, After making sure the problem of extreme multicollinearity
is not present, the MCA program is used to estimate the

adﬂitive model.

ANAL YSIS AND MODELS

A data set containing information on traffic, geometric and
environmental conditions, and accident experience on two-lane rural
roads within the jurisdiction of Taiwan Provincial Government was
analyzed. The accident data covering a 2-year period, over 393
sections of major provincial highways, each 3 kilometers long, were
acquired from the official source; however, only those accidents
involving deaths and injuries were available for the analysis. The
entire sample has not been further classified by accident type,
such as single-vehicle or off-road, because it would result in
extreme skewness in the dependent variable. The data describing the
physical and operational characteristics of these roads were
immediately availabje through the inventory files maintained and
periodically revised by the Bureau of Public Roads, Taiwan. The
information on traffic flow along each road section should be
noticed. The range of ADT selected is between 2,000 and 15,000
passenger car units (p.c.u.'s) per day, characterizing high-volume
two-lane, rural highways. Due to the mixing of motorcycles in the
traffic stream, it is believed that number of vehicles is not a
good measure of traffic conditions. Vehicular counts of different
types were thus transformed into p.c.u.'s by their passenger car

eguivalents (p.c.e.). The percentages of motorcycles and trucks and

12



buses, respectively, were retained as other variables to measure
the extent of flow nonhomogeneity. These variables and others

related to geometric designs are listed in Table 1.

Table 1 - The Description of Data File

Variable Name Description Unit
VYl Accidents per section No.
Vi Roadbase width m
v2 Pavement width m
V3 Length of bridge w/ width <= pavement width m
v4 Culverts w/ length <= pavement width No.
V5 Pipes w/ length <= pavement width No.
vé Intersections No.
v7 Guardrail m
vs Ditch m
v Signs No.
V1o Lightings No.
Vil Length w/ grade 5-7% m
V12 Length w/ grade 5-8% m
Vi3 Length w/ grade 5-9% m
V14 Length w/ grade 5-10% m
V15 Length w/ grade 5-11% m
V1ié Length w/ grade 5-12% m
V117 Length w/ radius <= 15m m
V18 Length w/ radius <= 30m m
vis Length w/ radius <= 45m m
V20 Length w/ radius <= 60m m
V21 A.D.T. p.c.u.'s/day
va22 Motorcycles %
V23 Trucks & buses %
V24 A.D.T. vehicles/day
V25 Terrain -
V26 Speed limit kph

Rata Transformation

Prior to AID/MCA analysis all the continuous explanatory
variables have to be transformed into categorical ones. This was
carried out by some statistical methods of making -no overlaps of
averages between groups, subject to the criterion of least-

significance difference set at a certain level. The number of
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categories within each predictor was arbitrarily set to six, which
was automatically reduced, if necessary, by the merging feature of
the program. The correlation between roadbase width and pavement
width exists in the sample, resulting from the design practices,
but can be remedied by using a new definition of so-called bundles.
Other variables that are highly correlated in their own nature and
make up a factor in the factor analysis were investigated, e.q.,
Variables 11 thru 16, 17 thru 20, and 21 and 24. Only one variable
was chosen from each factor and was eligible for entering the model
later. Finally, some variables that are of similar nature and
measuring the same effect, i.e., culverts and pipes shorter than
the pavement width and signs and lightings, respectively, were
grouped together. The definition of roadway width bundles and the
resulting categories in the explanatory variables are shown in

Tables 2 and 3, respectively.

Table 2 - Definition of Roadway Width Bundles

Roadway width
Bundle (NEwl) Roadbase Width Pavement Width

Category (V1) (V2)
1 6.4- 9.0m 6.4- 8.0m
2 9.0-10.5m 8.0-10.5m
3 10.5-12.5m 10.5-12.5m
4 12.5-15.0m 12.5-15.0m
5 9.0-12.5m 6.4-10.5m
6 12.5-15.0m 8.0-12.5m
The AID Analysis

AID was first applied to the data using the variable codes of

Table 3. Because fourteen potential variables, each ranging from 2
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Table 3 - Definition of Categorzied Variables

Variable

Definition
if New

No. of
Categories

Range Coding

NEW1
V3

NEW4

V6

ve

NEW9

vVie

vao

V2l

v22

va3

Va5

V26

V1l & V2

—_

V4+V5

VI+V10

6
6

See Table 2
1=0-5

2=6-10
3=11-20
4=21-25
5=26-40
6=41-1000
1=0-1

2=2-3

3=4-7

1=1

2=2-26
1=0-25
2=26-90
3=91-130
4=131-450
5=451-700
6=701-2798
1=0-280
2=281-800
3=801-1300
4=1301-1850
5=1851-2800
6=2801-4869
1=0-20
2=21-30
3=31-50
4=51-238
1=0-30
2=31-1310
1=0-50
2=51-100
3=101-691
1=2054-5400
2=5401-11100
3=11101-14729
1=14-20
2=21-30
3=31-40
4=41-50
5=51-60
6=61-79
1=3-5
2=6-10
3=11-15
4=16-20
5=21-30
6=31-45
l=level
2=rolling
3=mountainous
1=30
2=40
3=50
4=60
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to 6 categories, were involved, the output would become voluminous.
The AID branching was truncated at the point where the minimum
subgroup size of 5 or the reducibility criterion of 0.6% (in
BS8/T88) was not met. This AID run explains 40.86% of the variance.
Figure 1 shows a partial description of the AID tree diagram that

emerged from this stage of the analysis.

Note that the sample is first split (at level 1) on the
variable of roadway width bundles. In the category of the worst
design standards of 2-lane rural roads, pavement width between
6.4-8 meters and no lateral clearance, the major contribution to
variance explanation is from splits based on the length of roadside
ditches and on the terrain. In general, the worst-designed roads on
level terrain (Group 22) have significantly more accidents while
those in rolling or mountainous terrain (Group 23) or those with

longer roadside ditches (Group 21) experienced fewer accidents.

In the category of better-designed roads, most of them on
level terrain having wider pavement with/without lateral clearance,
the important explanatory variables are traffic related, ADT
(in p.c.u.'s) and % of motorcycles. In the category with
mortorcycles consisting 50% or more of the traffic, the road
sections with fewer signs and lightings (Group 10) or those on
level terrain with longer guardrails as well as more signs and
lightings (Group 19) are less accident-prone. On the other hand,
those sections with shorter guardrails and lots of signs and
lightings (Gourp 18) are more accident-prone. In the category with
fewer motorcycles (less than 50%), the low ADT group (Group 6) and

the middle ADT group on rolling terrain (Group 15) have fewer
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Figure 1 - AID Diagram of Total Number of Accidents
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accidents. The middle ADT group on level terrain but with shorter
bridge length (Group 16) are less accident-prone than those with
longer bridge length (Group 17). In the high ADT groups, the
sections with more signs and lightings (Group 13) are more
accident-prone than those with fewer signs and lightings (Group

12).

From the above discussion, and the asymmetry in the tree
diagram itself, it is obvious that complex interactive effects
exist among several road and traffic descriptors on the accident
occurrence. Other strong predictors, although failing to appear in
the AID splits because of their strong correlation with others,

were also retained in the data set for further analysis.

Ihe Interaction Terms

Besides the tree itself, commonly used methods for displaying
the AID results include tables showing the proportion of variation
explanable by each predictor, tables of effect profiles, and the
graph of effect profiles. The means profile chart is most useful
for revealing the differential effects of a variable in various
subgroups. If there appear to be major differences between profile
lines, then the variable can be considered a candidate for

inclusion in an interactive term.

The concept of congruence was applied in the analysis for
locating the interactive variables and finding out the form the
interaction takes. Variables were ordered in sequence by their

explanatory power or theoretical importance, and the differential
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effect profiles of each variable in various subgroups formed by
major AID plits as well as in the total sample were plotted.
Figure 2, as well as Table 4, shows the effect of variable NEW1l
(roadway width bundles) in groups 4, 5, 8 and 9 and in the total
sample. The lines associated with subgroups 8 and 9 (also subgroup
6 not shown) and their parent group 4 are not parallel. The major
split variable was ADT, which could be susceptibe to the effect

of variable NEWl. The interactive effect between these two was then
tested using an ANOVA and turned out significant at 0.005 level.
Other similar, statistically significant 2-way interactive effects
include those between ADT and number of intersections and between
ADT and length of bridges. Having the largest explanltory power
among the three, the interaction between ADT and roadway width
bundles alone was considered for constructing a new term, to avoid

too complex higher-order interaction terms.

The process of combining the variables of ADT and roadway
width bundles was aided by the AID splits and the cross-
classification means table so that it would not result in too many
empty cells. Category 1 (narrow pavement with no lateral clearance)
and Categories 5 and 6 (wide pavement with sufficient lateral
clearance) of the roadway width bundles, respectively, are somewhat
homogeneous and were considered independently with the ADT. The
rest of the categories (medium or wide pavement with no lateral
clearance) was classified by low ADT and medium and hlgh ADT's. The
definition of the resulting categories of the combined variable or

interaction term is shown in Table 5:
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Figure 2 - Plot of the Effect of Variable NEWl in
Groups 4,5,8,9 and in the Total Sample

Table 4 - Mean Effect of Variable NEW1l in Groups
4,5,8,9 and in the Total Sample

Variable Total Group 4 Group 5 Group 8 Group 9

NEW1

Category Size Mean Size Mean Size Mean Size Mean Size Mean
1 151 1.12 e o - - = - - -
2 17 2.41 11 3.00 6 1.33 8 3.88 - -
3 47 4.43 30 5.17 1T 3.12 13 4.62 15 5.53
4 23 5.22 17 6.18 6 2.50 11 4.82 6 8.67
5 132 2.67 65 3.48 67 1.90 28 4.11 7 5.15
6 23 4.17 18 3.94 5 6 3.83 7 4.57

5.00
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Table 5 - Definition of Interaction Term Between
Roadway Width Bundles and ADT

Interaction Term Roadway Width ADT
Category Bundles Category Category
p 1 All
2 5,6 All
3 2,3,4 2,3
4 2,3,4 1
The MCA Model

The final stage of the analysis is to estimate the model using
MCA. The model is of additive form with interactive variables of
interest being replaced by combined variables (pattern variables).
The data set manipulated previously was used as input to the
statistical analysis package SAS for solving the normal equations
used by MCA. The summary statistics printed by the program
including the etas, betas, unadjusted and adjusted coefficients are

listed in Table 6.

The MCA model thus constructed explains approximately 30% of
the total variance, a moderately predictive system. The interaction
term involving roadway width bundles and ADT's explains almost
half, 15%, followed by percentage of motorcycles, 8%. Other
significant variables, e.g., signs and lightings, terrain, and
guardrail length explain between 1% and 3% of the variance. The
variables insignificant by the F-test at 0.05 level, but having
strong correlation with the significant ones, are retained in
the model. The adjusted coefficients measure the predictive power

of one variable by holding all other predictors, i.e., all other
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Table 6 - Summary Statlistics of the MCA Model

Unadjusted Adjusted
Variable/Category N Deviation eta Deviation beta
NEW1V21l (Roadway Width
& ADT Bundles)

d 151 ~1.3%5 -1.01
2 155 0.39 0.26
3 70 2.12 1.68
4 17 -1.93 -1.70

0.50 0.39
V22 (% Motorcycles)
1l 16 0.80 0.62
2 31 -0.64 -0.38
3 69 1.07 1.18
4 123 0.24 0.28
S 100 -0.70 -0.98
6 54 -0.47 -0.29

0.25 0.28
NEW9 (8igns & Lightings)
1 197 -0.53 -0.19
2 69 0.30 0.14
3 72 0.02 -0.39
4 55 1.51 1.01

0.26 0.16
V7 (Guardrail Length)
1 138 0.44 0.14
2 37 0.38 0.37
3 23 0.52 0.48
4 74 0.02 0.05
5 40 -0.91 -0.66
6 81 -0.63 -0.26

0.19 0.11
V25 (Terrain)
1 279 0.47 0.20
2 77 -0.91 -0.38
3 37 -1.82 -0.71

0.28 0.12
V8 (Ditch Length)%t
1 58 0.20 -0.14
2 79 -0.18 0.16
3 60 -0.01 0.13
4 59 0.10 -0.14
5 82 -0.04 0.14
6 55 0.02 -0.29

0.04 0.06
V3 (Bridge Length)%x®
1 256 -0.19 -0.06
2 20 0.94 0.75
3 32 0.08 0.08
4 10 -0.11 -0.24
5 15 0.29 -0.57
6 60 0.39 0.15

0.12 . 0.08
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Table 6 - Continued

Unadjusted Adjusted

Variable/Category N Deviation eta Deviation beta
V20 (Length w/ Radius <= 60m)%*
1 355 0.10 -0.03
2 15 -1.24 0.12
3 23 -0.77 0.43

0.12 0.04
V16 (Length w/ Grade 5-12%)**
p 377 0.23 0.06
2 56 -1.37 -0.38

0.21 0.06

Grand mean = 2.51 accidents/section
2 2
R = 0.33; R adj = 0.27

F =5.74; F*(41,361,0.05) = 1.35

"xx" - Nonsignificant by approximate F-test at 0.05 level

predictors are assumed distributed as they are in population at

large. To obtain the average number of accidents on a particular

road segment, one simply add the adjusted coefficients of

membership in certaln categories to the grand mean. The main

effects of individual categories within each variable are

summarized as follows:

1. The interactive effects of roadbase width, pavement width,

and ADT are quite complex. The segments with narrow

pavement and no lateral clearance and those with wider

pavement and no lateral clearance but having lower ADT's

have the lowest accident counts. The segments with wider

pavement and no lateral clearance but having higher ADT's

have the highest accident counts. Obviously, ADT is still

the most dominant factor in accident occurrence.
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. For the effect of motorcycles, more accidents occurred in

the range of 31-40% while fewer in the range of 51-60%.
Besides other traffic and road conditions, this may well be
explained by the degree of disturbance versus the degree of

homogeneity in the traffic stream,

. The effect of total number of signs and lightings seems

somewhat contradictory. The sections with more signs and
1ightings have more accidents. The existence of these
devices may imply somewhat complex traffic and environ-
mental conditions, their effects not being captured by

other variables.

. The effect of guardrail length may seems contradictory as

well. The sections with shorter gquardrails have experienced
more accidents. This may better be explained by relating
guardrails with terrain. The sections on level terrain are
less guardrail-dependent; they are characterized by more
accidents associated with wider pavement having higher

ADT's.

. The effect of ditch length should also be investigated

along with terrain. The sections on rolling or mountainous
terrain accompanied by longer ditches are generally
associated with lower design standards and lower ADT's.

Fewer accidents occurred on these sections.
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6. The effect of bridge length is not montonic, More accidents
occurred on sections in the middle range of bridge length

while fewer in the high range.

7. The effects of curve length and grade length are somewhat
different. The sections with more length on curves are more
accident-prone while those with more length on steep grades

are less accident-prone.

CONCLUSIONS AND RECOMMENDATIONS

This study was concerned with accident occurrence on two-lane
rural highways and its relationship to traffic and road and
environmental conditions. A national data set of two-lane rural
accident experience, involving 393 three-kilometer road sections
with ADT between 2,000 and 15,000 p.c.u.'s which recorded 987
accidents in 2-year period, was studied. Within the data set, the
continuous variables were first categorized, followed by the
grouping of intercorrelated geometric or operational variables into
bundles, or into factors to be represented by single variables. A
descriptive model was then constructed by AID technique for
revealing the general pattern of interactions. With the aid of the
AID analysis, a series of means profile charts were generated; the
variables showing significant interactive effects by the ANOVA were
candidates for combination. Finally, an explanatory MCA model was
constructed with parameters to show the importance of individual
variables, including the interaction terms which have replaced the

raw variables.
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The most important findings from this research are viewed as

follows:

1. Strong interactive effects exist among the road and traffic

descriptors that simple models based on original variables
will not suffice for the accident prediction, This
necessitates the use of many combinations of variables, as

bundles or interaction terms, in effective modeling.

The joint use of AID/MCA techniques allows each to
supplement the other's limitations. The AID provides some
insight into the relative importance of individual
variables and their complex interactive effects. The
information on which predictors, and which categories
within predictor, to include in the MCA analysis is also
very useful. The MCA model having explicit parameterization
and appropriate significance tests should check with the
AID results. Nevertheless, some important variables not
appearing in the AID splits should not be ignored in the
MCA analysis; failing to include correlated variables
generally leads to less predictive power for those

included.

. The analysis uses section-length exposure rate rather than

the conventional vehicle-mile exposure rate to permit the
ADT to be treated as a classification or an independent
variable. The results show that for the worst-designed
sections, frequently associated with lower ADT's, the

terrain-associated variables serve as a proxy for the ADT.
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For better-designed sections, the traffic-related variables
show much stronger effects; the terrain related variables
are not as strong as previously. The var iable of signs and
lightings seems to be a proxy for the complexity of road
and environmental conditons not captured by other

variables,

4. The constructed MCA model explains about 30% of the total
variance in the dependent variable, having moderately
predictive power. The adjusted coefficients show that the
interaction term of the roadway width-ADT bundles has the
strongest effect on accident occurrence, followed by %
motorcycles, signs and lightings, terrain, and guardrail
length. By adding the effects of membership in certain
categories to the grand mean, one can predict the number of
accidents on a road section of interest. Such a simple
additive model can be very useful for engineers in
determining the location and magnitude of safety

improvements.

5. The analysis has illustrated the danger in basing decisions
to improve a given element on simple comparisons when it
really is the joint effect of the differences in several
such elements that is responsible for observed accident

differences.

Beyond the procedures and findings summarized, several
recommendations are made for further studies. As high-quality data

files with many more accidents become available, this study should
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be repeated to test and refine the conclusions that were found in
this research. To reduce the skewness in the dependent variable
(acc idents/section) for more effective modeling, it is usually
achieved by increasing the length of sections or study period. Both
suffer the problem of changes in traffic and/or road and
environmental conditions; the optimum combination of length and
perid should be studied. An option is to vary the length of
sections having homogeneous physical and operational
characteristics. Attention should also be paid to the development
of more concrete, theoretically sound procedures for categorizing
continuous variables. For the search procedure of identifying
interacticns, alternative approaches such as using the creterion of
dependency between dependent variable and each of the predictors,
rather than variance explanation of predictors, suggested by
Perreault and Barksdale (1980) should be implemented. Their
procedure also has the feature of pairwise merging, and then
separating, of the response levels on each of the predictors to
determine the smallest number of groupings. As for the final
explanatory model, several alternatives are available, including
log-linear models. In all, furthering the knowledge in the
construct of accident occurrences and models would significantly

improve the evaluation process of the highway safety programs.
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ACCIDENT PREDICTION MODELS FOR TWO-LANE ROADS IN FINLAND

BACKGROUND

We developed models for describing the safety of two-lane
main highways outside urban areas mainly for prediction
purposes and to locate hazardous road sections. In the
second phase we developed the model further to enable us to
evaluate the safety effects of different road characteris-
tics, and to provide the road authorities with a tool for
road planning. The model applied to road sections outside
junctions. The work was commissioned by the Roads and
Waterways Administration.

Our study material consisted of 4857 road sections on two-
lane highways outside urban areas with a total of 15492
police-reported accidents in the years 1981 - 1986. 4208 of
these accidents resulted in death or injury. These sections
were formed so that certain road characteristics, such as
road width, speed limit etc., remained constant throughout
the section.

As the coverage of accident statistics varies between 10
and 90 % depending on the type of accidents and the part of
the country, we decided to concentrate on fatal and injury
accidents. The coverage of accident statistics based on
police reports is ca. 70 % for these accidents, and it does
not vary considerably according to accident types.



ACCIDENT MODELS

Basic models

Our goal] was to produce accident models that would explain
the accident occurrence on two-lane highways outside built-
up areas. These models should be based on the statistical
data available for the road authorities. The data consisted
of road sections with speed limit 80 and 100 km/h. Only
road sections on paved main roads and sections with no
ma jor road improvements during 1978 - 1983 were included in
the analysis.

Homogeneous road sections were formed. A new road section
was introduced when speed limit, the width of pavement and
pavement material changed, pedestrian and bicycle way
started or ended and road lighting started. Each homogene-
ous road section formed a record with data on accidents,
traffic and road geometry.

Models were based on the theory of generalized linear mod-
els. These models are extensions of classical linear models
and consist of tripartite form: random component, systemat-
ic component and the link between the random and systematic
component. We regarded that the error distribution was
Poisson because our purpose was to explain accident occur-
rence. The systematic component of the models was to de-
scribe the way that the expected count of accidents were
related to the independent explanatory variables. With
Poisson error distribution we used the log link function.

Our models consisted of six different models, two speed
limit classes (80 and 100 km/h) and three traffic volume
classes (ADT: under 1500, 1500 - 3000, above 3000 motor-
vehicles/day). The standard model formula was:

A=k * 8% % exp( Xb; * x;)



» where

A
S mileage

Xy = variables

‘K, a, b are coefficients to be estimated.

fatal and injury accidents in 1978 - 1983

Models were estimated with the GLIM-package and we used the
Scaled Deviance (SD) for significance testing. The Scaled
Deviance is:

SD = -2 * (log(max L) - log(max Lg¢))
where

log(max L) = maximized log-likelihood for the current model
log(max Lg) = maximized log-likelihood for the full model

The best explanatory variables were taken into the models
after fitting mileage as the measure of exposure (table
below). We noticed that all the models included both the
width of pavement and the passing sight distance > 300
meters (%) describing the effect of road geometry. The
percentage of heavy vehicles, lorries and buses, turned out
to be an important additional traffic variable on road
sections with ADT less than 3000.

Speed limit Average Daily Modeltype SD /d.f
Traffic
(ADT)
80 < 1500 S+ L + N + K.RP 1.122
1500 - 3000 S+ L + N + RP 1.177
> 3000 S+ L + N 1.302
100 < 1500 S+ L+ N+R+ L.K 1.167
1500 - 3000 S+ L + N + K.RP 1.137
> 3000 S+ L + N+ K 1.567




= 4

The modeltype in the table above describes the variables
that were included in the models. The K.RP formula if not
preceded by K and R is interpretated as "RP. within K" and
means nesting. The variables in the models are:

S = mileage ( continuous )

L = pavement width ( < 7,5, 7,5 - 8,5, 8,6 - 9,5, >9,6 m)
N = passing sight distance > 300 m (%)

K = average curvature ( different classes )

R = percentage of heavy vehicles ( continuous )

RP = percentage of heavy vehicles ( classified )

Development of basic models

The concept of basic models was to indicate the best ex-
planatory variables and dependencies between accident fre-
gquency and variables. The models were not aimed at counter-
measure effect analysis. Therefore, we made some further
analysis to get accident models for prediction of effects
of safety. We used the latest accident and traffic data
(period 1981 - 1986).

The data had to be homogenized so that there would be com-
parable data sets for most of the alterations of the vari-
ables. We left out all the road sections that were conside-
red to be in built-up areas, all minor roads in the nor-
thermost part of Finland because of the under reporting of
accidents and some very deviant road sections in southern
Finlend. After several analyses we ended up with a single
model with the necessary variables that can be used in road
and safety policy planning.

For the development of this model we used data from 2730
accidents. The model was in close agreement with the data,
the Scaled Deviance is 3040 with 2720 d.f (degrees of free-
dom). The mean-squared-error of the new model is even
smaller than the MSE of the six previous models.



The new model is:

A=0,1377 * s 0/9767 & exp(¥b; * x;)

i
where

A = fatal and injury accidents in 19Si - 1986
S = mileage

exp():

0,4581 * L2 (1, if pavement width 8,6-9,5 m, else 0)

0,1555 * L2 (1, if pavement width >9,5 m, else 0 )

0,005455 * N (passing sight distance >300 m (%) )

0,009096 * RP (percentage of heavy vehicles )

+ 0,001331 * K (average curvature )

+0,05874 * LR (1, if pavement width < 8,6 m and speed
Timit 100 km/h)

+ 0,3564 * LR (1, if pavement width 8,6-9,5 m and
speed Timit 100 km/h)

+ 0,2179 * LR (1, if pavement width > 9,6 m and speed

1imit 100 km/h)

-+

In the model, the expected number of accidents depends on
mileage, pavement width, passing sight distance, percentage
of heavy vehicles, curvature and speed limit. The expected
number of accidents on the road sections is directly pro-
portional to mileage (exposure), power of mileage is almost
1,00.

When the effect of the other variables is omitted the acci-
dent risk is lowest if pavement width is 8,6 - 9,5 m. Pass-
ing sight distance percentage has a remarkable effect on
accident risk, risk decreases with improving road geometry.
Heavy vehicles affect overtaking and seems to increase
accident risk on road sections.

The model predicts that higher speed limit raises the acci-



-6 -

dent risk. The effect of speed limit depends on pavement
width. When speed limit is changed from 80 to 100 kmph, the
risk increases 6 % if the pavement width is < 8,6 m, 42 %
if the pavement width is 8,6 - 9,5 m, and 24 % if the pave-
ment width is > 9,6 m.

This model can be used for evaluation of effects of road
improvements if the effect on variables in the model is
calculated, We have also an interactive PC-program based on
the model above that predicts safety effects of designed
road improvements.

THE STABILITY OF ACCIDENT COUNTS

Various methods to estimate the expected number of acci-
dents were tested. The accident data of of the road sec-
tions was divided into two populations, the first period
1978 - 1981 and the second 1981 - 1983. Road sections long-
er than 10 kilometers were excluded so that the study mate-
rial consisted of 3696 road sections on two lane highways
outside urban areas. The data contained 1951 fatal and
injury accidents in the first period and 1834 in the second
period. The reported number of accidents was thus ca. 6 %
lower during the second period.

We used the Poisson probability function for the accident
frequency of a single entity and the Gamma function for the
populations of studied entities (see later: comparison of
models). If the assumptions are reliable the negative bi-
nomial distribution reflects the number of accidents on
entities of a real population. The results are presented in
the table below. We concluded that the model describes very
well the occurrence of accidents in the two populations of
entities. Because of the definition of an entity it is
natural that there exists variation and the expected number
of accidents differs between the populations. Later on we
made some further analysis of this variation.



Accidents Number of entities having x accidents
per Section Actual Neg.Bin. Actual Neg.Bin.

(x) 78-81 78-80 81-83 81-83
0 2605 2631 2598 2618
1 644 609 682 652
2 245 242 245 244
3 107 109 100 101
4 44 52 34 44
5 25 26 19 20
6 11 13 7 9
7 6 7 4 4
8 3 4 3 2
9 1 2 3 1

10 0 1 1 0

11 0 1 0 0

Our problem is usually two-fold. We do not know exactly the
expected number of accidents on entities in the past with-
out analyzing accident data. The accident history of enti-
ties has very often been used as a direct estimate for
future counts of accidents. Latest research results indica-
te that this belief may also be erroneous.

We have used the Poisson and Gamma function assumptions
when producing estimates for the expected count of acci-
dents on entities. As Hauer et.al have shown, the Gamma
distribution can be estimated as follows:

a=x/ (52 - x)
b =x2/ (32 - x)

Where x (mean) and s? (variance) depend on n(x), the
number of entities with x accidents:

x =Xx *n(x)/n
s = Y (x - x)2 * n(x) / n

The variance of the expected number of accidents (m) de-
pends on the reported accidents and is smaller than Var(x),
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if the m’s are not equal in the population:
Var(m) = Var(x) - E(m) = s? X
It has been shown that the estimator T; minimizes

E((T - m}z. We assume that p(x) = n(x) / n where n is the
total amount of entities.

Ty = (x + 1) * p(x + 1) / p(x)

The variance of T; can be estimated by:

Var(Ty) = T;2 * ((1 / n(x+1) + (1 / n(x))

The variance of estimates depends on the number of entities
and accidents. Smoothened estimates are produced by fitting
a weighted regression curve through the points of estimates
Tlo

We can get the third estimate for the expected amount of
accidents in the populatition of entities using the equa-
tion /Hauer/:

T, = x + (E(x) / Var(x)) * (E(x) - x)

The average number of accidents in 78 - 80 was 0,528, vari-
ance 1,204, estimated a = 0,781 , b = 0,412. The estimates
T, can be calculated by the model:

T, = x + 0,4385 * (0,5279 - x)

The weight in the curve fitting was inversely proportional
to the points variation with the largest point having a
weight of 1. We got the model:

The R2 of the model is about 0,99, so the fit is good. We
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concluded that the estimates T3 are not much better than
T,:s (table below). All the calculated estimates are un-
doubtedly better than the number of reported accidents on
various entities, and quite free from the regression-to-
the-mean effect.

Accidents Average of Estimates

per section accidents Ty  Var(T;) T, T3

78 - 80 8l - 83
0 0,29 0,25 0,0001 0,23 0,25
1 0,71 0,76 0,0033 0,79 0,76
2 0,94 1,31 0,023 1,35 1,28
3 1,73 1,64 0,088 1,92 1,79
4 1,45 2,84 0,5063 2,48 2,31
g 2,36 2,64 0,9124 3,08 2,82
7 3,83 4,00 8,0000 4,16 3,85

When studying the number of accidents during the time-peri-
ods, it seems that there exists a trend in the development
of safety. This trend should also be considered, because it
affects the m:s (safety). Firstly, we have assumed that the
expected number of accidents per unit of exposure remains
unchanged. An estimate for the expected amount of accidents
and the variance per entity during the second period is
then:

E(my) (e2 / el) * E(my)

Var(my) = (e2 / el)? * E(my)

However, our data pointed out that this estimate for the
reduction of the variance was not very accurate. It is
possible that the safety improvement is more concentrated
on the risky road sections. We assumed here that the reduc-
tion is proportional to the amount of accidents on entities
and the average number of accidents equals the average
during the second time period (est2). The calculated two
estimates are presented in the next table.



Accidents Number of entities having x accidents
per Section Actual Actual Neg.Bin. Neg.Bin.

(x) 78-81 81-83 estl est2
0 2605 2598 2668 2608
1 644 682 601 662
2 245 245 232 246
3 107 100 102 101
4 44 34 47 44
5 25 19 23 19
6 11 7 11 9
7 6 4 6 4
8 3 3 3 2
9 1 3 2 1

10 0 1 1 0

11 0 0 0 0

It is possible to estimate the distributions of m:s within
the groups of entities. The Gamma probability function is
then:

£(m/x) = (l+a)(¥*P) w p(x+b-1) 4 o-m(1+a) ; g(p)

The expected number of accidents on entities in 1981-1983
can then be calculated using the data from the first period
and the conditional Gamma distribution. We have presented
both estimates (estl and est2) in the table below.

The calculations indicate that the marginal estimates (to-
tals 1981-1983) are slightly better if the additional safe-
ty benefit is estimated. However, the differences according
to the conditional Gamma distributions are insignificant.
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Accidents Number of entities having x accidents
per section during 81-83

78-80 0 1 2 3 4 5 6 7 8 9
0 estl 2187 312 76 21 6 2 1 0 O O
est2 2118 361 9 25 7 2 1 0 0 O

data 2019 448 102 32 4 0 0 O O O

1 estl 354 173 72 28 11 4 2 1 0 O
est2 352 176 73 28 10 4 1 1 0 O

data 422 104 66 37 14 8 3 0 0 O

2 estl 88 73 43 22 10 5 2 1 0 O
est2 90 74 43 21 10 4 2 1 0 O

data 112 73 37 18 2 0 1 1 0 1

3 estl 25 30 23 14 8 4 2 1 0 O
est2 26 31 23 14 7 4 2 1 0 O

data 25 34 25 8 3 1 1 1 0 O

4 estl 7 10 10 7 5 3 1 1 0 O
est2 7 1 10 7 4 2 1 1 0 O

data 12 17 8 2 2 2 0 1 0 O

5 estl 3 5 5 5 3 2 1 1 0 0
est2 3 5 5 4 3 2 1 1 0 0

data 5 3 4 8 2 2 1 0 0 0

A COMPARISON BETWEEN DIFFERENT PROBABILITY MODELS

Assumptions

We studied the accidents by using the following assumptions
/Hauer/:

The PDF (probability density function) of accidents for a
single entity (junction, road section etc. in a specified
period) follows the Poisson distribution if the expected
number of accidents m is fixed. If the m’s of the popula-
tion of entities varies with a PDF of G(m), where G(m) is
assumed to be of a two-parameter Gamma family, the PDF of
accident counts in the population is the negative binomial
distribution.
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The mean and variance of the fatal and injury accidents
0.866
1.470

"

were in our material: mean X

variance S

I1f the PDF of accident counts in the population would be
Poisson, the mean would equal the variance. This is clearly
not the case. If this is a result of varying expected acci-
dent counts in the population i.e. varying m:s and the
Gamma assumption above is correct, the probability density
of m:s is:

f(m) = aPmP-le-amM/q(p),

where g(b) is the value of the one-parameter Gamma function
at point b.

The parameters a and b can be estimated from the data
/Hauer/:

w
]

X/ (S - X)
= x2 / (8 - x)

o
I

The probability of an entity in the population to have x
accidents is:

P(x) = (a/(a+1))P (b(b+l)...(b+x-1))/((a+1)*x!),
which is the negative binomial distribution.

Comparison

In our data, a = 1.435 and b = 1.243. The table below lists
the actual accident counts, and the expected counts on the
basis of negative binomial distribution, and Poisson dis-
tribution (m = 0.866).

Also this table shows that the Poisson model does not cor-
respond to the data very well. This is not very surprising



- 13 -

as the Poisson model assumes each section to have the same
expected number of accidents. The negative binomial model,
however, is in close agreement with the data.

Accldents Number of entities having x accidents

per Section Actual Neg. Binomial Poisson
(x) Data Model Model
0 2528 2517 2042
1 1268 1285 1769
2 592 592 766
3 265 263 221
4 114 114 48
5 56 49 8
6 23 21 £ |
7 7 9 0
8 2 4 0
9 0 2 0
10 0 1 0
11 2 0 0

This shows that the m’s really vary in the population. But
is it also a question of varying safety from the point of
view of e.g. a single road user or a traffic engineer?

Accident risks and risk exposure

Accident risks are usually used as a measure of traffic
safety, and expressed in the form number of accidents/
exposure. For road sections accident risk is traditionally
calculated as the ratio between the number of accidents and
vehicle mileage, and called accident rate. The expected
number of accidents (m) can thus be expressed as a product
between the expected accident rate (R) and vehicle mileage:
m = R x mileage. The accident models presented elsewhere in
this paper show that the number of accidents is indeed
approximately proportional to vehicle mileage.

To estimate the effects of different road characteristics
on safety, or to predict the number of accidents, we are
always interested in the accident rates, as we usually have
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reasonably accurate information on vehicle mileage, and its
changes. The question is now: in which way do the R’s vary
in the population of road sections? To study this we di-
vided the data in different categories on the basis of
vehicle mileage. The classification interval was 1 million
vehicle kilometers, and the mileage as well as accident
data were from a period of 6 years. The mean and variance
of the accident counts for each mileage class are shown

below.
Mileage Accidents on Number
class road sections of
(million road
veh.km) Mean Variance sections
1-2 0.1658 0.1604 550
2-3 0.2509 0.2810 562
3-4 0.3255 0.3489 513
4-5 0.4869 0.5655 382
5-6 0.6062 0.7508 353
6-7 0.7560 0.9241 250
7-8 0.7837 0.8424 245
8-9 0.7940 0.9017 199
9-1G 0.9305 1.2692 187
10-11 0.9226 0.8900 155
11-12 1.1159 1.7472 164
12-13 1.1927 1.4904 109
13-14 1.2692 1.6246 130
14-15 1.5429 1.4813 105
15-16 1.3786 1:5122 103
16-17 1.6477 1.5643 88
17-18 1.5632 1.8303 87
18-19 1.7683 1.7852 82
19-20 1.9706 3.1336 68
20-21 1.4310 2.1092 58
21-22 1.9818 1.9441 55
22-23 1.9273 2.4762 55
23-24 2.5135 2.2011 37
24-25 2.3529 1.8731 51
25-26 2.3902 3.0440 41
26-27 2:2973 3.1036 37
27-28 2.4737 3.4451 38
28-29 2.8837 2.9149 43
29-30 2.8333 3.2472 30
30-31 2.6857 3.8691 35
31-32 2.7000 3.5276 30
32-33 2.6000 1.9715 15
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The close connection between the number of accidents and
mileage is evident in the table. The mean accident count
approximately equals its variance in many mileage classes,
and closer inspection of the accident data shows that the
accident counts within these mjleage classes follow the
Pojisson distribution. In the classes, where the variance is
clearly larger than the mean, the negative binomial model
fits better with the data than the Poisson model. Still, in
most of these cases, the Poisson model does not differ
significantly from the actual accident data.

The conclusion to be drawn from the table above is that the
variance of the expected number of accidents in the total
population is mainly due to the variance of mileage i.e.
exposure instead of "safety" expressed as accident risk or
rate. The accident rates seem also to vary, but in a small-
er scale. A part of the variance of accident counts within
mileage classes is naturally due to the variance of mile-
age, too. Still it is evident that there exist real safety
differences in the population of Finnish road sections.
Some of the differences were explained by our accident
models as shown elsewhere in this paper.

On the basis of the study we stress the importance of ac-
counting for the effect of exposure on accident counts.
Otherwise conclusions drawn from the available accident
data can often be misleading.
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ABSTRACT

It is well known, that the determination of black spots on a road network is of
great importance for the optimization of traffic safety performance. Since a
long time, various methods based on statistical theory have been presented to
permit the engineers to locate hazardous sections on road networks. This paper
evaluates the rationale of the most common existing methods, which can be used
to ensure the identification of black spots. Comparison and correlation of the
results each method yields, is also attempted.

Traffic accident data have been obtained from a research project on traffic
safety held by Thessaloniki University. Concerning accident analysis on the
national road network in Northern Greece. Four methods of black spot ydentifi-
cation have been used :

a. Absolute number of traffic accidents

b. Use of Poisson's distribution

c. Traffic accident indices

d. Accident severity indices.

After the statistical analysis of approximately 2000 accidents, it has been
concluded that :
a. Important differences exist on identifying black spots according to
the above mentioned methods.
b. Poisson's distribution gives more optimistic results in comparison
to traffic accident and accident severity indices.
c. Lamm's absolute number of accidents method correlates better with
all other methods.
d. A combination.of methods must be used to confirm the existence of
a black spot.
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INTRODUCTION

It is well known that traffic accidents consist a significant problem in modern
societies with many social and economic consequences in either personal or na-
tional scale. The advent of motorvehicles, apart from its obvious numerous
advantages, produced many serious problems, the most important of which is the
road accidents. Throughout the world a significant number of people fall vic-
tims of road accidents creating serious personal or even social distress.
Furthermore, the national economy of a country suffers consinderable losses as

a result of accidents causing the killing of or injuries to people and the
damaging of property.

The problem of traffic safety is very keen in Greece. Proportionally to the
number of vehicles, in Greece occured twice as many road accidents as those
occured in other Western European countries, during the last decade. However,
highway accident statistics indicate that the annual number and rate of
accidents is declined(5), This, along with the fact that the annual vehicle-
kilometers of travel have consinderably increased throughout the same period,
gives an indication that positive gains are being achieved from recent safety
efforts.

Generally, highway safety programs are aimed at reducing traffic accident fata-
1ities, injuries and property damages attributable to highway system failures,
as opposed to those attributed to vehicle or driver failures. An analysis of
accidents on a road shows that in addition to a comperatively uniform distri-
bution of accidents over the whole road's lenght, a considerable portion of
them occur on relatively short sections , generally known as black spots or
biack kijometers. (depending on their length). The identification of these
hazardous spots or sections in the road network, where traffic accidents tend
to cluster and the proposal of certain remedial measures, is the most fruit-
ful way of preventing accidents and enhancing roadway safety.

Quite a lot of methods exist for the identification of black spots, most of
them based on statistical theory. The results that they yield vary considerably



depending on the rationale and the methodology each one follows. The evalua-
tion of the most well known of the existing methods as well as the comparison
and correlation of the results they yield, is the subject of this report.

METHODS OF BLACK SPOT IDENTIFICATION

The four most commonly in use methods of black spot identification are :
a. The absolute number of traffic accidents
b, The use of Poisson's distribution
c. The traffic accidents indices
d. The accident severity indices.
A brief outline of these methods follows.

Absolute Number of Traffic Accidents

Using the absolute number of traffic accidents, an accident risk level can be
assigned in each section of the road network in proportion to the actual number
of accidents occuring there in each year. Then, the level which corresponds to
a hazardous road section can be determined and subsequently each road section
can be classified in relation to its accident risk level.

Babkov(z) considers a road section as a hazardous one, when 3 at least road
accidents occur there every year, whilst Benner et a1(3) consider this number
to be 4. Lamm et al(4) divide the specific road in one kilometer long sections
and classify them in order of increasing traffic accidents. The sections be-
longing to the upper 15% of the above series are considered as hazardous ones
and treated as black sections.

Use of Poisson's Distribution

It is generally accepted that road accidents are accidental events and therefore
the probability of an accident to occur in a road section during a specific time
period follows the distribution of accidental events known as the Poisson's dis-
tribution. However, in certain section or spots of the road network traffic
accidents occur in considerably higher frequences which by no means can be
accepted as accidental and is indisputably attributed to the specific road
characteristics prevailing there. Thus, with the aid of Poisson's distribution
black sections on aroad can be identified.

The first step is to separate the road network into sections with similar geo-
metric and traffic characteristics. In these sections the average number of
accidents per kilometer represents the mean of the Poisson's distribution, i.e.



the number of accidents expected to occur in each one kilometer long subsection,
if only acecidental factors govern the occurrence of an accident, In sections
with higher frequency of accidents their causes can be attributed wyth a certain
level of confidence to other than accidental facts, When this level of confi-
dence exceeds 90% the researcher is quite convinced that other than accidental
events govern the high frequency of accidents in this specific subsection,

which therefore is identified as a black subsection,

Traffie Accident Indices

Traffic accident indices are widely used for the estimation of the accident risk
in specific road sections. Quite a lot of indices have been proposed. In the
most commonly used ones the number of accidents is given in relation to the
population of the area, or to the traffic volume of the road section, or to the
number of vehicle-kilometers travelled or even to the length of the road network,
Black sections are considered those, where the above indices take higher than
the average values.

Accident Severity Indices

In all methods described till now the seriousness of the accidents has not been
taken into account. However, the quantitative assessment of traffic accidents
is quite necessary for a rational classification of road sections in relation
to their accident risk. This quantitative assessment can be achieved by the
introduction of certain factors and coefficients, which take into consideration
the severity of the accident and the amount of property losses occured. For
this purpose the following formula have been proposed.

Severity Index = Pq.nqy + P2.n2
where : nq,np = number of accidents resulted in injuries or fatalities
respectively

and Pq,P2 corresponding severity factors for each type of accident,
The formula can be easily extended to include more types of traffic accidents,
if the relative data are available.

The values of these severity factors are determined according to the losses to
the national economy due to the specific type of road accident. Typical values
of these factors are given in Table 1. The inevitable differences in assessing
the cost of accidents existing in various countries result in the differences
in the values of the severity factors appeared in this table,

Critical Evaluation of the Methods of Black Spot Identification

Traffic safety on road sections should be assessed according to the number, the



Type of accident Severity factor according to
Reinhold Bitzl Fisher | U.S.A. | U.S.S.R.

Unregistered - - - - 1
Damage only 1 1 1 1 3
Light injury 5 30 2 5 0.5
Heavy injury 70 30 8 5 8
Fatality 130 100 40 23 135
Table 1. Values of accident severity factors proposed by

various authors (source : ref. 2)

frequency and the seriousness of accidents occuring there. An integrated method
of black spot identification must tak into account all the above factors. Thus,
simply the number of accidents occuring on a road section irrespectively from
the traffic volume is an imperfect criterion for black spot determination. Fur-
thermore, even if two road sections have the same traffic volume levels and
number of accidents, but they markedly differ in the severity of the casualties,
it is not again acceptable to be considered as similarly hazardous.

Taking these principles into account the absolute number of traffic accident
method of black spot determination, apart from its simplicity, has the serious
disadvantages of not considering the traffic volume and the severity of the
accidents. The same critisism applies to the use of Poisson's distribution for
the identification of black spots. This method however, has the advantage of
providing a sound statistical basis. The use of traffic indices to locate road
black sections takes into consideration various parameters which reflect traffic
conditions, i.e., traffic volume, number of vehicle-kilometers travelled etc.
The disadvantage of the ignorance of the severity of the accidents still exists.
Finally, the use of various severity indices reflecting the seriousness of the
casualties is the most advanced method for black spot identification. However,
the discrepancies existing in the values of the severity factors proposed by
various authors, is a certain weakness of the method.

DETERMINATION OF THE STUDY AREA

The Traffic and Road Research Laboratory of the University of Thessaloniki has
recently completed a research project concerning the traffic accident analysis
in the national road network in Northern Greece, during a 5 year period (1979-



1983). Six of the most important national roads (Fig. 1) have been selected for

a comperative and correlation study of the various black spot identification
methods.
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Figure 1. National roads of the Northern Greece consindered in
this study (Scale : 1:2.000.000)

A11 the roads are single carriageways and have been separated into sections with
similar geometric and traffic characteristics. According to Greek normal prac-
tice as fatal accidents are determind those in which death occured on the spot
or during the transfer of the victim to the hospital and as injury accidents

are determined those in which the sufferer has been transfered to the hospital
for treatment. Due to incomplete data it was impossible to distinct between
light and serious injuries. Furthermore, damage only accidents are totaly
ignored. Table 2 shows the traffic accidents occured during this 5 year period
in the 6 national roads in Narthern Greece. To achieve a sound basis for com-
parison it was considered better to divide each road section in uniform, one
kilometer long, subsections from which the most hazardous ones would be probably
identified as black subsections.

APPLICATION OF THE VARIOUS BLACK SPOT IDENTIFICATION METHODS

The absolute number of traffic accidents method has been applied as it is des-
cribed in the relative paragraph.

In the identification of black subsections by using the Poisson's distribution
three level of confidence 90,95 and 98% are applied. In these level of confi-
dence accidental factors are correspondingly unlikely to be the unique causes of
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the accidents,

The traffic accident index selected in this study is based on the traffic volume
of the road section. On road sections which are homogeneous as regards their
geometric elements and their traffic volumes, the accident rate is determined

by the formula :

2-10°
365-Q-L-N
where : z = 1is the total number of accidents
Q = 1is the traffic volume (vehicles per day)
L = 1is the length of the road section (km)
and N = 1is the time period (years).

Addionally the traffic index on each road subsection is calculated by the ratio:

z-10°
365:Q-N
where : z = 1is the number of accidents in each one kilometer long subsection
and the rest variables as above.
In those subsections where Vpg > Vgt the potential accident hazard is high so
that the specific subsection is identified as a black one.

VRs =

For the application of the accident severity index method, three sets of severi-
ty factors are used, which are : (8.50), (7.70), (12.100), the first number
assessing the injuries and the second the fatalities. Applying these values the
severity index for each kilometer of the road section, as well as the average
severity index over the total length of the road section are calculated. This
last value is multiplied by a coefficient, which takes successively the values
1.2 , 1.5 and 2,0 ., The product is compared with the severity factors found for
each one kilometer long road subsections. Obviously, as black subsections are
identified those in which the severity factor exceeds the value of the product.

The number of black subsections identified by using each method are presented
in table 3.

Critical Evaluation of the Results

Since the number of road sections examined, as well as their total length is
quite high, arbitrary limits reflecting the average acceptable percentage of
black subsections in relation to the total number of subsections, can be set.
Thus, as acceptable percentage is considered every figure lying between 15% and
20%. Results found within these limits are obtained by Lamm's method of abso-
Tute number of traffic accidents, by using Poisson's distribution in practically



TABLE 3. HNumber of bl ack‘sections (1

Roads 'n Northern Greece.

km in length) on the 6 National
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all three levels of confidence and by using the accident severity indices with
the multiplying coefficient having the value of 2, irrespectively from the
values of the indices themselves. Benner's and Babkov's proposals for black
spot determination identify unacceptably low number of black subsections, ob-
viously because the criterion set (3 and 4 at least traffic accidents annualy)
is difficult to be met. On the other extreme, traffic accident index method
gives a very high percentage of black subsections (40.2%). Also, Poisson's
distribution method yields more optimistic results than those obtained by the
traffic index method and by the severity index method. Finally, inspection of
Table 3 shows that the influence of the coefficients used in the accident seve-
rity index method in the determination of the number of black subsections, is
considerably stronger than the influence the values of the severity factors
have.

Correlation of the Results

An attempt to correlate the results, the four methods of black spot identifica-
tion yield, is made by the calculation of the correlation coefficients (r) be-
tween all pairs of the different methods. The results are presented in Table
4, In cases where the value of r exceeds 0.85 , the correlation is considered
to be high. On the other hand, where r 1is less than 0.70 the correlation is
considered as poor.

Inspection of Table 4 shows that the use of the Poisson's distrybution at the
98% level of confidence yields the lowest correlation with every other method,
whereas Lamm's method of absolute number of traffic accidents has the highest
correlation with all other methods. Poisson's distribution method at the 90%
and 95% level of confidence correlates fairly well with the rest of the methods.
The same applies to the traffic index method and the accident severity index
method. The values of the severity factors which presents the better correla-
tion with other methods are (7.70) and (12.100), the second being slightly
better. Finally, the value of the coefficient which enhances the correlation
of the severity index method, is 1.5 .

CONCLUSIONS

This study confirmed the important differences existing in black spot identifi-
cation according to the various methods in use. Thus, it is the authors' opi-
nion that a combination of two methods of black spot identification should be
always made. The methods proposed for this combination are the Poisson's dis-
tribution at the 95% level of confidence and the accident severity index method.
The most appropriate values of the severity factors determined here are 12 for
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injury accidents and 100 for fatal accidents, as well as, the more appropriate
value for the multiplying coefficient is 1.5 . Finally, Lamm's proposal of the
characterization as "blacks" of the 15% of the most hazardous road subsections
appears to provide a sound initial estimation for a black spot jdentification
study.

References

s

Iktinos Consultant Engineers "Traffic Accident Analysis and Remedial Mea-
sures for the Promotion of Traffic Safety in the Natio-
nal Road Network". Ministry of Public Works, Thessalo-
niki 1985, Greece.

Babkov V.F. : "Road Conditions and Traffic Safety" MIR Publishers, Moscow
1975.

Benner E. et al : "Beseitigung von Unfallstellen, Band 3, Identifikation
von Unfallstellen" , Herausgeber, Koln, November 1978.

Lamm R., Klockner J. : "Untersuchung des Unfallgeschehens im Landkreis Leer
unter Besonderer Berucksichtigung Strassenbaulicher und
Verkehrstechnischer Gesichtspunkte" , Gutachten, 1977.

Tsohos G., Dalaveras A. : "The Problem of Road Safety in Greece. A Survey
of Road Accidents", Technika Chronika Scientific Journal

of the Technical Chamber of Greece, Vol. 5, No 1, 1985.




SOME OBSERVATIONS ON THEORY
AND METHODOLOGY IN SAFETY RESEARCH

By

Paul Jovanis
Asgociate Professor of Civil Engineering
and Transportation

and

Hein-Li Chang
Assistant Professor

I, INTRODUCTION

This paper argueg in support of a structured method of conducting safety
analyses that 1is directly related to the title of the conference.
Specifically, we argue thgt safety theory should be explicitly considered
during the development and application of statistical methods for safety
analysgs. Thig ig more than simply a call for "correct" use of statistics.
We believe that significant progress on contemporary safety issues can only be
made if theory 1is consonent with statistical method. At initial research
stages, the theory may evolve from a conceptual model; at subsequent stgges it
may be inferred from relevant disciplines such as psychology, physiology or
econggi c8 for example.

In addition to closer connections between theory and statistical tests,
there is a need, we believe, for greater fertilization across methodologies
and disciplines. For example, findings obtained through laboratory
experipents should be considered when formulating models of driver cognitive
procesges. Positive crossfertilization occurs all too infrequently. The
second section of this paper discusses potential linkages between different
safety ms thodologles.

Finally. we present an example of a statistical method, based upon
survival analysis, that is at least consistent with conceptual models of
exposure. We presgnt the methodology and an example of a new technique that
can be used to test ilmportant empirical questions, but in a way that is
consistent with contemporary notions of exposure and other theory.

The occurrence of accidents, must be compared to the number of
opportunities available to be involved in an accident. Some representation of
these opportunities is commonly referred to as exposure to accident risk.
Hauer develops a definition of a unit of exposure as a trial in which the
outcomes are an accident (possibly of several types) or a non-accident (Hauer,
1982). Safety (ag measured by accident occurrence) is the product of the
probability of having an accident (also called risk) and the number of
expaogure units. Factors contributing to accident risk are thus conceptualized
as affecting the probability of an accident.

A major problem in combining accident data with exposure is that
accidents are discrete events. Data describing accidents routinely come from
reports describing accident outcome gnd characteristics such as driver,



vehicle, roadway and environment at the time of the accident. Exposure data
are much more aggregate, typically based upon measured or estimated daily,
weekly, monthly or often yearly travel. A fundamental dilemma in studies of
accident occurrence is how to combine exposure and accident data in a

meaningful and consistent way so that the contribution of individual factors
to accident risk can be identified.

All accident prediction models in the previous literature have been
developed using aggregate exposure data. The use of aggregate data to
construct an accident analysis model results in the 1loss of individual
information and & clouding of the relationship between risk components and
accident occurrence. Disaggregate data have been commonly used in travel
demand research due to their improved explanatory capabilities, but they have
not been commonly used in safety research, particularly for exposure data.

A varilety of research approaches have been used to explore the risk
factors of highway operations. These include the laboratory driving simulator
[e.g. Hulbert and Wojcik, 1971] inobtrusive observation of on-road operationms,
detailed multi-disciplinary assessment of accident causes [e.g. Treat et al.
1977] and a wide variety of statistical analyses. A shortcoming of these four
approaches is the failure to relate their findings quantitatively to accident
risk due to the lack of appropriate exposure data. These methodologies are
reviewed in more detail in Section II of this paper.

One factor hindering resolution of these problems is failure to use a
consistent explanatory framework for accident occurrence. This framework
should clearly differentiate risk of accident involvement from accident
occurrence which is the interaction of risk and exposure. Hauer provides an
excellent discussion of these issues [Hauer, 1982]. It would be advantageous
if one could utilize concepts from Hauer to develop a framework that could
provide a bridge between the aggregate observation of accident data and the
disaggregate results obtained from laboratory experiments and detailed causal
assessments. This connection would be an advance over the way of in which
accidents are thought of as the result from interactions of the driver,
vehicle, roadway and environment [ITE, 1976] without careful consideration of
how these interactiomns occur.

The remsinder of the paper is divided into three sections. First, we
discues four methodologies commonly used to study accident occurrence and
causes. The methodologies are compared along four dimensions with the
objective of identifying opportunities for findings from one methodology to
influence another. This is intended to meet the objective of idnetifying
areas of crossfertilization across methodologies.

The following section develops a framework for the study of accident
occurrence that we believe is consistent with theory and the concept of
exposure, We believe that the framework can be used to guide statistical
analyses that are more theoretically and conceptually consistent. The paper
concludes with a summary description of a methodology based upon survival

theory that offers significant advantages over many other statistical
techniques.



I1. A TYPOLOGY SAFETY RESEARCH METHODOLOGIES

A. Overview

We have constructed a typology of traffic safety research methodologies
in Table 1. Four different methodologies are identified: laboratory
exp eripe nts, on-the-road study, accident causal analysis and correlational
analyses. For each of these categories, we denote whether data are collected
at the aggregate or disaggregate level and also whether these methodolgies
address 4 topics that, we believe, are important in the identification of
accident causality. The four topics are defined as follows:

Driver actions = the ability of the methodology to identify specific
driver actions (or lack of actions) that may contribute to a crash.
This includes both studies of driver capabilities (through laboratory
experiments) and studies of driver behavior during on-the-road
studies.

Accident Occurrence Process - the ability of the methodology to
identify the process of accident occurrence as a series of events or
collisions.

Exposure - the ability of the methodology to explicitly include
exposure to accident risk as well as accident data and
characteristics.

Actual Accident Involvement - the ability of the methodology to
a&na lyz e actual accident data.

B. Laboratory Exp eriment

Laboratory experiment or simulation can be used to study details of driver or
vehicle actions which may be lirmked to accidents but are difficult to observe
in the field. Laboratory experiments commonly study actions such as steering
wheel movement [Crandall, Duggar and Fox, 1966], lateral and longitudinal
position [Barrett, Kobayashl and Fox, 1968], velocity estimation [Salvatore,
1968], breathing rate [Beers, Case and Hulbert, 1970], and vigilance
[Heimstra, 1970]. In those experiments or simulations, the relationship
between independent variables and these intermediate measures 1is applied
directly and then inferences are made about the effect of these independent
variables on highway accident risk.

The Advantages of laboratory experiments include safety of the subjects,
control of some confounding variables and possibly reduced costs compared to
field observation. We also face several shortcomings, foremost among them is

the questionable generalization of the laboratory findings to the actual
highway environment (Shinar, 1978].

While laboratory experiments alloy us to obtain individual disaggregate
performance data they are limited in their ability to provide insight in the
processa of accldent occurrence and, obviously, do not contain data on actual
involvements. It 1is also difficult to generalize observations from the
laboratory to a broad population to gain insight on exposure to risk. In the
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parlance of this conference, these studies can be thought of as testing
cognitive models.

B. Oo—ths—Road Studies

Studies of drivers in actual conditions include application of the
traffic conflicts technique [e.g. Perkins, 1969, Oider and Spicer, 1976],
inobtrusive observation of individual drivers and vehicles [Shinar, Rockwell
and Malecki, 1975] and on-road measurements of drivers in instrumented
vehicles [e.g. Platt 1970; Hrelander, 1976 and Fuller, 1980].

The major advantage of on-the-road research is that results obtained from
it may be immediately applicable to the highway environment. Its major
di sadvantage is that many variables are not under strict experimental control
and the results may be due to uncontrolled variables, and/or limited to the
specific location where the study was conducted. While individual drivers are
studied, it is not possible to directly relate these studies to outcomes
(accidents), Exposure to the risks underatudy are also difficult to assess.
Many of these studies can be thought of as addressing "behavioral” models.

C. Accident Causal Analyals

An accident results whenever one or more factors =-- labeled as the
accident cause or causes —-- deviates from the norm to such an extent that the
system cannot accommodate it [Shinar, 1978]. One of the most consistent
findings in accident research is that accidents are typically caused by more
than one factor. Each factor cited as causal may be a cause only in the
context of the other causes.

The most prominent study for accident causal analysis is the Indiana
University's Trilevel Study of The Causes of Traffic Accidents [Treat et al.,
1977). These three levels of accident investigation include: (1) routine
police investigation, (2) "on-site" investigation by specially trained
technicians who rushed to the accident site immediately after notification by
the police, and (3) "in-depth" investigation by a multidisciplinary accident
investigation team who examined and interviewed the driver, reconstructed a
complete diagram of site and vehicles' paths, and examined the accident
vehicle in a specially equipped garage. The study results show that human
factors, 1identified as probably or definite causes, are related to
approximately 91 percent of the traffic accidents.

This study has had a great influence on subsequent safety research so
that it is obviously of major importance. 1It's major limitation is the luck
of exposure data which does limit some interpretation of their results.

D. Correla tional Anglysis

A variety of statistical approaches have been applied to safety
studies. Usually, analysts combine the accident data with controlled exposure
and test the hypothesis of interest. The simplest type of study is the
comparison of the mean and variance of the accident involvement rates, which
is undertaken to tegst the equality of accident risks between different
exposure groups. Examples of this technique include the work of Foldvary
[1979], who explored accident involvement rates in terms of characteristics of
driver, wehicle, road, and driving environmenc, Meyers [1981], who compared
the accident rates of truck and passenger-cars on limited-access facilities
and a comparison of weather effect on auto and truck accident involvement
rates by Jovanis and De lleur [1982].



Linear regression models have been widely used in safety studies.
Usually, the accident involvement rates are considered the dependent variables
in most of linear regression analyses of safety study, and the risk components
to be detected are assigned to the independent variables. Those risk
components include travel speed [Hall and Dickimson, 1974; Lavette, 1977},
traffic volume [Oppe, 1979; Ivey et al., 198l; Ceder and Livneh, 1982], as
well as weather and vehicle [Jovanis and Delleur, 1982].

Three particular properties of accident occurrence argue against the
application of linear regression analysis to highway safety studies. First,
the discreteness of accident occurrence will cause the error terms to be
heteroskedastic in the linear regression analysis {Rnijgrq; and Van Essen,
1980; Montgomery and Peck, 1982], even if one uses accident rates instead of
the number of accidents [Jovanis and Chang, 1985]. Second, the non-negativity
of accident measure of the dependent variable also impose restrictions on the
applicability of the linear regression techniques. Third, the error terms are
not normally distributed due to the characteristics of non-negativity and
small value of discrete dependent variable., This makes us unable to generate
the correct confidence intervals for estimated parameters. In order to
improve the shortcomings of linear regression analysis in safety study, one
discrete model -- the Poisson Regression Model, has been applied in the study
of accident occurrence. Hamerslag [1982] used it to detect the effects of
road characteristics and traffic volume on the accident inveolvement rates.
Jovanis and Chang [1985] described the accident occurrence on a closed highway
system as a Poisson process in which the daily expected number of accidents 1is
a function of daily traffic exposure and weather condition.

Some multivariate analysis techniques other than regression analysis are
also used in safety study. The automastic interaction detection (AID)
technique has been used to categorize the explanatory variables in order to
discriminate the accident involvement rates for different exposure groups
[Snyder, 1974; Cleveland and Kitamura, 1978]. Koornstra [1969] used one set
of categorical data to detect the relationship between type of seat belt and
location of 1injury, Hakkinen [1979] studied how professional drivers
classified as safe drivers versus accident drivers differ in terms of driver's
characteristics by discriminant analysis. He also reduced the original
twenty-six driver characteristics to six factors by factor analysis to give a
concise representation of risk components to accident involvement. An
aggregate logit model of discrete multivariate analysis was applied to study
the severity of large-truck and combination-vehicle accidents in over-the-road
service by Chirachavala [1984].

The common denominator of all above statistical or correlation analyses
for traffic safety study is the absence of an explicit explanatory framework
for accident occurrence. That 1s, those efforts emphasized the estimation of
statistical relationships in the available data and attempted to intepret
those relationships. A preferred approach 1s the development of an
understanding of the underlying process which determined those relationships,
and the development of an analysis framework which can capture those
relationghips. Furthermore, all exposure-based accident prediction models in
previous literature were developed with aggregate data. The use of aggregate
data to construct an accident prediction model will cloud the relationships
between rigk components and accident occurrence.



E. The Relationship of The Proposed Survival Theory Model to Previous
Methodologies.

A complete traffic safety research framework should combine the knowledge
of the driver's behavior, accident occurrence process, exposure and accident
involvement together. While Each research approach has its own advantages and
disadvantgges, it would be useful if we could evolve a set of statistical
methods that have the capability to use knowledge gained from the other three
types of methodologies.

If we can develop a method to capture disaggregate exposure, we may be
able to connect the study findings regarding driver behavior with actual
accident involvement. We all know it is hard to collect disaggregate exposure
data, but it is harder to collect disaggregate exposure data without a
research framework to guide us how to collect it. The survival theory model
is proposed as an example of how to fill the theoretical gap between previous
traffic safety astudies. It is our main purpose to develop a research
framework for disaggregate modeling on highway safety study by combining
elements of driver behavior with a conceptualized model of the accident
occurrence process, egxpogure data and data describing actual accident
outcomes. The c¢onceptualization of accident occurrence is described next.



III. A CONCEPTUAL FRAMEWO EK FOR THE
PROCESS OF ACCIDENT OCCURRENCE

Ao he Driver As An Information Processor.

Though driving has heen modeled as information processing for some time
[Shinar, 1978], there have been no attempts so far to use these concepts to
develop a feasible and quantitative model for highway safety research. 1In
order to extend this conceptual idea, some effort needs to be placed on the
detailed observation of how the information comes to a driver as well as how
the driver responds to it and keeps his vehicle on the road.

Figure 1 shays us how the risk factors bring their information to driver
through direct or indirect ways. This hypothetical information propagation
structure offers a useful guideline to think about the risk potential of the
driving task and helps us to realize the possible interactions between risk
factorgs. We observe that there are three paths to bring the environment
information to the driver. First, the environment can directly pass its
information to the driver and affect driver's performance. The driver's
vision, for an example, will be hurt when driving under the bad weather or
poor lighting conditions. Second, environment can affect the roadway
conditions and then indirectly deliver its information to the driver. One of
these examples is that snow will make the roadway slippery and require much
more driving effort of drivers. Third, environment also affects the vehicle
and asks more careful driving of the drivers, e.g., strong wind will make
small vehicles less ung table.

Roadway has two ways to tranemit its information to drivers. Different
roadyay designs can bring different extents of driving difficulty directly to
the driver, or indirectly to the driver through affecting vehicle's

performance, e.g., a4 narrogy mountain roadway might bring a lot of pressure to
driver particularly for large vehicles.

The vehicle 1is the closest element of contact to the driver while
driving. The vehicle passes its information directly to the driver. Though
most of this information is coming from the environment and the roadway, there
is still some information to the driver created by the vehicle itself, such as
travel speed or mechanical defect problems.

A driver makes his decision based on the information he receives.
Different drivers may make their decisions in different ways. These decisions
then result in different drivers' performance. Driver's decisions control the
vehicle performance and feedback to affect the driver's further decision
again. They have no effect on altering the conditions of the roadway and the
envirmme nt.

Be Conce ptualised Accidemt Occumrence Process.

An attempt trying to conceptualize the accident occurrence process starts
with a microscopic observation of individual vehicles, from the start to end
of their movement. Interest of this observation centers on how an accident is
initiated, what the contributing risk components are, and how those risk
components work together. The knowledge received from this microscopic
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obsgrvation can then help us to develop the conceptual model we seek. Based
on this conceptual relationship between accident occurrence and corresponding
ri components, the risk to be involved 1in an accident can then be
mathematically formulated in terms of those risk components.

The movement of a vehicle cannot continue infinitely due to the
limj tation of fuel tank capacity or fatigue of driver. Temporary stops may be
necpgsary during traveling. Hence, tragvel to fulfill an activity may be
fini{shed either by only one continuous movement or by several segments of
cont inuous movement. For different segments of continuous movement, the
opefrating characteristics may or may not dramatically change. Furthermore,
the time between two conseputive segments of continuous movement may affect
the, operating risk for ¢t continuous movement following the stop, 1if the
fatjigue of driver is a factor affecting the highway operation risk. In order
to tﬁ:ture the reality of h&ghway operation risk, the selection of time frame
to undertgke observationg and model forgulation is a crucial issue. The time
fr will vgry, however, depending on the nature of the safety system to be
investigated. For example, we may choose a twenty-four hour observation on
autd traveling process due to the periodical characteristics of daily activity
pattgrn. An origin-to-destination observation may be undertaken on truck
traveling process. In general, a trip usually megns a complete journey. It
may consist of more than one segment of continuous movement, that starts after
and.endl with a long enough rest, in order to make the observed trips imn our
selected time frame reasonably independent from other trips not observed.

B.l Acclident Geparaging Process.

The traveling process for one vehicle trip is conceptually described in
Figure 2. Essentially, the characteristics of driver, vehicle and trip (e.g.
trﬂp purpose) are given before the vehicle trip starts. We call those given
characteristics the initial conditions of movement. In terms of accident
risk, those initial conditions 1imply some risk potential for accident
inqolvanen:. For example, the lack of enough rest prior to starting ome trip
will affect driver's alertness and increase the accident risk. With these
initial conditions, the driver starts to undertake his information processing
tagk and seekg to attain the required performance in order to maintain vehicle
operation. Working along with the varying environment and roadway conditions,
thdse initial conditiong may or may not change as the vehicle proceeds to run.

The vehicle ends its gxposure with a stop. Stops can be classified into
two cgtagorieg ~- accident involvement and nonaccident stop, according to the
definition of the chance set up. A nonaccident stop always results in a
period of rest before the vehicle starts another continuous movement. Based
on the criterion we have chosen to define the trip, we can assign the
nojaccident stop to be thg end of one trip or a temporary rest depending on
ho} long the nonaccident stop lasts. A new continuous movement following the

st¢p may come into the infdrmation processing system again with another set of
initial conditions.

Cur microscopic observation on individual vehicles terminates with the
succesg ful finiseh of one trip or being imnvolved in an accident. We call the
accident generating process the process that the driver experiences in seeking
to survive in a risk system from the starting to the ending of one trip. For
accident involved trips, our observation can measure the lifetimes of those
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trips and outcomes of those accidents. However, for nonaccident trips, the
only information we have is their survival after a given amount of exposure in
the risk sygtem. In terms of the survival analysis, models in the next
section, these individual trips are censored (i.e. we do not observe the
failure time),

B.2 Accident pPatterming Process.

In the accident generating process, our interest is to figure out how the
risk system determines whether or not an accident will occur. However, when
an accident is initiated, the risk system will affect the outcome of accident
again, This outcome includes the number of involved vehicles, type of
collision, severity of injury and so on. We call the accident patterning
process the process in which the risk system determines the outcome of an
accident. Therefore, the risk system will not only dominate the accident
generating process, but also control the accident pattern determining
process. The risk components for the accident generating process operate
during the whole vehicle trip, but only have an instantaneous effect on the
accident patterning process.

Contrary to the accident generating process, the accident patterning
process may have little to do with the travel exposure. Hence, the study
associated with accident patterns can be easily undertaken through the data
already in accident reports, obviating the most difficult issue in highway
accident study -~ exposure data. However, though studies of accident patterns
can help us to find the strategies to reduce the severity of injury or
property damage when a vehicle is involved in an accident, they are limited in
how much they can contribute to identify how to avoid accident involvement.

B.3 Comp ﬂl:in‘ Accident Patterps.

In preceding sections, the accident generating process and accident
patterning procesg are thought of as two sequential steps. However, 1if
specific accident patterns are thought to have their own accident generating
processes and compete with each other to stop the continuation of one vehicle
trip, then the accident occurrence process may be comstructed as a competing
risk problem. Those specific accident patterns can be classified by accident
causeg, or accident outcomes. Whenever one of those two accident patterns

appears first, the vehicle trip will be terminated, and the other will not
occur,

It might be interesting to see the transition between accident patterns
as gome associated risk factor for one specific accident pattern has been
reduced, if the accident occurrence process is formulated as competing
accident patterns. For example, we might like to identify the reducticn in
right angle accidents along with possible increases in rear end accidents if
skid resistance treatpents are given to an intersection approach.

Several problems should be carefully considered before we formulate the
accident occurrence process by competing accident patterns. First 1is the
interdependency between different accident patterns. This 1s because
different accident patterns might not be mutually exclusive. For example, an
injury accident always comes with some property damage. Second, there are
usually several common risk componente between different accident patterns.
The critical controversy 1is whether the accident generating processes for
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different accidgnt patterns work independently. If they do not work
independently, it will be very difficult to formulate the accident occurrence
process by cowmpeting risk approach and further theoretical consideration will
be required. At this initial stage of model development, we assume that
accident patterns are independent.

We next procede to the mathematical formulation of an analysis approach
based upon this conceptualization.
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IV. MODELLING HIGEWAY ACCIDENT OCCURRENCE

A. Formulation of the Hazard Function

According to our comceptual structure, we can find that the accident
generating process possesses some characteristics which will critically affect
ourr consideration about what mathematical approach is appropriate to formulate
this problem. First, system hazard is composed of all the risk components
which may be constant, situational, and elapsed-time. Hence, the system
hazard varies during the trip. Second, an accident is the only event that can
occur during a vehicle trip other than to successfully complete the trip.
These characteristics allow the accident generating process to be modelled as
a survival process. Third, only a few trips among the observed trips will be
involved in an accident. Using the concept of varigble system hazard, our
interest is to observe how long the vehicle can survive before gn accident
ocCurs.

Let T be a nonnegative random variable representing the lifetimes of
individual trips in some population. Let f(t) denote the probability density
function of t and let the distripytion function be

F(t) = Pr(T<t) = [o £(x)dx (4-1)

The probability of an individual trip surviving till time t is given by the
survival function

8(t) = Pr (T>¢t) = f: £(x) dx (4-2)

Note that S(t) is a monotone decreasing continuous function with S(0) = 1 and
S(») = lint+n S(t) =« 0. The concept of hazard function h(t) is defined as

h(t) = 1dm —BE(ECT <n§ +4at | T>¢t) _558_ (4=-3)
At+o

The hazard function specifies the probability density function of being
involved in an accident at time t, given that the vehicle trip survives up
until t.

The functions of £(t), F(t), S(t) and h(t) give mathematically equivalent
specification of the distribution of T. It is easy to derive expressions for
S(t) and £f(t) in terms of h(r), since £(t) = -S'(t). Eq. (4-3) implies that

d
h(x) = -—&-—log S(x)
thus

log S(x) I; - - IE h(x) dx (4-4)
and since S(0) = 1, we find that

s(t) = exp [~ [C n(x) dx]
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For some purposes it is also useful to define the cumulative hazard
function

H(t) = ]2 h(x) dx

which, by Eq. (4-4), is related to the survival function by

s(t) = exp [-H(t)]. It can be observed that since S(=) = 0, then
H(=) = 1lim H(t) = », Thus the hazard function h(t) for a continuous
lifetime dinE?ibution possesses the properties

n(t) > 0 [T n(e) dt m =
Finally, in addition to BEq. (4-4), it follows immediately from Eq. (4=3) that

£(t) = h(t) exp [—fﬁ h(x) dx] (4=5)

Because the functions of £(t), S(t) and h(t) are mathematically
equivalent specifications, we can undertake our amalysis in terms of any one
of them. Cox and Oakes (1984) raised a number of reasons why consideration of
the hazard function may be a good idea. We prefer the hazard function h(t) to
the others since the notion of failure rate 1is basic and conceptually
simple. The function h(t) provides a convenient starting point for
undertaking the survival analysis. Presumably, the lifetime of an individual
vehicle trip 1is affected by the concommitant variables. Therefore, in
general, we can repregent the hazard function as h(tlx). where X is a vector
of explanatory variables which are the risk components we mentioned in Section
3. Further components of X may be synthesized to examine interaction effects
in a way that is broadly familiar from multiple regression analysis. The
hazard function h(t:|x) indicates the probability to be involved in an accident
at time t for a vehicle with risk components vector X, given that the vehicle
trip survives up till t.

B. Types of Ha zard Functions gnd Their Isplications

Severgl types of hazard models for survival analysis have been introduced
in the biopadical literature (e.g., Aranda-Ordaz, 1983; Cox and Oakes,
1984). They differ in the way in which the explanatory variables are assumed
to influence the underlying hazard. For reasons explained in detall elsewhere
[Chang, 1987]) we choose the proportional hazards model proposed by Cox as the
basis of our formulation.

Specifically the Cox Model is:

h(t[x) = h (t)* exp (B*X) (4-6)

while B*X = byx|+boxp+——=———+b x, and the b 's are unknown regression
coefficients. T*e Cox model possglgel the characBeristic that the increase of
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system hazard due to the increase risk of one specific risk component depends
on all the other risk components. That 1is, when the risk component xj
increases Axi, the hazard function h(t|X) will increase to

ho(t)*Exp (B*X)*Exp(by * 4x,). This characteristic is quite simi lar to the risk
of the driving task tn which the risk components work together.

There are several reasons for considering the proportional hazards models
(Cox and Oakes, 1984). First, there 18 a simple easily understood
interpretation to the idea that the effect of the risk cowmponents vector is to
multiply the hazard by a constant factor. Second, censoring time and the
occurrence of several types of failure are relatively easily accommodated
within this formulgtion, and 1in particular the technical problems of
statistical inference when ho(t) is arbitrary have a simple solution. Third,
the proportional hazards assumption appears to be reasonable in many
situations. Some examples and references to this in the biomedical area are
contained in Breslow (1975), and Prentice and Ralbfleisch (1979). In
engineer contexts, proportional hazards are considered by Lawless (1976),
Mann (1978), and many others.

The effgect on accident risk due to the change of one specific risk
component depends on other risk components. For example, the accident risk of
a mechanical defect (e.g., failure of brake or flat tire) might depend on the
vehicle speed and the level of surrounding traffic. The multiplicative risk
model can capture this operating characteristic better than an additive risk
model.

According to the risk propagation process discussed in Section 3, the
effect of risk factors on accident risk can be divided into three sequential
stages. In a multiplicative risk model, each stage can be thought of as one
multiplicative subfactor. In addition to those three myltiplicative
subfactors, there are some interactions between risk components across
different stages. Those interactions bring additional effects on accident
risk and resulting the fourth multiplicative subfactor for hazard function.
Therefore, formulating the system hazard function by a multiplicative model,
we will hgve following five elements to be considered:

(1) Nuisance hazard h,(t)

(2) Multiplicative subfactor of driver risk factor
(3) Muletiplicative subfactor of vehicle risk factor

(4) Multiplicative subfactor of roadway and environment
risk factors and their interaction

(5) Multiplicative subfactor of the interaction between
risk components across different risk propagation stages.

Among those five elements, the nuisance hazard h_(t) can be a time-
independent function (i.e., constant) or a time-dependent function of some
specific parametric distribution family. The four multiplicative subfactors
should be nonnegative and it is natural to suggest the exponential expressions

fOl.‘ thu



17

C. Proposed Model for Accident Occurrence

We consider a population of individual vehicle trips; for each vehicle
trip we observe either the time to be involved in an accident (i.e., lifetime)
or the time to reach its destination (i.e., censoring time). That is, for the
nonaccident vehicle trips we assume that the times to be involved in an
accident for those vehicle trips are greater than the times they spent to
finish their trips. Hence, an accident trip contributes a factor f£(r|X) to
our model forpylation, but a nonaccident trip contributes a factor S(t|X) to
the model. Therefore, the likelihood function for a set of observed data on n
vehicle trips can be expressed as follows when the lifetime distribution of an
individual trip is considered to be a function of regression vector x,_:

n 61 1-61
L = 1:l{fccllxi)} * {sccilxi)}

n 61
- % {h(c1|xi) * Exp[—H(tilxi)]}
im1

1-—61
* {Exp [-H(c,[X )]} (4=7)

where t; i3 the lifetime or censoring time for the ith individual and § 6 is
the usual indicator variable taking on the value 1 if t; is lifetime and 0 1if
ty; is cengoring time.

The hazgrd function h(:1|xi) is assumed to be a proportional hazard
model:

hCty|X,) = hy(ty)*Exp[Q(B,X,)] (4-8)

where Q(B,X;) is the formulation of the risk components vector X; as a
multiplicative factor and B is a vector of parameters to be estimated in the
specified model. In this research, only time independent risk components are
included in Q(B,xi); the effect of time dependent risk components are assigned
to the nuisance hazard function ho(:i)- Then, the likelihood function Eq. (4~
21) can be formulated as:

s

n
1
L = 121 {ho(ti) * Exp[Q(B,xi)l * Exp[—H(t1|K1)1}
1-6,
* Exp [-H(ti ‘xi)]
n Gi
= I {h (t,)* Exp[Q(B,X,)]} = * {E“PI"“(‘1|X1)]} (4-9)

i=1

Usually, for convenience purpose, we take a2 monotone transformation and make
the logarithm of Eq. (4-23) and get the log-likelihood function as
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n
LL = 151 {8, * [log(h (t,)) + Q(B,X,)] - H(t, |X,)) (4-10)

With the gssumed proportional hazards model like Eq. (4-20), the LL(B) is
twice differentiable and bounded. We can deduce the existence and uniqueness
of the solution of estimated coefficient vector B which maximizes Eq. (4-24),
from the literature of survival analysis (Lawless, 1982; Cox and Oakes, 1984).
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V. SUMMARY

We have tried to call attention to 2 issues that are important as we
consider traffic safety theory and methodology:

1. That there gre limited studies that use results from one type of
safety methodlogy to enhance other methodologies. A typology of safety
methodologies 18 developed and discussed to illustrate this point.

2. theory and concept should be directly considered before statistical
methods are used. A conceptual framework for accident occurrence is
developed based upon the principle of the driver as an imformation
processor. The framework underlies the development of a new modeling
approach.

3. Survival theory is proposed as an example of a statistical
technique that is consistent with the earlier conceptual structure and
allows the exploration of a wide range of the factors that contribute
to highwy operating risk.

It is hoped that other papers support at least some of the ideas
discussed in this paper. The authors believe that once the theoretical and
conceptual linkages to statistical methods are clarified, more useful
empirical gssessments will follow,
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