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GENERALIZED LINEAR MODELS IN THE ANALYSIS OF ROAD ACCIDENTS 
_ SOME METHODOLOGICAL ISSUES 

by 
G. MAYCOCK and M. J. MAHER 

Transport and Road Research Laboratory 

1. INTRODUCTION 

In recent years, generalised linear modelling has become a popular tool for 

the analysis of road accident data. This summary paper briefly presents the 

application of this technique ~o the analysis of data assembled during a study 

of accident-involved drivers a1 the Transport and Road Research Laboratory as 

a means of illustrating some of the methodological issues which have arisen 

during the modelling process. The final paper will include examples taken 

from recent analyses of junction accidents (see for example, Kimber and 

Kennedy, 1988). 

2. THE 'ACCIDENT- INVOLVED' DRIVERS STUDY 

In order to explore the relationship between the road accident frequencies of 

drivers and relevant individual characteristics, 229 car drivers who had been 

interviewed during the course of an 'on-the-spot' accident study, were invited 

to take part in further tests at the Laboratory. The visual, perceptual and 

performance abilities of these drivers were measured. They also completed a 

'cognitive failure' questionnaire - to assess how forgetful or indecisive they 

were - and underwent hazard perception tests in a simulator to measure how 

long it took them to recognise hazards on the road. Basic information on age, 

estimated miles driven per year (exposure) and the number of accidents the 

subjects had experienced in the last 3 or 5 years of driving, were obtained by 

interview. 

Details of the study and of the various statistical investigations carried out 

are reported elsewher~ (Quimby, et aJ, 1986). The Generalized Linear 

Modelling analysis presented briefly here takes the frequency (accidents per 

year) of the self-reported accidents obtained by interview as the dependent 

variable, and relates this to other potential 'explanatory' variables measured 

in the study. The analysis relates to 145 drivers for which full data was 

available, and to the accidents they reported as experiencing in the last 3 
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years (excluding the 'o~the-spot' accident by which they were sampled). The 

form of the systematic component of the model fitted was: 

(1) 

where, Ai is the number of accidents reported by the ith lndividual in Ti 

years (in this case 3), MI is the estimated annual average mileage relevant to 

the TI years, and Flj are j other explanatory variables; K,~ and the bj's are 

to be determined. 

Equation (1) was fitted using GLI M (Baker and Nelder, 1978) with a LOG link 

and an OFFSET equal to the natural logarithm of the number of years (TI) of 

accident data. The number of accidents is assumed to be a Poisson variable. 

The results are shown in Table 1, which includes a measure of the sensitivity 

of the various components, and an analysis of deviance. 

The aVE~rage frequency of accidents reported by the subjects in this study was 

0.14 per year. Table 1 shows that age is an important determinant of accident 

frequency - accidents per year fall by about a factor of 2.8 over the 20-60 

year age range. More interestingly accident frequency appears to be 

relatively insensitive to annual mileage travelled (exposure) - indeed in this 

small sample, the exponent of mileage is not statistically significant. 

(Mileage travelled proved however, to be significant in larger samples, tho~h 

the exponent was still very much less than 1.0; the term is included here for 

completeness). 

The remaining variables in the lower half of Table 1 are the laboratory 

measures which proved to be significant correlates of an individual's accident 

liability. The movement in depth test is a test of decision making ability. 

The sign of its coefficient is however noteworthy; it implies that the safer 

drivers took longer to respond to thlS particular test - a result which may be 

explained in terms of caution in decision making style. Median latency is a 

measure of the time it takes a driver to respond to a hazard in the simulator, 

and subjects reporting fewer accidents proved quicker at recognising hazards. 

The positive correlation shown between accident frequency and cogniti~e 

failure is also intuitively reasonable - though this may have something to do 

with the fact that the accidents were self-reported. The practical 

significance of these findings are discussed elsewhere (Quimby, et aI, 1986); 

here we are concerned with the statistical methodology. 
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The figures shown in the upper half of Table 1 illustrate the kind of results 

t o be expected from the analysIs of a survey of self-reported accidents for 

whIch the measures of performance included in the lower half of the table a~ 

not available. (They could also - with different variables - represent a 

model relating accidents per year at a range of junctions to site specific 

var iables). In the present example, after fitting ,a model which includes age 

and exposure, Table 1 shows that the residual deviance (139. 6) is reasonably 

close to the number of degrees of freedom (142). Of course with a sample SIze 

of only 145 these statistics are not well defined, but this is a result which 

taken at face value, would suggest that the fitted model has accounted for all 

the systematic variation in the data leaving only a random Poisson error 

component (see 3.1 o~goodness of fIt statistics). We know in this case 

however, that significant systematic components are omitted from the model. 

The conclusion that the model 'fits well' is thus incorrect. Moreover, even 

though in general we may not have direct measures of all the explanatory 

variables likely to be useful model predictors, we might still like to obtain 
, 

an estimate of the residunl betwee~individual (or between-site) variation in 

accident frequency which could potentially arise from such unobtainable 

variables. The fol l owing section suggests a strategy for dealing with this 

sItuation. 

3. MODEL FITTING 

3.1 Goodness of fit statistics. 

The principal statistic calculated by GLIM for the purpose of testing 

significance and goodness of fit is deviance. Deviance is a likelihood ratio 

statistic and is asymptotically distributed like Xl. It has additive 

properties enabling an analysis of deviance to be presented analagously to 

analysis of variance. In general, the calculation of deviance from observed 

and estimated data values involves a scale factor which is dependent on the 

error distribution fr~m which the data is assumed to be drawn. 

In the case of Poisson errors the scale factor is I, and in models where a 
A 

constant term is fit;ed the scaled deviance is Y[ln(Y/~)] where y are the 

observed values and~ are the model 'fitted values'. If this error 
A 

distribution is correct, and providing the fitted values (~) are generally 
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greater than 1.0, the differences in scaled deviance obtained by fitting null 

terms to the model should be distributed like Xi' This fact can be used 

directly as a test of the statistical significance of added terms. Moreover 

an overall 'goodness of fit' assessment can be made by reason of the fact that 

for a wel~fitting model with an appropriate link funct~on, error d~stribution 

and functional form, the expected value of the residual scaled deviance should 

approximately equal the number of degrees of freedom. (Appendix A of 

McCullagh and Nelder, 1983, provides a correction to deviance which seems 

" useful for values of r lying between 1 and 20; this correction should not ,.. 
however be used when values of ~ in the vector of fitted values fall below 1). 

Although the expected value of deviance is apprQximately 1 per degree of 

freedom whilst the model fitted values are greater than 1.0, it f~ls 

dramatically (at least for Poisson and Negative Binomial data) as.l' falls 

below 1.0. Fig. 1 shows how the expected value of scaled deviance for Poisson 

and Negative Binomial distributions varies with~. Thus a data set which has 

a high proportion of estimated accident frequencies less than 0.5, will have 

an expected value of the scaled deviance for the data set as a whole 

considerably less than the number of degrees of freedom. This is the case 

shown in Table 1. The expected value of deviance (calculated from the fitted 

values) is 129 - considerably less than the number of degrees of freedom 

( 142) • 

An alternative test of overall goodness of fit is provided I n GLIM by means of 

the 'generalised Pearson' xa statistic. Assuming each data point to be unit 

weighted, this statistic (X2) is: 

X a = tt:: (y - ~) a , where the I variance function' is the 
L ) 

(Variance function) 

variance 'of the assumed error distribution expressed as a function of the 

mean. In the case of a Poisson errors Xl is: ~(y -)l)z/;t. Differences in 

Xl as between nested models are not X~2 variables, so that this statistic 

cannot be used for ,testing the si~nificance of adding terms to a model - note 

for example, the increase in xa as the movement in depth term is added. 

Moreover the variance of Xl is a function of ~for small values so that 

difficulties arise in using this statistic for overall goodness of fit. By 

definition however, for a well fitting model with the appropriate error 

distrlbution (and variance function), the actual value Xl should equal the 
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number of degrees of freedom irrespective of the value of ~. In the case 

of the accident involved driver data presented in the upper part of Table 1, 

it will be seen that the value of X2 for the simple model )s 163.2 -

considerably exceeding the number of degrees of freedom and indicating over 

disperslon in the residuals compared to Poisson errors. 

It wi ll be seen therefore that the agreement between the final model devlance 

and the number of degrees of freedom for the simple model (upper part of 

Tabl e 1) is coinc)dental. It arises from over dispersion (which inflates the 

deviance) in combination with low values of accident frequency (less than 1.0) 

in the vector of fitted values (which reduces the deviance). 

3.2 <)ver dispersion . 

The existence of over dispersion in real data is well known and the simplest 

technique for dealing with it is the use of 'quasi-likelihood' (McCullagh and 

Nelder, 1983). Such methods assume a common dispersion parameter which is 

independent of ~ - rather like the residual variance in a least squares fit. 

In the present context an alternative treatment may be preferred. Over 

dispersion can arise in three ways: 

(i) the systematic component of the model may be incorrect -

available variables have not been included, or have not been included 

in the most appropriate form, 

(ii-) significant variables have had to be omitted from the model 

(iii ~ the assumed error structure is inappropriate. 

Normally, we would have hoped to eliminate the first as far as possible by 

attention to the range and the form of the explanatory variables used, and by 

experimenting with alternative model specifications. The most appropriate 

representation of the structure of the residual variation wil l be one which 

handles the combination of (ii) and (iii) sensibly. 

As was suggested earlier, in analysing the accident data, we may be interested 

in estimating not only the effects of measured variables (eg. age and exposure 

in the case of drivers, or traffic flow and layout features in the case of 

junctions), but also the magnitude of the residual variability arising from 
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other factors. The question here is - what sort of distribution of residual 

between- individual or between-site effects are we dealing with? Fig. 2 shows 

a histogram of the between-individual variation in accident frequency arising 

from the three factors represented in the lower half of Table 1. As expected. 

the distribution is positively skewed, and a Gamma distribution has been 

s uperimposed to represent the between-individual component of the accident 

variability corrected for age and exposure, 

The Gamma assumption is a very c onvenient one, since it means that providing 

the within- indi vidual accident generating process can be assumed to be 

Poisson, the sampling distribution of accidents is Negative Binomial - a 

distribution traditionally used to represent between-individual variations in 

observed accidents (Arbous and Kerrich, 1951). The variance of the Negative 

Binomial distribution is~(~ + k)/k, where is the mean and k is the 

parameter of the underlying Gamma distribution. (Note: as k tends to 

infinity, the Negative Binomial distribution approximates to the Poisson). The 

value ef k in the Gamma distribution can be regarded as a measure of the 

potential unexplained between-individual variation in accident liability once 

known variables and factors have been allowed for. It is a convenient 

representation as it implies that the unexplained variation has a constant 

coefficient of variation (equal to 1//10 which can in principle, be 

calculated as a function of su~sets of the data. 

The Gamma-Polsson model needs to be checked. The crucial test would be to 

check that the relationship between the variance and the mean within the data, 

corresponded to the Negative Binomial variance function given above. Some 

evidence on this point will be presented in the final paper. 

The OWN fit facility in GLIM allows the Negative Binomial error distribution 

to be fitted directly. The scale factor for this distribution is I, and the 

simplest estimator of k is that value which when a Negative Binomial fit is 

carried out makes the generalised Chi-square statistic (Xl) equal to the 

number of degrees of freedom. This is equivalent to determining k by the 

method of moments, a~d since the expected value of Xl is independent of ~ , 

the value of k so determined is not affected by low mean values. There are 

however other methods of estimating k which might be preferred. If e is the 
A ~ 

residual (y - r), then E [e 2 ] = r + r /k and an estimate of k is given by 
c:;' /\.c A L/'"Z/ .c. (e 2 -jJ'); a plot of e l against r should look like a quadratic pass 'lng 

through the origin. k may also be estimated by maximum likelihood methods. 
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These alt ernatives will be discussed in the final paper. 

Clearly, determining k by equating deviance to the number of degrees of 

freedom as has been done previously (Maycock and Hall, 1984) is only 

satisfactory if low mean values (see 3.3 below) are not a problem. The use of 

Mean Deviance Ratio as an F statistic can also be mIsleading In these 

cIr cumstances. 

3.3 The low mean value problem 

Once the problem of over disper sion has been satisfactorily resolved by either 

a quasi-likelihood method or the use of a Negative Binomial fit, a 

satisfactory method is required for testing the significance of extra terms in 

a model in the presence of low fitted values. We know in this situation that 

even if the Negative Binomial model is satisfactory, the calculated deviances 

will not be X Z (degrees of freedom) variables. There is however some 

evidence that the deviance differences are X~2 variables, and this property of 

deviance difference is currently being studied in greater detail. 

As a alternative to the use of deviance difference, significance of extra 

terms may be assessed by means of estimates of standard errors obtained either 

from the Negative Binomial model, or from the Poisson model using the 

'jacknifing' technique. It is hoped to be able to incorporate an assessment 

of the relative usefulness of these alternatives in the final paper. 

4. IN CONCLUSION 

Some methodological issues which arise in the application of the Generalized 

Linear Modelling methodology to the analysis of between-individual accident 

liabilities of drivers or to the between-site variations in junction accident 

rates have been discussed. The issues have been illustrated by means of an 

analysis of the accident histories of accident involved drivers. 

Two problems relating to the use of deviance as a test of significance and 

goodness of fit have been raised: the presence of over dispersion in the data 

due to between-individual systematic effects omitted from the model, and the 

reduction in the expected value of deviance when there is a predominance of 

fitted values less than 1.0 in the data set (or a high proportion of zeros in 
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t he observed accident frequencies) . 

Quasi- likelihood methods provide a simple method of dealing with over 

dispersion. The use of the Negative Binomial distribution for residuals may 

however be preferred, although further checking of this model is required. 

work i s in hand to investigate alternative methods of estimating the parameter 

k of the Negative Binomial model, and for judging the significance of extra 

terms in a model in the presence of both over dispersion and low fitted 

values. 
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TABLE 1 

'Accident-involved' drivers 
Model for individual accident frequency (accidents per year) 

145 drivers - Poisson errors 

---- ------ -- -- --------- --- -------- ------- -------------- --- --------- ------ - ---- - -----

Explanatory Variables 
Regression 

Coeffic ients 
(S. E, ) 

( 1 ) 

Sensi­
ti vi ty 

(2 ) 

S Deviance 
/degrees 

of freedtm 
( 3) 

Expected 
devi ance 

( 3) 
- ----- ---- -- ----------- ------------ ---------- -------- ---- -- --------"'""'- ---------------

Constant (In K) 
Mil es per year (1000's) 
Age (years) 

-1.7 
0.11 (0.23) 

-0.026 (0.013) 
1.4 
2.8 

148.1/144 
147.4/143 
139.6/142 129.0 

168.8 
166.9 
163,2 

--- --- ------ -------------------- ---------------------------------- ------- --- - -- - - - --

Movement in depth -2.10 (0.84) 4.1 132.5/141 166.1 
Median latency in the 

driving simulator 0.009 (0.004) 2.2 126.7/140 156.0 
Cognitive failure 

questionnaire 0.030 (0.014) 2.7 122.2/139 118.3 141.2 

------------------------------------------------------------------------------------
(1) The regression coefficients and standard errors relate to the full model. 
(2) Sensitivity is the ratio of the predicted accident frequencies at the 5 and 95 

percentile points of the distribution of the relevant variable. 
(3) Scaled deviance, degrees of freedom and X2 relate to models containing terms 

up to and including the term on the current line of the table, 
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STATISTICAL SUPERPOPULATION MODELS IN TRAFFIC SAFETY RESEARCH 

Heinz Hautzinger 

1. Statistical Concept 

In classical sampling theory the population values 
Yl, ••• ,YN of the characteristic under study are 
considered as fixed. Consequently, the population 
total Y and mean Y are also fixed quantities . 
~t-o<:,}'\nnt-:lC" C".lpm~.ntA nI-a ;nt-rnr'lller'rl -lnln 1· 11 .. 

analysis by randomly selecting n out of N 

elements and using the sample mean y as an 
~stimator of Y 

In traffic safety studies this concept is often not 
really adequate since the population values 
Yl, •.. ,YN are properly to be regarded as 
realizations of certain random variables Yi , •.. ,YN. 
As a simple example consider the case where the 
population consists of all road crossing in a 
certain region and where Yl is the number of 
accidents at the i-th crossing during a specified 
period of time. 

The distribution of Yl, ..• ,YN is usually called a 
"superpopulation" and in practice this distribution can 
often be specified up to some parameters. In our example, 
a simple specification would be to assume Yi, •.. ,YN 
to be independent Poisson variables with expectation 
~ > 0 . It depends on the research aim whether we are 
interested in the parameters of the superpopulation 
model (which in our example is the "accident rate" ~ ) 
or in the population mean Y = ! Yl/N , which is of course, 
a random variable. 

In both cases we shall select n units from the 
population and observe the realisations Y*l of 
the corresponding random variables Y*l 
(i=1, ""n). The mean 

(1) y* =! Y*l/n 
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of these realisations can then either be 
interpreted as an unbiased estimate (in the usual 
sense) of the fixed model parameter ~ or as a 
"model- unbiased" prediction of the realisation of 
the population mean Y in the sense that E(V*) = 
E(Y) , where the operator E refers to the 
superpopulation (and not to the sampling procedure) . 

Two results are of importance: If our 
superpopulation model is valid 

1. the prediction interval for Y is narrower than 
the confidence interval for ~ , and 

~. unbiased estimation and prediction does not 
necessarily require random selection of units. 

Superpopulation models are especially useful, if in 
addition to Yi the values Xt of an auxiliary (or 
explan,atory) variable are available. The following 

. ' rather general superpopulat1on model is of special 
importance: 

(2 ) Yi = I3Xi + 5 (Xi) Ui (i=l, ... ,N) 

where the Ul are independent identicially 
distributed random variables with E(UJ) = 0 and 
var(Ul} = 0 2 for i=l, ... ,N. The parameters 13 
and 0 > 0 need not to be known. Moreover, the 
Xi are assumed to be positive and known. The 
function 5(x} is also assumed to be positive for 
positive x-values and must be chosen according to 
the structure of the data. Typical examples are 

( 3) 5(x} = 1 , 5(x) = .fx , and 5(x) = x . 

Which functional form is to be preferred can be 
decided on the basis of a scattergram of (Xi ,Yi )­

values. CASSEL/S!RNDAL/WRETMANN (1977) give a 
simple procedure how to construct a best linear 
unbiased prediction of the population mean Y . 



- 3-

It has been mentioned that the above results are 
independent of the way the sample units have been 
selected. Actually, under the super population model 
certain (non random) systemati c or purposive 
sampling procedures are suggested by statistical 
t heory in order to minimize t he expected squared 
prediction error. Obviously, non random sampling 
bears the risk that our prediction is biased if the 
assumptions of the superpopulation model are not 
valid in reality. Therefore, robust random 
sampling strategies are recommended such that with 
probability close to 1 the eventual bias is 
small. 

The concept of a superpopulation is a flexible way 
to incorporate a-priori-information into the 
estimation procedure. As such it is an ideal 
combination of theoretical and statistical 
considerations (accident model and sampling model) . 
Actually, the concept has been developed in the 
context of ratio estimation. See BREWER (1963) and 
ROYALL (1970) . The assumption , of a certain type of 

\ 

superpopulation model yields an unbiased ratio 
estimator and variance formula which are both 
simple and exact for any n > 1 . 

2. Superpopulation Models and Mixtures of Poisson 
Distributions: a Comparison 

By the notion "superpopulation" we mean the joint 
distribution of Yl, ..• ,YN , where Yl is a random 
variable associated with the i-th element ("entity") 
of a population of size N Thus far, this 
concept is related to the concept of "mixtures" of 
Poisson distributions developed by GREENWOOD/YULE 
(1920). There are, however, important differences 
between superpopulation and mixture models: 

(a) In the case of a superpopulation model the 
population is assumed to be finite (N < ~) 
and existent, whereas in the mixture model we 
often assume that the population is 
hypothetical and not finite . 
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(b) The expected value E(Y1) is in the 
superpopulation model thought to be a fixed but 
unknown quantity, which might, of course, vary 
from one unit to the other . In contrast to 
this, E(Y1) is treated in the mixture model as 
a random variable following a Gamma distribution. 

(c) Within the superpopulation concept we imagine 
our finlte population to be a random sample of 
size N from a superpopulation and, 
additionally, we assume that a sample of n (n ( N) 

units has been selected from the population. 
In the mixture model on the other hand we only 
have an infinite hypothetical population and 
from this population a sample of size n 

In Section 1 the assumption was made that Yt , ••• ,YN 

are independent identical Poisson distributed random 
variables. This is, of course, one of the most 
simple superpopulation models. It can be 
generalised in a variety of ways. One possible 
modification would be, for instanc~, the assumption 
that the Y1 are Poisson distributed with 
expectation \ 

(4 ) ~1 = exp (~X1 ) (i=l, ... ,N) 

where Xi is the value of an explanatory variable 
observed at the i-th unit and ~ is a parameter 
to be estimated. If the units were, for instance, 
crossings, the explanatory variable might be the 
vol~me of traffic flow at the crossing. Sampling 
theory under generalised linear models of the type 
described above is, however, just developing. 

From (4) another difference between superpopulation 
models and mixtures of Poisson distributions 
becomes evident, namely, that the superpopulation 
model contains an explicite hypothesis on E(Y1) 
For instance, this expectation can either be 
regarded as 
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(I ) being identical for all units in the 
population or 

(I I) b~ing identical for all units belonging to a 
certain stratum of the population (but 
differing between the strata) or 

(Ill) being a function of a certain explanatory 
variable (analogous to a regression model) . 

In contrast to this, the concept of a mixture of 
Poisson distributions does not contain such a 
hypothesis on the expected value of accident 
frequency of a specific unit. It merely contains an 
assumption on the distribution of the expected 
value in the population of units. From this point 
of view, the superpopulation model has the 
potential of being an explanatory model, whereas 
the mixture model is merely descriptive. 

Of course, under the superpopulation model each of 
the three alternative assumptions (I), (II) , (Ill) 
also generates a specific frequency distribut10n 
(not a probability distribution) of the expected 
values in the finite population of units: 

Case (I) One-point distribution (degenerate 
distribution) 

Case (II) Discrete distribution with relative 
frequencies equal to Nj/N , where Nj 
denotes the number of units in the j-th 
stratum. 

Case (Ill) Distribution of the expected value 
depends upo~ the distribution of the 
x-variable. 

There is a further difference in the two concepts 
as far as statistical inference is concerned. Under 
the superpopulation model we may on one hand 
forecast the total number 

Y = Yl + ... + YN 
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of accidents in the population or the mean number 
of accidents per unit, i.e. the quantity 

= Y/N 

(both Y and Y are random variables). On the 
o t her hand, we may esti mate the expected value 

E(Y) = E(Y1) + . . . + E (YN ) 

of the total number of accidents or the expected 
value 

E (Y) = E (Y) IN 

of the mean number of accidents per unit. Both 
forecasting and estimation is based on a sample of 
n units (n < N). Under the mixture concept we do 
not have this distinction between forecasting and 
estimation. 

Of course, we can think also of other forecasting 
or estimation problems. For in~'tance, we could 
forecast the number N(z) of units with exactly z 
accidents. 0bviously, N(z) is to be regarded as 
realisation CIf a random variable. The proportions 

f (z ) = N ( z ) IN (z=O , 1 , 2, ••. ) 

describe the distribution of the variable "number 
of accidents" in our population of N units. Under 
the superpopulation model the frequency distribution 
fez) of the characteristic "number of accidents 
per unit" in the population of size N is, of course, 
a stochastic quantity. Compared with this, within 
the framework of a mixture model f (z) 1S a 
probability distribution in the usual sense (in the 
mixture model mentioned above fez) is a negative 
is a negative binomial distribution) and statistical 
analysis concentrates on estimation of the parameters 
of this distribution. 
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3. Applications of Superpopulation Models 
in Traffic Safety Research 

In traffic safety research various types of 
populations are encountered: populations of 
individuals, vehicles, road sections, crossings, 
residental areas and so forth . Among the 
characteristics we observe at the single units of a 
population there is nearly always the number of 
accidents or some related veriable. Since the 
number of accidents of an individual, a road 
section or crossing and so forth is a random 
variable, the superpopulation model is a quite 
natural concept for traffic safety studies. It 
allows for a clear distinction between the fixed 
parameters of an underlying theoretical accident 
model and the random average number of accidents 
occuring under this model. This is of special 
1mportance for group comparisons which are 
frequently to be conducted in empirical traffic 
safety research. 

Superpopulation models are also useful, if risk 
exposure quantities are to b~ estimated, e. g., 
from household travel surveys. For instance the 
total length of all car trips made by a population 
of individuals during a certain year may properly 
be regarded as a random variable. If we draw a 
random sample of households and ask for their 
travel behaviour on a specific day of the year 
(also randomly assigned to the houshold) we have 
to deal with two sources of random fluctuation: 
One due to sampling and the other due to the 
stochastic nature of the phenomenon under 
consideration. 

A variety of other applications of superpopulation 
models exist. For instance, the author has based a 
large scale empirial survey, which was designed to 
quantify the accuray of official road traffic 
accident statistics on a superpopulation model for 
response errors. See HAUTZINGER et al. (1985). The 
basic idea was as follows: If we define the 
variable Yl to be one and zero if an error occurs 
at the i-th accident or not, repectively, the 
total number Y of errors in the population of all 
accidents recorded by police is a random variable. 
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On the one hand, we are interested to estimate the 
probability that an error arises (which is a fixed 
model parameter) and on the other hand we would 
l ike to have a predict ion of the random proportion 
of accidents which are affected by an error~ It is 
shown in the full paper how traffic safety related 
surveys can be designed to be robust and efficient 
within the superpopulation framework. 
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ACCIDENT PREDICTIVE RELATIONS AND TRAFFIC SAFETY 

~ M Kimber and J V Kennedy 

Transport and p,oad Resa~ch Laborat ory, UK 

1, I NTRODUCTION 

1, 1 This paper is concerned with the development and use of accident predic­

tive relations. Such relations enable the annual frequency of accidents at a 

road junction, for example, to be predicted from the road layout (widths, 

markings and so on), the traffic and pedestrian flows, and a range of ot her 

factors.* They can be used 

to identify potential design improvements; 

to provide accident estimates for economic appraisa.l of road 

improvements; 

and, in conjunction with traffic assignment models, 

to enable the effects on accidents of traffic management schemes to 

be predicted, and to identify casualty-reducing ~chemes. 

1.2 The cost of accidents in Great Britain is about £2850mPer annum; 80 per cent 

or so, some £2400m, is in built-up areas. A recent Governm~nt review of road 

safety2 concluded that substantial savings could com~ from najor new r.esea,·ch in 

two areas: traffic management for safety, and behavioural resear~~. ~ aycock3 
takes up some issues in behavioural researc:'1 in another paper. Acci den': pred.~ c­

tive relations are crucial to traffic management for safety, ~ince they allow 

the accident consequences of measures t o redistribute traffic and pedestrian 

flows to be estimated quantitatively. They can also point to behavioural issues, 

by focussing attention on the traffic manoeuvres at junctions which emerge as 

particularly accident prone. 

1.3 The methods described here have been developed by the Transport and Road 

Research L~boratory in a series of cross-sectional studies to establish acci­

dent predictive relations for roundabouts, rural major/minor T-junctions and 

urban traffic signal junctions. Each of these junction types ,,/as tackled be·· 

cause of particular interest in desi gn i.mprovements to reduce casualties. 

Their places within the national accident picture are outlined lat er, in 

Section 4. 

*By "accidents" we mean accidents involving death or personal injury; formal 
definitions are given for Great Britain in Reference 1 • 
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1.4 This paper essentially sets out a broad methodology for such studies and 

examines their role in future applications. It is strUctured as follows. 

Section 2 sets out the methodological basis of the cross-sectional studies, 

and Section 3 gives illustrations from the results of the th~ ee studies that 

have been completed. Section 4 dlscusses futur~ needs in t he national acci­

dent context and work in progress. Section 5 summarises. 

2 . METHODOLOGY 

2.1 Cross-sectional accident studies consider many junctions under a particu­

lar form of control. They provide a powerful means for identlfY-lng accident 

determinants by drawing together the accident types and numbers, the junction 

layout and control characteristics, and ~he traffic and pedestr ian flows as 

they vary from one junction to another across the sample. The methods we des­

cribe here come from the TRRL studies; they were formulated first by Maycock 

and Hall4 , and expanded and developed by Pickering et a15 , and Hal16 • Analj-
. 7 8 9 11) tically, they draw heavily on generali sed 1 inear rnodell ing t echnl ques ' , , 

They allow the development of relations of the general form\ 

• • • (1) , 

where A is the frequency of injury accidents per year within 20m of the junction, 

and ~'E'~'£ are respectively the relevant sets of traffic flows (24 hour flows , 

expressed in thousands of vehicles), pedestrian flows, geometric layout vari­

ables (road widths etc) , and, at traffic signal junctions, control variabl es 

(timings, stage sequences etc). F is a function to be determined. 

s t;-,~ucture of studies; samples 

2.2 The studies each divide into three main phases: (a) drawing a sample of 

junctions of a given type, stratified by traffic flow within the main movements 

(for example, on the major and minor arms of a T-junction), and by main junc­

tion features, so as to ensure a wide ~~nge in the important variables; (b) 

conducting a detailed survey of: accidents over the previous several years, 

junction layout and control variables, and traffic flow; and (c) statistical 

analysis of these data, and development of accident relations. 

2.3 The sample has to be constructed carefully, and extensive prior recon­

naissance is necessary before the first phase, (a), so as to en9ure freedom 

from bias. Within each of the sample strata junctions are selected randomly, 

taking no account of accident numbers. A minimum of thr~e years of acciden~ 

data are needed - more if the accident frequency is low - but there should 
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ha'le been no major layout changes during the period. However" the sample is 

n~ essarily limited in size by constraints 'ln data collectio,n, since the 

requirements are extensive for each junction. Table 1 shows th~ main features 

of the TRRL samples. 

TABLE 1: Accident statistics by junction type wi th.i n the samples 

Rural ~junctions Signals Roundabouts 

Small Conventional All 

Number of sites 302 177 36 48 84 

Period studied I (months) 58 48 72 72 72 
'I 

Junction years 1392 670 166 I 265 431 
, 

Number of accidents 674 1772 647 780 1427 , 
Accidents per year 0.48 2.65 3.89

1 
2.94 3.31 

Severit y (% fatal or 
I serious) 36 20 17 1 16 16 ! 

I 
'I Accident rate (per , 

I 108 total vehicle I 

27.5 I inflow) * 17.0 34.4 I 34.8 23. 5 I " I I I 

*But see Section 3.3 

Analytic methods 

h h 1 . b d th 1 l' d l' f 7,8,9,10 2.4 T e met odo ogy 1S ase on e usua genera lse lnear orm, con-

sisting of: (i) a systematic component 11 = a + La. x.. uhere 11 is a linear o 1 1 

predictor variable, x. are explanatory variables ti = 1, 2, •.• ), and a. are 
1 1 

regression coefficients; (ii ) a random component representing the distribution 

of data about the reg~ession l~e, which may rome from a fa~ily of exponential 

functions; and (iii) a link function, f, 11= f(~) specifying the link between 

11 and the mean values, ~, of the dependent var'lable. In 'classical' linear 

regressl.on an identity link, 11 = ~, is used and the random component taken as 

Gaussian with variance independent 0{' f. But in modelling accidents it .J s usual 

to assume Poisson errors and a log link function, 11 = tn~. 

2.5 The most rudimentary models for the accident frequency contain flow 

variables only, in some simple algebraic combination - for example, as the total 

junction inflow Q. Allowing that without flow there would be no accidents, the 

power function 

a 
A = kQ ... (2) 

is about the simplest logically consistent form, where k and a are to be 

determined. 
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2 .6 Observations are of the nUMbers of accident s (AT) in a period of several 

years, T. Although such numbers are commonly regarded as Poisson variables, 

the frequencies, A, obtained from them by division (AT/T) are not. As it stands, 

therefore, equation (2) would have a non- Poisson error structure if the sample 

values of A were obtained in this way. It is easy to restore a Poisson struct ure 

by multi plying both sides of the equat ion by T: 

AT = T.kQa • •• (3). 

Then, taking a log link function 

11 = 9.nAT • •• (4), 

the coefficients a and k can be estimated from 

g.nAT = 11 = 9.nT + 9.nk + a !I. nO (5). 

~T is an 'offset' variable whose coefficient is constrained to unity. 

2.7 More elaborate flow models, A = k'Oa g. 
B 

Om ' lnvolving products of flows 

can be set up similarly. o g. and Om can either be sums of cOMponent flows, as 

in a 'cross-product' model where each represents the sum of inflows on opposite 

arms of a junction, or individual crossing movements, in which case A becomes 

the frequency of those accidents directly associated with the particular move­

ments. 

2.8 With a log link function, the simplest form of general relation incorporating 

geometric layout variables and junction control variables as well as flows is: 

a AT = T .kOg. exp 1: b .g. . ~ ~ 
~ 

where the g., i=l,2, 
~ 

••• , represent layout and 

• •• (6), 

control variables, and b . are 
~ 

coefficients to be determined. g. can be of two types: 
~ 

continuous variables 

(eg road width) or discrete variables (usually 2-level)denoting the presence or 

absence of a feature (eg a road island). The effects of the latter can be put 

in a somewhat clearer form when their coefficients have been determined, by 

writing exp b .g. = (1 - c j
g .) where c. = (1 - exp b j ) and gJ' is the variable, 

J J J J 
taking the value 0 or 1. This shows directly the percentage reduction (100c.) 

J 
when the feature is installed. 

2.9 For clarity we have omitted pedestrian flows from equat.i.on (6), and do 

so for the remainder of the paper. The principles applying to them are 

essentially similar, and though they are a very important part of the accident 

picture, in methodological terms they would over-complicate the outline analysis 

we present here. 

4 



2.10 Maximum likelihood estimates of the coefflcienJr.s in these models can be 
9 10 determined by means of the programs GL IM or GENSTAT ,Ri. ven t.~e linl< function 

and e~ror structure. For relations of the type in equation (6), the method 

employed has been first tG enter the flow variables alone; then to enter the 

geometric and control variables one at a time, taking first those which produGe 

the largest reduction in the discrepancies between the fitted and observed 

values of AT. To explore the whole of the sample space means examini ng the 

effects of many variables. The most appropriate functions in t he TRRL studies 

were chosen as those which combined simplicity, functional a?propriateness, and 

statistical validity. Maycock and Hall examined in some detail t he robustness 

of the functional form of equation (6) and found it superior' to the alternative 

forms tried. Readers are referred to the TRRL Reports4 ,5,6 for a full discussiOn. 

Significance testing; goodness of fit 

2.11 Significance testing is based on scaled deviance, a general ised goodness­

of-fit statistic D defined by 

D = -2 {tn(maxLc ) - 1n(maxLf) } • •• (7), 

where'tn(maxL
C

) and tn(maxLf ) are respectively the log likelihood of the current 

model and of a 'full' model which fits all of the data points exactly. For 

Poisson distributed data 

D = 2L(Y,1n(y,IIl') + Ill.' - Yl.') ••• (8), . l. l. l. 
l. 

where i = 1,2, ••• n runs over the n data points. For pure ?osson errors and 

1J>8.5 accidents per year, D is asymptotically distributed like x2 with n-p-1 

degrees of freedom for a model with p parameters. For a well fitting model 

with such errors, the expected value ~(D) is appr'oximately equal to the number 
4 of degrees of freedom. For two nested models with df1 and df2 degrees of 

freedom respectively, the difference in D is distributed lilte x2 with (df1 - df2 ) 

degrees of freedom. In principle this provides a basis for significance 

testing. However, 1:.he data do no'l:, ahH -jS conform to the assumption of pure 

Poisson errors and 1J>0.5, and other strategies have then to be employed. 

Consider first deviations fron Poisson errors, which arise from unexplained 

between-site variations in the accident frequency. 

2.12 Extra-Poisson variation. Residual between-site error is conveniently 

l' epresented by a probability density of r-form. Tah:en 1I/ith the within-site 

Poisson errors, the sampling distribution over all sites can be shown corres-­

pondingly to be negative binomia112 • D calculated from equation (8) is then 

no longer distributed like X 2 • In these circumsJeances the mean dev.iance ratio, 

MDR, can be used9 instead of D: 
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MDR = 
Devi ance differ·ence/ (df r -df 2) 

Residual deviance/df 

• •. (9) 

where the residual deviance and df correspond to the best fitt ing model. NDR 

is distributed approxinately as an F- statistic. An alt ernative is to specify 

negat ive binomial errors directly in GLIM j since the negative binomial distri­

bution has two parameters, II and S: 

P{ ) _ r{s+y) 
y - r(s)y! • • ' (10) 

and S is unknown, the process requires some assumption about S. Maycock and 

Hall assumed all unexplained between-site error belonged to a si~gle r - dist~ibution 

and adjusted S progressively until, for the best models, the deviance, D', 

became equal to the number of degreees of freedom, the condi·~ion for a well­

fitting model with negative binomial errors;4 D' is given by 

D' = 22:{y.tn(y'/1l.) - (y. + S)J!.n/(y. + S)/(ll. + S»} . ~ ~ ~ ~ ~ ~ ~ 
~ 

••• (11) I 

and is distributed like x2 • The coefficient estimates derived in this way for 

roundabout accident models were almost identical to those using a Poisson 

structure and the MDR statistic; estimates of the standard errors were about 

25% greater. When S is determined in this way the within-site and between­

site components of error can be separated in the models. 

2.13 Cases when ll< 0.5. Here, values of D fall below those expected for X 2 • 

MaycoCk3 takes up this issue in another paper. ivlaher11 has shown that for such 

cases the quantity 

(D - f; (D»/ {var(D)}~ ... (12) 

may be used as a t-statistic, where D is as befo~e and f;(D) and Var(D) are 

calculated using the fitted estimates of ~, ~i for sites i: 
N 

f;(D) = 2: 2: d.(y,~,),p(YI~.) 
i y=O ~ ~ ~ 

• •• (13) 

Var{D) = f; (D2) + [f;(D.,]2 ... (14) 

and 
I'! 

f; (D2) =2: L: d.2(YI~,),P(YI~.) 
i y=O 

~ ~ ~ 

p(yl~.) 
~ 



It is usually sufficient to take N=20 f Or C O~ lput ational PUr-poses . 

3. SOME RESULTS FROM THE THREE STUDIES 

3.1 The three TRRL studies completed over t he past several years each produced 

extensive and detailed results for a wide r ange of accident types and vehicle 

manoeuvres, and it 1S possible onl y to give some brief i llust ra:i ve examples 

here. The full results are given in detail in the original Reports. 

3.2 Traffic flows and turning products proved fundamental, and in all cases 

they were very significantly associated with the accident frequency. Their 

effects can be represented within a hierarchy of models fro~ 'global' t otal in­

flow models, equation (2), to disaggregate flow/geometry model s , equation (6,. 

However, it is only when accidents are brought into association with the rele-­

vant manoeuvres and intersecting flows that any lasting insight begins to emerge. 

Figures I, 3 and 4 illustrate the many interactions involved. tloreover, though 

they are useful in some applications, the coarser flow models inevita~ly sub~ 

sume correlations between flows and junction design features within the sample -

for example higher flows tend to be associa~ed with wider roads 1n the popula­

tion, and a properly representative sample will reflect that. It means the 

flow dependence in such 'flow-only' models will continue to hold only so long 

as these correlations are maintained in future design practice, And this in 

part circumvents the objective, which is to discover potential improvements in 

desi gn. Such implicit constraints are not obvious unless the effects of geo­

metric variation are separated. The separation of geometric variation in the 

'flow-geometry' models is thus of fundamental importance. 

3.3 Both total inflow models and cross-product models suffer from these draw­

backs. For total inflow models, the interpretation is further complicated by 

the dlfferent priority status of the inflows on different roads - for example 

at a T-junction where accident numbers \;ill depend strongly on the distribution 

of flows between non-turning major road traffic and minor road traffic. A total 

inflow model for a roundabout with balanced inflows between arms is therefore 

not comparable with one for a T--junction with very heavy major road flows. 

Total inflow models are not given here mainly for these reasons, and cross-­

product models are given as the coarsest level of modelling. For the models 

described in the following Sections, all terms and coefficients are significant 

at the 5% level or better. 

Four- arm roundabouts 

3.4 Figure 1 shows the primary accident types and traffic flows at roundabouts. 
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Because of the symmetry of the priority system the problem o f acc.i.dent and flow 

classification by manoeuvre reduces essentially to that for a single entry arm. 

Table 2 gives percentages of accidents by type. !t shows a very clear difference 

in accident patterns between small island roundabouts and c onventional rounda­

bouts (ie those with a large central island). At small island roundabouts 71% 

of accidents were of the entry- clrculating t ype whereas onl y 20% were at con­

ventional roundabouts, where single vehicle accidents (30%) and aPProaching 

accidents (25%) were relatively more important. 

TABLE 2: Percentage of accidents in the samples by accIdent t ype and junction 
category 

Rural T-junctions Traffic Signals Roundabouts 

Rear shunt 

Right turn 
from major 

Right turn 
minor 

Left turn 

Single vehicle 

Pedestrian 

'other' 

19.7 Approaching 8.7 Approaching 

22.1 

I 
127 •4 

'I 
I 3.4 

114 •4 
I 
I 1.8 
I 

111 •2 

Principal right 26.5 
turn 

other right turn 
'Right angle' 
Left turn 

Single vehicle 

Pedestrian 

'Other' 

6.5 
13.2 
3.2 

8.7 

28.8 

4.3 

Enterine­
circulating 

Single vehicle 

Pedestr~ an 

'Other' 

Small Conventional 
r-. 

7.0 

71.1 

8.2 

I 
3.~ 

. 10.2 

25.3 

20.3 

30.0 

6.4 

18.0 

3.5 Total accident frequencies for the whole roundabout could be predicted by the 

simple cross-product model 

A = K
1

(QP)0.68 ••• (15) 

where Q and P are the sums of inflows on opposite arms. The constant Kl was 

determined separately far small-island roundabouts and conventional roundabouts, 

and differed between them: K1 = 0.095 for the first, K = 0.062 for the second. 

3.6 As an example of a particular accident type, we consider entry-circulating 

accidents. These were associated with the intersecting flows Qe and Qc (Figure 1) 

and could be predicted by 

A = K Q 0.68 Q 0.36 
ec 2 e c ... (16) 

Again the constant was determined separately for the two classes of roundabouts 

with the result K2 = 0.088 for small-island roundabouts, K2 = 0.017 for conven­

tional roundabouts. The difference arose from characteristic differences in 

geometric layout between the two classes, \Ihose effects were resolved by the 

full model where the layout parameters defined in Figure 1 al'e represented 
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explicitly: 

A = 0.046 Q 0 . 65Q 0.36 Kexp(- 40.3C + 0.16e(1 _ v/18) _ 1. OUlF» ••• (1-1) 
e C e c e 

This expr ession consists essentially of three parts. The fj r st i s the flow 

function; t he second, K = exp(0.21P - 0. 008e + 0.09g) is a multiplier repre.. m 
senti ng t he ef fect of layout and traffic parameters in effec~ 'fixed' from the 

designer's point of view; and tt1€.' thh d - the t ~l ainder of the expr essiQ1 - is a. 

mul t i plier determined by the paramet ers C , e, v, and RF whi ch can be adjusted by e 
t he deslgner. The most important of the adjustable paramec~ s t o ernerge was t he 

minimum vehicle path curvature on entry Ce : increases in Ce pr oduce marked 

r educt ions in the accident frequency. 

3. 7 Expressions of similar general form were derived for the ot her accident typeR. 

A common feature to emerge from this study, and the others, was t hat , some geonetric 

parameters influenced several different accident types in different ways, ~oducing 

a compound effect depending on flow. Figure 2 summa~tses the results for the 

effect of Ce on all accident types at one arm of a roundabouc. It can be se~1 

that although its effect is slightly to increase single-vehicle accidents and 

approaching accidents, t he reduction in entry- circulating accidents dominates, 

and overall accidents are reduced very significantly. 

Rural T- junctions 

3.8 These lackthe symmetry of the prl.ority sys"'.;em at l'oundabouts and accident 

types and flow interactions are rather more complex. Figure 3 shows the main 

classes. From Table 2, right-turning accidents form the laz'gest accident cate-

gory, accounting for almost half the accidents. Layouts with painted areas on 

the major road to separate turning traffic (lIghost islands", see Figure 3) were 

associated with 35% fewer accidents overall at the high flow sites. Table 1 shows 

the accident rate to be much lower than at the other junction types, but this reflects 

mainly the relatively high proportion of non~ Lurning major road flows compared 

to the minor flows (see 3.3 above). Accident severities were substantially higher 

than at the other junction types. The simple cross-product model for total 

accident frequency tooit the form 

A = 0.24(QP)0.49 (18) 

where Q is the sum of the flows into the junction from the major road arms and 

P is the inflow from the minor arm. 

3.9 We use two main accident types to illustrate the disaggregation into 

components - simple rear end shunts in the major road stream ·3.pproaching from 
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left to right on Figure 3, and right-turning accidents from t he minor road. For 

the f~rst, the frequency As was strongly associa: ed with the flows Q1 and Q2 and 

could be predicted by 

• •• (19) 

Submodels of this form developed for two classes of junction, one with ghost 

i slands on the major road and the other wi thou t, _~ ndicated 10Her frequencies 

with ghost islands. The full analysis also showed that the accident frequency 

decreased as the width of the major road, v1 , inc r eased. These effects are 

represented in the flow-geometry relation: 

• •• (20) 

where 6G = 1 for sites with a ghost island and zero for those without. As is 

thus less by 71% at sites with ghost islands. The interaction be~/een flow and 

geometric variables is illustrated by equations (19) and (20): in equation (19) 

correlations between flows and geometry are subsumed within the indices; in 

equation (20) the indices represent the dependence of Aa on flow at constant geo­

metry. The statistical separation of the two types of variation, with flow and 
5 with geometry, is described fully by Pickering et al • 

3.10 The second example is the right-turning manoeuvre out of the minor road. 

The accident frequency Ar' was associated with the flows Q3 and Q6' and the simple 

flow model took the form: 

• .• (21) 

and the flow-geometry model: 

Ar =0.038Q30.21 Q60. 72 
K' exp(0.14~1 + 0.37Ne ) • •• (2.2) 

where the symbols are as in Figure 3. K' is a 'fixed' term determined by the 

gradient g2: K' = exp 0.075g2 , and is unity at flat sites. The accident frequency 

is higher at the larger junctions where 1;1 and N are larger. e 

Four-arm urban traffic signal junctions 

3.11 These are more complicated still: the symmetry of priorities of the rounda­

bout case is again missing, and there is now a \Jid~ range of signal control 

variables to add to the basic geometric variables. Moreover, pedestrian activi\v 

is very significant, though we do not take the;" up here. The accident types and 

flow interactions are many, and accidents have to be carefully grouped to provide 
13 a basic structure. Jerry et al discuss this problem and provide an analysis of 

accidents at Canadian junctions. Figure 4 shows the main accident groupings 

adopted by Hal16 in the TRRL study, and the corresponding geometric and flow 

variables. We can only present a small f i t'l.c;':ion of the full l' esul ts here. 

10 



V1 

Arm 2 

03 R-L ahead flow on major 
01 L -R ahead flow on major 
02 Right turn from major 
06 Right turn from m'mor 
V 1 Ma'Jor road half-width (m) at 30m 
W Major road width at junction (m) 
Ne Number of entry lanes arm 3 
92 Gradient arm 2 

Rear shunts on major L-R (13%) Right turn from minor with major R- L (24%) 

\ 
\ 

/' 

I~C?' 1=1 
1==;;:; 1 17'-1 [2S]1== ;;; 11- -I 

-I 
, 4- Ej] \;= El 

1.....--:------.� bJ [EJ [8J r==~=-----_--I 

1tr 
ttt 

ill 1 
llrt 

lU 
Jll 

ill 

Fig. 3 Accidents at rural T junctions showing: rear shunu on the 
major road (left to right) and accidents between right turners 
from the minor road with vehicles travelling from right to 
left on the major road 

Transport and Road Research Laboratory PA 1567.3 



Arm 1 

1--' ~ @3] -..-.. 
-..~ 

1-:::1 
El I~-rcl 

(J - Angle bet ween oPPOsite arm '.tnd il,qht 
hand arm (d .. grees) 

DISP - Absolute value of centre line llisplacernent 
of arm in relation to oppositE' arm (m) 

03 - R ight turning flow on arm of I nterest 

08 - Ahead flow on oPPOsing arm 
PT8 - Proporflon of 2, wheelers 'm 08 

-If' 

• 
---.. 03 -_ .... 

I 

I 

Jr?1J 
~ 

m 
§ 

,US] 

, 
I 

r;mL--.-J' 
I~\....I 

PrincIpal 

I~I/ right turn 

1,,-1 
I~)'I 
~I--

\ 

\\ 
Fig. 4 Principal right turn dccidents at signals (arm 1 only) 

showing relevant geometric parameters 

Transport and Road Research Laboratory PA 1567.4 



3.1 2 Tte simple cross-product flow model for total junction aCcidents gave: 

A = 0.152(QP)0.63 •• • (23) 

where Q and P are as in the roundabout case. 

3.1 3 As an example of on~ accident type of many, we take the Principal right-turn 

aGc idents j this is the largest single group, accounting for about a quarter of 

all accidents, and has preoccupied designers for many years in trying to achieve 

safe and efficient designs. The accident frequency A per arm was associ at ed pr 
with the flows Q3 and Q8 : the simple flow model gave: 

• •• (24) 

and the model with all significant layout and control variables gave the rel ation~ 

(25) 

This relation is essentially in four parts: the first is the flow function; the 

second ,," = exp(-0.017e- O.lDISP + 2.76PT8) is a multiplier representing the 

effect of 'fixed' layout parameters; the third (1 + 0.326 ) and the fourth c 
(1 - 0.96s )exp{0.85C18 + 0.13C12 ) are multipliers representing respectively the 

effects of a central island (an 'adjustable' layout parameter), and of the signal 

control variables. Accidents are higher by 32% with a central island (6 = 1) c 
than without ( 6 = 0) , and lower by 90% with a separate right turn stage (6 = 1) c s 
than without ( 6s = 0). They increase as C18 , the arrival rate per second of 

green, increases, ie if the proportion of green time is decreased, and as the 

intergreen C12 increases. 

3.14 In all some fourteen predictor relations of this general form were developed, 

according to accident type, and are expounded in detail by Hall. The balance 

between the accident changes they produce as a function of the design variables, 

within the total frequency, has yet to be fully explored, as has the trade-off 

between accidents and vehicle delays. Taken together, they provide considerable 

insight into the accident risks, and how they might be reduced by design changes. 

4. FUTURE NEEDS 

The role of accident predictive relations 

4.1 In the Introduction, we gave three important uses of accident predictive 

relations. The first, to identify potential design improvements, is fairly 

self-evident. As to the second and third, to allow economic appraisal of road 

improvements and to investigate traffic management strategies, it is not obvious 
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a priori that they might not be achieved at a Father more modest lev~l by the use 

of "aggregate" rates (by road or junction type). In fact, the evidence points to 

the c onclusion that for urban traffic safety appraisal they c annot. The reasons 

ar e these. 

4 . 2 It is quite clear that traffic flow variables are crucial in determining 

accident frequencies. The relations are non-linear in the flows; simple rates 

per unit of traffic are not therefore sufficient to define accident numbers inde­

pendently of flow. Moreover, the functional dependence on traffic flow is 

different for accidents associated with the various different traffic manoeuvres 

at a junction. This means that the accident consequences of traffic redistribu­

tion within a network of roads can only be satisfactorily predicted by means of 

accident-flow relations which apply to the relevant intersect ing flows themselves, 

For example, a simple total inflow model cannot predict the accident reductions 

from banning right turns at a series of traffic signal junctions. Neither can a 

cross-product model. Similarly, the effects of changes in junction layouts on 

accidents, which depend upon the flows, will simply not appear in anappraisal 

unless sufficiently discriminating accident predictive relations are used. 

4.3 The same will apply for pedestrian activity. Pedestrian accidents are very 

significant: one-third of fatalities in GB are pedestrians, and 95% of pedestrian 

fatalities are in built-up areas. The provision and siting of crossing facilities 

will influence the patterns of intersecting vehicular and pedestrian flows, and 

hence the accident totals; but unless the accident predictive relations treat 

t~ese interactions explicitly, the appraisal of traffic management schemes will 

appear neutral to such things, and possible casualty reductions will be lost. 

Traffic management for safety 

4.4 These arguments point towards two needs: 

(a) a need for methods to predict traffic and pedestrian redistribution effects 

in road networks following traffic management changes, and 

(b) a need for sufficiently discriminating accident predictive models for the 

major components of road networks - the main types of junction and road 

link. 

4.5 Redistributional effects. Traffic assignment models already allow the 

effects of traffic assignments t o be predicted, given a matrix of origin­

destination demand flows. Pedestrian activity is more difficult to cope with, 

because of the adaptability of pedestrian travel patterns. and it is unlikely 
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t hat a directly equivalent form of modelling will prove feasible: bui because of 

the extent of the pedestrian acc i dent problem in built-up areas, and the poten~ial 

effects of junctions, crossing facili t ies, and strategic traffic re-routing on it, 

it will nonetheless be necessary t o make explicit allowance for changes in pedes-­

trian activity following traffic management \hanges. 

4.6 Junction t ypes and accident s. The d.i.stri but ion of ace idents between the main 

junction types and road links within bu ~ l t- up areas is shown in Table 3. The data 

are for 1983; equivalent figures have not been collated fo~ later years, but 

although absolute costs have risen by about 50% since 1983, t he distribution of 

costs between categories can be expected to be similar. Junctions generate nearly 

two-thirds of all accident costs, and links just over a third. Most accident costs 

TABLE ~ : Analysis of accidents in built-up areas in GB. The data are for 1983: 
broadly similar distributions of cos~s can be expec~ed for current 
conditions; absolute costs have increased by about 50% 

Road feature Accident 
Personal injury accidents 

(junction unless cost Percentage 

otherwise stated) fm total cost % involving 
---

pedestrians cyclist!'! 

carriageway roads 
I j 

aJor minor T 514 I 34 30 17 
~n .Single 

" !I 11 cross-roads 111 I 
..., 

1 65 ,286 
,14,734 23 14 I 

I 

I " 11 Y 21 1 
, 

2,960 28 10 
\ I I 

Private drives 51 I 3 I 7,449 9 22 
I 
I 

Signal cross-roads 62 4 I 8,501 30 11 
I 

Signal Ts 24 i 1.5 , 3,371 36 12 • 

Roundabouts 42 3 , 7,499 

I 
12 23 

10ther junctions 
I 

48 
. 

6,110 34 15 , 3 
I I I 

Links 51 6 ( 34 ' 55,383 , 3.Q 12 , I I 
On dual-carriageway roads I ! 

I , 
" I Major minor T I 40 3 . 3,970 i 30 14 

! 
, 

Signal cross-roads I 20 1 i 2,305 22 I 8 
I 

Other I 26 1.5 3,208 23 I 17 
I 

I I 
55 4 5,085 I -:.>1 .9 

are on si ngle-carriageway roads, primarily at T-junctions (34%) and on the 

links i hemselves .(;)4~~). Four-arm tra;"':::'c Gignal junction5 and roundabouts 

toget her aCCOu.l '.; ·[o~ ' 7%., 

these percentages only .'J",~o":i.Qe ~ oue im~ic3: ;o,~3. They saoJ nothing 
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about the susceptibili ty of the figures in the d.i.fferent categories to poss ible 

acc1dent reductJ on measures . Suc h suscep~ ibill ties are by their nature diffj cuI t 

to estimate until the accident r isks associated with particular vehicle and 

pedestrian manoeuvres, flows, and road layout and land- use characteristics have 

been established. The studies outlined in Section 3, which were mounted primarily 

to 1nvestigate potential de~lgn improvements also go some way to providing 

accident predictors for urban accident appraisal; but ~he analysis of Table 3 

shows that some 87% of the urban junct ion acc1dent bill ren:a1ns uncharted 1n 

these terms. The largest costs, £514m pa come from urban T- junc t~ ons . Urban 

r oad links generate a further £5l6m pa. So between them these two features alone 

account for more than £lOOOm pa in 1983 costs. 

4.7 Studies of urban T-junctions and r oad l i nks. brban ~- junctions differ 

substantially from rural ones in a wide range of f ac t ors, 1ncluding vehicl~ 

speeds, on-street parking, pedestrian densities, layout feat ures, and land-use 

characteristics. It is not feasible t herefore t o translate the results of the 

rural T-junction study into the urban context. ~either do any link accident 

models exist at the appropriate level of discrimination. ~e have therefore 

embarked on a major study of urban T- junctions and road links. The boundary 

between the two is a fine one, because of the multiplicity of minor access points 

along any urban link, ranging from very lightly trafficked junctions to private 

drives and retail access points. The sample will encompass ~bout 300 stretches 

of urban road links totalling around 150 km in length overall. Within this 

length we expect around 3600 very lightly trafficked minor priority junctions. 

Stratification will be primarily by traffic flow and pedestrian flows across the 

road, but will take account of land-use type and parl~ing acti vi ~,y. Th.~ s sample 

will be complemented by another comprising a further 300 busy T-junctions strati­

fied by major road flow, minor road flow, and pedestrian crossing flows . Acc:i£ent rb.!"a 

will be collected for the last five years (personal injury ~ccidents), and a 

comprehensi ve set of measurements made ,J: flow (by turninE7, movement at junctions). 

pedestrian flows, layout, and land-use variables and traffic behaviour variables 

{speeds, parking practices}. The study will take about two years. 

5 . CONCLUSION 

5.1 This paper has outlined new methodologies which can be use~ t o 

develop relat ions between accidents, traffic and pedestrian f.lows, and road 

1 ayout features by means of cross-sectional stud i es. .A. 1 though t he mini ~um data 

requirement is quite large, the yield, in terms of clearly di fferentiated 

results for a range of important traffjc and pedestrian conflict s, is high. 

Past studies have pointed to positive design imp~ovements encapsulated at several 
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points in British Department of Transport Advice and Standards. The accident 

predictive relations are, or will be, incorporated .in the widely used DTp 

computer programs for junction deslgn ARCADY2 (Assessment of ~oundabout Capacity 
14 15 and DelaY) ,PICADY2 (Priority Intersection Capacity and DelaY) ,and OSCADY 

(Optimised Signal Capacity and Delay)16. Traffic management appraisal calls for 

relations, of the type developed, to he used in conjunction with traffic assign­

ment models. There is substantial work to be done to establish a satisfactory 

basis for appraising the safety aspects of traffic management in built-up areas, 

and developing casualty reduction strategies. A major study is now in progress 

to investigate urban T_ junctions and road links. 

5.2 Whilst there are substantial international differences in road user behaviour 

and in accident numbers and patterns, much of the basic methodology of the studies 

described here could be applied elsewhere. Studies conducted on a similar basis 

in different countries could not only bring out similarities in accident causative 

processes but also provide valuable indications of which successful national 

practices could be tried elsewhere. It ~s planned to explore some of these issues 

in a short Workshop at the end of this Conference. 
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INTRODUCTION 

AN EXPOSURE- BASED TECHNIQUE FOR ANALYZING 

HEAVY TRUCK ACCIDENT DATA 

By , 
Snehamay Khasnabis 

and 

Ramiz Al- Assar2 

Mea:;ures of exposures used in accident analysis are complex and not 

well understood (3,6). In accident studies one must establish at the 

outset an appropriate exposure measure to compute accident rates (8,10). 

The development of such a measure might appear to be a simple task; 

however, certain conceptual problems must be resolved when the objective 

is to separate accident data into two or more vehicle categories (e.g., 

trucks, passenger cars, etc.). The problem arises from a lack of agree­

ment among traffic experts as to what constitutes exposure to accident, 

particularly when a comparison of accident data by different vehicle 

categories is the object of the analysis. Current literature on acci­

dent exposure indic~es little agreement among experts on how to inCOr­

porate exposure factors in accident analysis (9,15). 

Exposure in accident analysis can be regarded as "opportunity or 

risk of accident involvement," and can, in its simplest form, be mea­

sured by Vehicle Miles of Travel (VMT) generated on a given facility 

over a spe,ci fied period of time, usually one year. Implicit in the 

designation of VMT as exposure is the premise that increased travel 

generated on a given facility Iesults in greater accident risks. There­

fore, the measure of performance or the accident rate must reflect the 

effect of varying amounts of travel. 

1 Professor, Department of Civil Engineering, Wayne State 
University, Detroit, MI 48202. 

2 Graduate Assistant, Department of Civil Engineering, Wayne State 
University, Detroit, MI 48202. 
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The above rate is appropriate in comparing temporal or spatial 
t r ends in accident experience. However, certain methodological problems 
would arise if one were to use the same measure in comparing accident 
data for different vehicle categories, e.g., heavy trucks vs . light 
trucks . The object of this paper is twofold: first to address this 
methodological issue, and second to present a procedure for analyzing 
accident data involving trucks of varying sizes, along with a casestudy 
application. 

BACKGROUND INFORMATION 

By extrapolating the definition of exposure for the purpose of ana­
l yzlng truck accident data, one could compute the following: 

Truck Accident Rate = Number of Accidents Involving Trucks 
VHT Generated by Trucks (A) 

The use of the above measure implies that for a specific vehicular 

category, exposure to accidents is caused by travel generated only by 

that type of vehicle. It can, however, be argued that exposure to acci­

dent for a particular vehicle type i is caused not only by travel gene­

rated by type i itself, but also by travel generated, 1n part, by all 

other types of vehicles present in the traffic stream. For example, a 

total of 70,000 truck accidents was recorded in Michigan in 1982, where 

a truck dccident is defined as one that involves at least one truck. 

Note that these accidents involved approximately 76,000 trucks and 

48,000 non-trucks (~stly passenger cars). An argument could be made 

that truck accidents are, at least in part, the result of conflicts 

between trucks and nontrucks, as evidenced by the involvement of 48,000 

non-trucks. Thus, the measure used to compare accident data should 

reflect the exposure effect of these non-trucks or, alternatively, the 

rate should have in the numerator those accidents that involved only 

trucks. 

Khasnabis, et al., in their earlier research, discussed the above 

methodological issue, and presented three possible approaches for analy­

zing accident data involving specific vehicular categories (11). In the 

above study, the authors used "trucks" and "passenger cars" as the 

specific vehicular categories and demonstrated the application of these 

approaches using an accident data base for the state of Mi chigan. The 

three approaches, presented briefly, are as follows: 
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~oach 1 

Approach 1 requires the categorization of the accident data into 

truck accidents (accidents involving at least one truck) and passenger 

car accidents (accidents involving at least one passenger car). Next, 

the percentage of passenger cars in truck accidents is computed, and the 

VMT attributable to passenger cars is included in the denominator along 

with the VMT for trucks . A similar procedure is followed to include the 

tr uck VMT in the compilation of the passenger-car accident rate. Thus, 

by the above definition: 

Truck Accident Rate = Accidents Involvin at Least One Truck 
Truck VMT + Contribution of VMT by Pass. Cars) 

Note that the purpose of including the contribution of VMT by pas­

senger cars in equation (B) is to account for the increased opportunity 

of interaction resulting from the presence of other vehicles in the 

traffic stream. In computing the accident rate for passenger cars by 

this method, a similar contribution by trucks in the VMT attributable to 

truck-car accidents must to be added in the denominator. 

Approach 1 has one inherent deficiency. Comparison of the accident 

rates for the two vehicle categories by this method does not ensure the 

use of mutually excIUsive data bases. Specifically, an accident between 

a truck and a passenger car (which is considered a typical truck acci­

dent) would be accounted for in both categoreis by this method, thus 

leaving the analysis open for interpretation. 

Approach 2 

Approach 2 requires the development of a rate based on a numerator 

containing the number of vehicles involved in accidents rather than the 

number of accidents. This approach represents a significant departure 

from the traditional practice used in most accident analyses, where the 

number of accidents (as opposed to the number of vehicles) has been used 

in the numerator. Thus, according to this approach: 

T k I 1 t R t - Trucks Involved in Accidents 
ruc nvo vemen a e - Total Truck VMT 
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Note that equation (C) ensures the use of mutually exclusive data 

bases with no overlap of sample space in the two rates to be compared. 

However, the method totally disregards the concept of "opportunity for 

interaction" between different vehicles by separating trucks and passen­

ger cars into the two distiLct categories. Also, the use of number of 

vehicles in the numerator may unrealistically "inflate" the rate for 

passenger cars due to the fact that most multi-vehicle truck accidents 

involve a passenger car as the second vehicle, while most multi- vehicle 

passenger car accidents do not involve a truck as the second vehicle. 

Approach 3 

Approach 3, an outgrowth of approach 1, attempts to incorporate 

into the analysis the use of mutually exclusive data bases, ensuring 

that a given accident is considered only once as an entity in a compari­

son pair. The procedure requires the computation of three sets of 

accident rates, as follows, even though the objective is to compare 

accident involvement by two types of vehicles. 

Truck-Only Accident (TOA) rate = Number of Accidents Involving Trucks Only 
(Ft x Truck VMT) (D) 

Passenger Car Only Accident (POA) Rate = Accidents Involving Passenger Cars Only 
(F x Passenger Car VMT) 

p 

Combined Accident (CA) Rate = Accidents Involving All other Vehicles 
(VMT Attributable to All Other Vehicles) 

where 

Number of Trucks Involved in All Truck Accidents 

Number of All Vehicles Involved in All Truck Accidents 

and 

F Number of Passenger Cars Involved in All Non-truck Accidents 
p: Number of All Vehicles Invovled in All Non-truck Accidents 

Note that in equations (D) and (E) the numerator is the number of 

accidents in which all of the vehicles involved (as opposed to at least 

one vehicle, as used in equation C) are vehicles of a given category, 

i.e., truck or passenger car. The numerator and the denominator in 

equation (F) are the complements of the accidents and exposures, respec-
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tively, considered together in equations (D) and (E). Thus, all acci­

dent and exposure data not considered in the previous two equations are 

contained in the last equat ion. Further, in equation (G), a truck 

accident is one that involved at least one truck. Similarly, in equa­

tion (H), a non- truck accident is one that does not involve any truck at 

all. The advantage of using equations (D), (E) and (F) 1S that each of 

the three categories represents mutually exclusive and homogeneous 

subsets of the data base, with no overlap in the sample space. Note also 

that the limiting value of Ft and Fp is between 0 and 1. In reality, 

however, Ft is likely to be within a range of 0.6 and 0.7 and Fp between 

0.85 to 0.95, with very littl e year-ta-year variation. 

Scope of This Paper 

The procedure developed by Khasnabis, et al. was used to analyze 

truck and passenger car accidents in Michigan (11). However, it can be 

used to study any two or three accident categories, where the assessment 

of the relative role of these vehicular groups is the object. In Mich­

igan, trucks have historically accounted for only 15% of all travel 

expressed in VMT, and yet at least one truck is involved in 25% of all 

accidents (10,14). The increasing number of highway fatal ities in 

recent years has caus~d researchers to question the relative role of 

trucks (particularly heavy trucks) in the incidence of traffic accidents 

(4, ~, !l). Additionally, the passage of the 1982 Surface Transpor­

tation Assistance Act, which made it possible for heavier, longer and 

wider trucks to operate on selected national highways, has raised con­

cerns in the minds of many safety experts (12, 16). 

The purpose of the research from which the paper is developed was 

to adapt one of the three procedures to gain an understanding of the 

phenomenon of heavy truck accidents in Michigan, by analyzing the his­

torical accident and exposure data. The following definitions have been 

used in this study: 

Accident: An incident for which an official accident report was 

filed. In Michigan, all acci dents involving personal injury or property 

damage exceeding $200 require an official report . 
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Truck Accident: An accident for which at least one vehicle was 

coded as being either a straight truck (single unit) or a semi-tractor. 

Double -Bottom (DB): A combination of a tr u: k or truck- tractor and 

two trailers, with an overall length exceeding 55 feet (up to a maximum 

of 65 feet). 

Single-Bottom (SB): A combination of a trUck or truck-tractor and 

one trailer. 

The specific objectives of this paper are as follows: 

1. To present a procedure for analyzing heavy truck accident data by 

proper incorporation of exposure factors involving vehicles of 

different categories. 

2. To determine if there is any significant differeQce in the accident 

experiences of the three trUck categories, Double-Bottom Trucks, 

Single-Bottom Trucks, and all other trucks, as reflected by the 

I3- year data base (1971-83) in the state of Michigan. 

METHODOLOGY 

A modified form of approach 3 was used to gain an understanding of 

heavy truck accident phenomena. In equations (D) and (E) the factors Ft 

and F were introdu~~ partially to discount the effect of other vehic­
p 

les in the exposure estimation. Using the same approach, the following 

rates can be derived: 

Double-Bottom Only (DBO) Rate Number of Accidents Involving DB's onl:i = FD x DBO VMT 

Single-Bottom Only (SBO) Rate Number of Accidents Involving SB's onl:i = FS x SBO VMT 

All Other Trucks (AOT) Rate Number of Accidents Involving AOT's = AOT VMT 

where F -_ Number of DB's Involved in all DB Accidents 
D Number of All Vehicles Involved in DB Accidents 

and FS 
Numbe~ of SB's Involved in all SB Accidents 

= Number of All Vehicles Involved in SB Accidents 
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Note that in equation (K), a DB accident is one that involved at least 

one DB truck and similarly in equation (L), an SB accident is one that 

involved at least one SB truck. Unfortunately, during the study of the 

heavy truck accident data, relevant information to compute the parameter 

FD and Fs was not available. Hence the numerical values of FD and FS 

were assumed unlty. The authors recognize that the validity of this 

assumption is questionable, because it partially ignores the "oppor­

tunity for interaction" concept associated with measurement of exposure. 

However, since the emphasis of this paper is 00 methodological aspects 

and the case study is for demonstration of the proposed approach only, 

the above assumption appears acceptable. It was felt intuitively that 

numerical values of FD and FS would not be drastically different from 

each other; hence the conclusions of the case study are likely to remain 

unchanged, even though there could be some changes in the accident rates 

computed, if realistic values of FD and FS were used. 

A two-stage analytic procedure was used to conduct the study: 

a) In stage I, an overall statistical analysis of the truck acci­

dent data was performed for the analysis period 1971-1983. A 

two-way analysis of variance was performed to obtain a broad 

understandJAg of the most significant factors contributing to 

truck accidents. 

b) In stage 11, accident data were categorized into three groups: 

Class of Trafficway, Severity of Accidents, aod Type of Vehi­

cle. The purpose of this categorization was to create a more 

uniform data matrix to permit a better comparison of the 

accident data. 

Development of Database 

Two major databases were developed on an annual basis for each of 

the 13 years of accident and exposure data. These are briefly discussed 

below. 

Accident Data: Accident data were collected for three different 

categories, namely, Double-Bottom truck accidents, Single-Bottom truck 
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accidents, and All Other truck accidents. This data was divided into 

three categories according to severity: Fatal, Personal Injury, and 

Pr operty Damage. The accident data were furthered categorized into 3 

classes of trafficways. 

VMT Data : There were two primary sources for calculating truck VMT 

data: The Highway Statistics il) and the American Trucking Trends 1!). 
For each of these two sources, total VMT was calculated by multiplying 

the number of trucks registered in the State of Michigan by the average 
travel rate in miles per truck, computed from nationwide dat~~ - -The- --.-... ' -. ---

implicit assumption was that there is no significant difference in the 

nationwide and statewide travel rates. No information on travel rate 

for trucks for the State of Michigan was available. An assumption was 

necessary. 

The VHT data generated were compared with a third independent data 

source, namely, the five-year census data based on information collected 

through the "Truck Use and Inventory" survey, available for the years 

1972, 1977 and 1982 (2). The relative closeness of the data from these 

three independent sources indicated that the information generated was 

realistic. It was also assumed that the travel generated by out-of­

state trucks was balanced by travel generated outside the State by 

vehicles registered~thin Michigan. No effort was thus made to account 

for truck travel generated in the State by out-of-state trucks, or to 

discount travel generated by Michigan trucks outside the State boun­

daries. 

Truck VHT data thus obtained was divided into two categories, 

Double-Bottom Trucks and Single-Bottom Trucks, with the assumption that 

the travel generated by these two vehicular categories is portortional 

to their corresponding registration. Lastly, the VMT data compiled for 

each of the three vehicular groups was further categorized into three 

class of trafficway follwing a similar estimation procedure. In the 

absence of any information on truck VMT by functional classification of 

highways, the only way to derive est.i.mates was to use the classes of 

trafficway (CTW) used in the census data; these were: 
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Long range: [Those traveling more than 200 miles.] 

Short range: 

Local: 

[Those traveling less than 200 miles.] 

[Shar t distances.] 
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It was assumed that long-range trafficways are facilities with the 

highest design standard (i.e., interstates and expressways), while those 

in the shorter range categories are major and minor arterla1s and/or 

collectors. 

Data Analysis 

A three- step process was followed to compute the accident rates. 

First, information on the number of annual accidents was classified into 

a three-dimensional matrix, "TOV" (Type of Vehicle), "eN" (Class of 

Traffic Way), and "SOA" (Severity of Accident) (27 cells, with three 

levels for each dimension). Next, VHT data was categorized into three 

classes of Trafficway (CN), following the procedure described above. 

Finally, accident rates were compiled according to equations (1), (J), 

and (K), with data obtained from the first two sets. 

Two types of statistical tests were performed. In stage I, a 

two-way Analysis of Variance (ANOVA) was conducted following the princi­

ples of factorial design, using the Statistical Package SPSS. Standard 

t-test were conducted in Stage 11, which compared the differences be­

tweens the mean accident rates of the two vehicular groups, categorized 

by the class of trafficway and severity of accident. A null hypothesis 

was set up and testee·for the accident rates as follows: 

NULL HYPOTHESIS (HO:): There is no significant difference between 

the mean accident rates of a specific severity group and class of 

trafficway of the compared types of vehicles. 

A 5 percent level of significance ( ~ = .05 ) was used for these sta­

tistical test. The analysis of variance and "t" - tests required the 

assumption of the normality of the distribution of accident data. The 

authors recognize that the validity of this assumption is questionable 

and suggest either a pre-testing of normality of distribution or loga­

rithmic transformation of the variables to ensure normality in future 

studies. 

RESULTS 

The results of the statistical analysis are presented here for each 

of the two stages: 
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Stage I: An analysis of variance (ANOVA) was performed following 

t he "Factorial Design" type of statistical experiment, as follows·. 

Factor Level 

1. Type of Vehicle (TOV) 3 levels - Sin81 e Bottom (SB), 

Double Bottom (DB), and All 

Other Trucks (AOT) 

2. Class of Trafficway (CTW) 3 levels - Long Range, Short 

Range, and Local 

The ANOVA performed for total accidents and fatal accidents are 

reported separately in Tables 1 and 2. A total of 119 observations is 

included in each of these ANOVA tables, being the result of three TOV 

levels, three CTW levels, and thirteen years of data; the measure of 

performance is the number of annual accidents per vehicle miles of 

travel, computed according to equations I, J, and K. 

Table 1 shows that for total accidents, both the main effects (CTW 

and TOV) and their two-factor interaction (CTW x TOV) are statistically 

significant at the 5 percent level. To provide a more direct interpre­

tation: 

(1) Accident experience changes significantly with changes in the 

three vehicular categories for the same class of trafficway 

(TOV main effect). 

(2) Accident experience changes significantly with changes in the 

classes of trafficway for the same type of vehicle (CTW main 

effect) . 

(3) Accident experience changes significantly with changes in the 

vehicular categories as the class of trafficway changes, or 

vice versa (TOV x CTW interaction). 

Table 2 shows similar data for fatal accidents. Contrary to pop­

ular belief, neither the type of vehicle, nor the class of trafficway, 

nor their interaction appear to have any statistical significance. The 

lack of significance here, the authors feel, should not be used to infer 
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that the variables are not important. Perhaps ANOVA is a crude tool 

used for a delicate operation, when the data base suffered from low 

frequencies . The test presented in Stage 11 addresses this question in 

greater detail. 
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Table 1 

ANOVA Results: Effect of Class Trafficway (CTW) 
and Type of Vehicle (TOV) on Total Accident Rate 

Source of Variation Sum of Squares DF Hean Square F 

Explained 1. 026 8 0.128 11. 919* 

-Main Effect 0. 507 4 0.127 11.782-.'( 

- CTV 0.218 2 0.109 10.145* 

-TOV 0.289 2 0.144 13 .420~·r 

- Interaction 0. 519 4 0.130 12.056* 

Residual 1.162 108 0.011 

Total 2.188 116 0.019 
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Table 2 

ANOVA Results: Effect of Class of Trafficway (CTW) 
and Type of Veh1cle (TOV) on Fatal Accident Rate 

Source of Variation Sum of Squares DF Mean Square 

A. Explained 0.048 8 0.006 -
- Main effects 0.023 4 0.006 

- CTW 0. 011 2 0.006 

- TOV 0.011 2 0.006 

- Interaction 0.025 4 0.006 

B. Residual 0.638 108 0.006 

Total 0.686 116 0. 006 
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Stage 11: In this set of analyses, statistical comparisons of 

annual accident rates in var ious severity groups between DBO's and SBO's 

and between DBO's and AOT's for long-range and for short- range type 

facllities are presented. Tables 3 and 4 show that for the long-range 

facilities the DBO's have experienced significantly higher accident 

r ates than SBO's and AOT's respectively. The above conclusion is borne 

out by the rejection of the Null Hypothesis in all the tests. 

Results of similar analysis with short-range types of facilities 

ar e presented in Tables 5 and 6. In all the cases analyzed, the DBO's 

have experienced higher accident rates than SBO's or AOT's. From an 

inspection of the data presented, it is also clear that the accident 

rates for compatible cells are much higher for short- range facilities 

than for long-range ones. This finding supports an earlier finding in 

Stage 1, that class of trafficway is an important variable in explaining 

changes in accident rates. 

CONCLUSIONS 

This study was conducted as part of an unsponsored research project 

i n the Department of Civil Engineering, Wayne State University, during 

the period 1985-86. The objective of the study was to develop a pro­

cedure for evaluating-the relative role of heavy trucks in highway 

accidents, to demonstrate the feasibility of the approach by applying it 

to an actual case study, and to assess whether the type of facility has 

any effect on heavy truck accident experience. 

The procedure used is a modified version of an exposure-based 

method used by the principal author in an earlier study in conjunction 

with factorial design techniques, to compare truck accidents with 

passenger car accidents. Analysis of variance and ttests of means were 

used to examine the accident data for the State of Michigan, and conclusions 

are as follows: 
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(1) The procedure developed is a viable approach for analyzing heavy 

truck accident data and, for the most part, lends itself to the use 

of data commonly available from state transportation agencies, the 

U.S. Department of Transportation, and the U.S. Bureau of Census. 
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Accident Type 

Table 3 

Comparison of Mean Accident Rates 

Between DBO's and SBO's at Long Range Facilities 

Mean Rate* Test t calculated t critical DF Conclusion 

------ ------------------ ----------------------------- --- --------------------------- ---------------------
0.0001 SBO's 

Fatal vs. 5.04 1.782 
0.0005 DBO's 

0.0005 SBO's 
P.!' vs. 8.99 1.782 

0.0071 DBO's 

0.019 SBO's 
P.D. vs. 9.19 1.782 

0.0160 DBO's 

0.0017 SBO's 
Total vs. 10.04 1.782 

0.0242 DBO's 

HO: No difference between accident rates of compared class 

* Expressed as Number of Accidents Per Million VHT. 
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Accident Type 

Table 4 

Comparison of Mean Accident Rates 
Between DBO's and AOT's at Long Range Facilities 

Mean Rate* Test t cal culated t critical DF Conclusion ------------------------------------------------------------------------------------ -----

0.0005 DBO's 
Fatal vs. 4. 57 1. 782 

0.0001 AOT's 

0.0071 DBO's 
P.!' vs. 4. 93 1. 753 

0.0032 AOT's 

0.0160 DBO's 
P.D. vs. 5.99 1.734 

0.0070 AOT's 

0.0242 DBO's 
Total vs. 5.80 1.734 

0.0096 AOT's 

HO: No difference between accident rates of compared class 

* Expressed as Number of Accidents Per Million VHT. 
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Table 5 

Comparison of Mean Accident Rates 
Between DBO's and SBO's at Short Range Facilities 

Accident Type Mean Rate* Test t calculated t critical ----------------------------------------------------------------------------------- -
0.0001 SBO's 

Fatal vs. 2.89 1.782 
0.0049 DBO's 

0.0003 SBO's 
P.!' vs. 2.92 1. 782 

0.0721 DBO's 

0. 0008 SBO's 
P.D. vs. 3.01 1. 782 

0.1770 DBO's 

O.OOll SBO's 
Total vs. 3.00 1. 782 

0.2542 DBO's 

HO: No difference between accident rates of compared class 

* Expressed as Number of Accidents Per Million VHT. 
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Table 6 

Comparison of Mean Accident Rates 
Between DBO's and AOT's at Short Range Faci11ties 

Accident Type Mean Rate* Test t ca lcul a ted t critical DF Conclusion 
========c=============================~==================================--===== 

0.0049 DBO's 
Fatal vs. 2.61 1.782 

0.0005 AOT's 

0.0721 DBO's 
P. I . vs. 2.0 1. 782 

0.0225 AOT's 

0.1770 DBO's 
P.D. vs. 1 .97 1.782 

0.0605 AOT's 

0.2542 DBO's 
Total vs. 1.99 1. 782 

0.0844 AOT's 

HO: No difference between accident rates of. compared class 

* Expressed as Number of Accidents Per Million VMT. 
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(2) Both type of truck and type of facility as individual factors, as 

well as their interaction, appear to have significant effects upon 

truck accident experience in Michigan. 

(3) For all severity categories of accidents considered (Total, Fatal, 

Personal Injury and Property Damage), DBO's appear to have exper­

ienced higher accident rates than SBO's or AOT's. 

(4) 

(5) 

Generally, truck accident rates on long. range facilties appear to be 

lower than those on short-range facilities. This trend is expected 

because of the better design standards associated with long-range 

facilities. 

Because of problems associated with the availability of truck acci-

dent data, it was not possible fully to incorporate the concept of 

"opportunity for interaction" in exposure measurement in the case 

study analysis. The proposed procedure, however, allows for incor­

porating this effect if appropriate data is available. 

(6) Further studies are recommended to refine the procedure to include 

the contributions to exposure by other vehicles involved in heavy 

truck accidents in a manner compatible with the available data 

base. Also, in future studies effort should be made to pre-

test the normality of distribution of accident data, before 

ANOVA and~test are used. If necessary, operations such as 

log-transformation of accident rates should be conducted to 

ensure normality. Lastly, the "t"tests conducted on DBO's vs 

SBO's, are equivalent to performing multiple contrasts. 

Future research should use mUltiple range tests (e.g., 

Duncan's LSD) for such purposes. 

19 



REFERENCES 

1. American Trucking Trends, Department of Research and Transport American 
Trucking Association, Inc. , Washington D.C. annual. 

2. Census of Transportation, Truck Use and Inventory Survey, Bureau of 
Census, U.S. Department of Commerce 1972, 1977, 1982. 

3. Chapman, R., The Concept of Exposure. Accident Analysis and Prevention, 
Vol. 5, 1973, pp. 95-110. 

4. Chira- Chavla,T. , Cleveland, D.E., and Kostyniuk, L.P., Severity of Large 
Truck and Combination Vehicle Accidents in Over the Road Service: A 
Discrete Multivariate Model. Transportation Research Record 975, 
TRB, National Research Council, Washington, D.C., 1984, pp. 23-36. 

5. Chira- Chavala, T. and Cleveland, D.E., Causal Analysis of Accident Involve­
ments for the Nation's Large Trucks and Combination Vehicles. Transpor­
tation Research Record 1047, TRB, National Research Council, Washington, 
D.C., 1985, pp. 56-64. 

6. Greene, D.L. and Loeble, A.S., Vehicle Miles of Travel Statistics, Life­
time Vehicles Miles of Travel and Current Methods of Estimating Vehicle 
Miles of Travel, Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-
6327, Feb. 1979. 

7. Highway Statistics, Office of Highway Planning, Federal Highway Ad­
ministration; annual. 

-8. Jovanis, P. an~Dellear, J., Exposure-Based Analysis of Motor Vehicle 
Accidents, Transportation Research Record 910. 

9. Jovanis, P. and Chang, H. Modelling the Relationship of Accidents to 
Miles Travelled, Transportation Research Record 1068, National Research 
Council, Washington, D.C., 1986, pp. 85-89. 

10. Khasnabis, S. and Atabak, A., A Comparison of Accident Data for Trucks and 
for All Other Motorized Vehicles in Michigan, Transportation Research 
Record 753, TRB, National Research Council, Washington, D.C., 1980, 
pp. 9-14. 

11. Khasnabis, S. and Reddy, T.R., Systematic Procedure for Incorporating 
Exposure Factors in Truck Accident Analysis. Transportation 
Research Record 910, TRB, National Research Council, Washington, D. C., 
1983, pp. 36-43. 

12. Khasnabis, S., "Operational and Safety Problems of Trucks in No-passing 
Zones on Two-lane Rural Highways", Transportation Research Record 
#1052, National Research Council, pp. 36-44, 1986. 

306-G 20 



13. McGee, H.W., Synthesis of Large Truck Safety Research, Final 
Report, NUTSA, U.S. Department of Transportation, 1981.-----

14. Michigan Traffic Accident Facts. Michigan Department of State 
Police, Lansing, (annual). 

15 . Scott, R.E. and O'Day, J., Statistical Analysis of Truck Accident 
Involvements . Highway Safety Research Institute, Univ. of 
Michigan, Ann Arbor, December 1971. 

16. Twin Trailer Trucks, Transportation Research Board Special 
Report 211, National Research Council, Washington, 
D.C. , 1986. 

17. Vallette, G.R., et al. The Effect of Truck Size and Weight on Accident 
Experience and Traffic Operations. Final Report. Biotechnology, Inc. , 
Falls Church, Va.; FHWA, U.S. Department of Transportation, 1980. 

306-G 21 





ABSTRACT 

A Predictive Accident Model for 
Two-Lane Rural Highways in Taiwan 

by 

Kuo- Liang Ting 
and 

Chin-Lung Yang 

Department of Communication and 
Transportation Management Science 

National Cheng Kung University 
Tainan, Taiwan 70101 
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This study is concerned with identification and quantification 

of the complex relationships among geometric design elements and 

accidents, and with the construction of a predictive model of 

traffic accidents based on these physical factors and other 

operational characteristics. A complete data set covering 2-yeal 

period of accidents occurred on major two-lane rural highways in 

Taiwan is used for the analysis. To relax the more strict 

assumptions of normality and linearity, it begins by creating 

categorical variables through a series of statistical procedures. 

Several intercorrelated variables are either grouped into new 

variables to conform with design practice, or represented by single 

variables to produce meaningful results. Automatic Interaction 

Detection (AID) technique is then used to explore the structure of 

the refined data and to reveal interactions between variables. 

Prior to the construction of Multiple Classification Analysis (MCA) 

model, the interactions have to be identified and their 

significance tested. A graphic method accompanied by statistical 

tests has been developed in this study, which uses information 

directly obtained from the AID analysis. Consequently, the 
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int eractive terms are introduced in the MeA model to replace the 

corresponding raw variables. The model thus formulated performs 

reasonably well on the data set in spite of its inherent 

i.perfections. 
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INTRODUCTION 

A PREDICTIVE ACCIDENT MODEL FOR 

TWO-LANE RURAL HIGHWAYS IN TAIWAN 

Accident·s on two-lane rural roads have been examined by many 

researchers and are of great concern to highway engineers of many 

countries in the world. These roads constitute a large portion of 

highway facilities and involve relatively high accident rates. 

Geometric design, traffic use, frequency and charactar of 

intersectional and access conflict points, and physical condition 

on these routes vary widely. Thus, without some understanding of 

their interactive effects on safety on these roads, choices from 

alDOng many J;»osslble improvements and locations are particularly 

difficult, to achieve the greatest safety benefit from in~stments 

In highway modernization. 

Despite many studies, the understanding of the effects of 

geometic design on safety has not been adequate to predict the 

accident response to individual geometric design element changes. 

The effects of a few dominant elements have been identified; 

however, the obviously complex interactions among geometric 

elements and characteristics on accidents are neither well known 

nor adequately understood. 

The objectives of this research were to explore the 

interacth~ eff·ect of geometric design elements and traffic 

characteristics on accidents on two-land rural roads, and to 
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identify some promising prediction models useful in engineering 

decisions. Attention is limited to the provincial highways in 

Talwan with average daily traffic (ADT) values of 2,000 p.c.u.'s or 

greater. A procedure of joint use of two multivariate techniques, 

AID (Automatic Interaction Detection) and MCA (Multiple 

Classification _Analysis), was applied in the modeling phase. 

In the following section, previous studies and recent 

methodological developments in the area are reviewed. The proposed 

method is then explained, followed by the analysIs procedure and 

model r~sults based on real-life data. This paper Is concluded with 

a summary of the major findings and extensions of the research. 

Among many variables associated with accident analysis, 

traffic volume is usually considered the most important explanatory 

variable. Its effect on road accidents is somewhat better 

~nderstood and it is generally accepted that there is a positive 

relationship between YHER (vehicle-mile exposure rate) and ADT 

(Kihlberg and Tharp, 1968; Shannon and stanley, 1978). However, 

different relationship has been reported for tangent sections of 

road (aaldwin, 1946), or for single vehicle accidents (Zegeer and 

Hayes, 1979). When accident measures other than VHER are used, such 

as accidents per mile-year (HYER), the effects of traffic volumes 

are even stronger (Zegeer and Hayes, 1979; Billion and Stopher, 

1957; Versace, 1960; Cleveland and Kitamura, 1978; Cleveland, et. 

al., 1984 and 1985). The effect of access point density and its 

interactive effect with ADT were also lmportant, especially in 
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predicting multi-vehicle accidents (Cleveland, et. al., 1984 and 

1985). 

The discussion of other variables, such as geometric design 

ele.ents, Speed limit, etc., in the explanation of different type 

of accidents are enormous (for example: Gupta & Jain, 1973; Polus, 

1980, Cleveland, et. al. 1984 and 1985). The findings from these 

studies about the effects of geometric design elements on safety 

are mixed and conflicting, especially for lover range of AnT 

(Schoppert, 1957; Perkins, 1956; Rinde, 1977). The effect of a 

single geometric element is difficult to ldentify because of the 

mixing or confounding of these elements in actual highway 

installations (Rinde, 1977; HcBean, 1982). This probably results in 

overestimating the positive effect of better individual geometric 

improvements because higher-quality alignments are found more 

frequently with better cross-section geometric elements on high ADT 

facilities (Zegeer, et. al., 1981). The interacting effects of the 

individual elements and the high correlations among these elements 

were clearly shown in an early study using factor analysis 

(Versace, 1960). 

Mathematical models relating accidents to geometric design 

elements have been constructed by several researchers (Gupta and 

Ja1n, 1973, Roy Jorgensen and Associates, 1978; Blackburn, et. al., 

1978; Oraham and Harwood, 1982). The functional specifications of 

these models are generally of linear form; the model fit 1n terms 

of variance explained has been relatively poor. Exceptions to this 

can be found in the multiple linear interactive model developed by 

Dart and Hann (1970) and the flexible models using second 
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der ivatives suggested by Jara-Diaz and Gonzalez (1986) . 

In contrast to these models using continuous explanatory 

variables, a descriptive model rather than an explanatory one, has 

been constructed by Cleveland and KItamura (1978) to predict off­

road accidents. Same type of analysis using AID technique for 

exploration appeared in later versions of the model, with an 

attempt to fit simple categorical or mathematical models 

(Cleveland, et. al., 1984 and 1985). The grouping of desiqn 

elementR frequently used together as a result of design policies 

into sCI-called bundles has been recommended for effective modeling. 

In an earlIer application of AID technique, Snyder (1974) used a 

broader, but less-detailed set of explanatory variables which 

include the adjacent land use and physical and social 

characteristics of the region, as well as physical characteristics 

of the roads. With separate analysis applied to different type of 

facilities, no interaction terms are found in the additive MCA or 

regression model. 

METHODOLOGY 

A complex set of relationships exist involving travelers, 

vehicles, roadways and environments in a transport system for 

making trips, and thus in each accident occurrence resulting from 

occasional system failures that are not compensated for. Because of 

the complexity of the relationships as well as the large number of 

characteristics associated with accident occurrence, the traffic 

safety profession has discovered that direct theoretical analysis 

is of limited value. Hence, data developed from accidents 
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themselves are analyzed to search for these characteristics and 

relationships, called inductive modeling. The effort has been 

directed toward identifying the relationships between accident 

occurrence and geometric and traffic characteristics. The sample 

studied will be of site rather than accidents for obtaining the 

likelihood of accident occurrence under certain conditions. The 

data file Is thus road-segment based, which contains the accident 

history as well as the physical descriptors of the site. This data 

is to be analYzed by a~ropriate multivariate techniques. 

A model should be formula'ted to include the most significant 

explanatory variables or predictors and to combine them in an 

accurate structural form, sometimes called a construct. The 

selections of variables and the fucntional form are generally 

~uided by prior knowledge or based on theoretical considerations. 

To construct an inductive model based on a large number of 

predictors, an analyst always faces with problems such as: mixing 

of continuous and categorical variables; non-linearities in 

relationships; intercorrlations between the predictors; the 

interaction effects, etc. Nevertheless, the nonlinear effects and 

interactions among predictors are more difficult to deal with. The 

use of cross-classification tables (contlngeny tables) can relax 

some of the more restricted assumptions imposed by many other 

mlultivariate techniques. Despite its general simplicity and thus 

wide use, the method of cross-classification tables presents a 

serious problems in the analysis with a large number of predictors, 

each having several categories. The sample is soon segmented to 

subgroups characterized by sparse observations. 
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The approach proposed here is to use AID as a preliminary 

search tool, followed by MCA for model parameterizatlon, each 

compensating for other's limitations. Both techniques have 

advantages over conventional analysis of variance Or multiple 

re,gression technique in that the programs can accept predictor 

variables in form as weak as nominal scales, do not require 

linearity or somewhat restricted assumptions, and accept unequal 

number of observations in cells. 

The AID Technique 

Since its introduction in the mid-1960's ("organ and Sonquist, 

1963; Sonquist and Morgan, 1964), the AID technique has been widely 

adopted by marketing researchers (for example: Assae1, 1970; 

Armstrong and Andress, 1970; Green, 1978). Besides its limitations 

and inexpert use In the area being criticized by Doyle and Fenvlck 

(1975), the technique draws on no sample theory; thus no 

information can be obtained on the relative importance of the 

statistical significance of the predictors. 

The basic concept of the AID method is to partition the total 

sample into the most homogeneous groupings in terms of the variance 

in the dependent variable. All independent variables are 

categorical. The algorithm considers each variable in turn as the 

possible basis for splitting the sample into two subgroups. Thus 

for e ach variable that partition is found which maximizes between 

group sum of squares, defined as: 
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222 
BSS = NlYl + N2Y2 - MY 

where Nand Y are the sample size and mean of the dependent 

variable in the parent group. 

N1 and Y1 are the sample size and mean of the dependent 

variable in split group 1. 

N2 and Y2 are the sample size and mean of the dependent 

variable in split group 2. 

The program then splits the sample on that variable which affords 

the largest such between sum of squares. The two groups so found 

then become candidates for splitting. The process continues until 

terminated by one of the three stopping rules: a group becomes too 

small; the ~'riance in a group is too small; or no possible spIlt 

can significantly reduce BSS. 

The MeA Technique 

The MCA technique examines the interrelationships between 

several predictor variables and a dependent variable within the 

content of an additive model (Andrews, Morgan, and Sonquist,1967). 

MeA is directly related to analysis of variance in its more complex 

form; it can also be viewed as the dummy variable multiple 

regression, but with easier interpretation of the model 

coefficients. Mathematically, the model specifies that a 

coefficient be aSSigned to each category of each predictor; thus 

the score on the dependent variable for each unit can be calculated 

as: 
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Yi j . " n = Y + Ai + Bj + ••• + Ei j ... n 

wher e Yij ... n = the score of unit n who falls in category i of 

predictor A, category j of predictor B, etc . 

Y m grand mean of the dependent variable 

Ai = the effect of membership in the ith category of 

predictor A 

Bj = the effect of membership in the jth category of 

predictor B 

Bij .•• n = error term for this unit 

This set of coefficients can be obtained by solving a set of normal 

equations so that the sum of the squared errors is minimized. The 

normal equations can be solved by matrix inversion or by a series 

of successive approximation in an iterative procedure, which are 

available in most statistical analysis packages. The method assumes 

that the data being examined can be understood in terms of an 

additive model. When interactions are known to be present, one can 

use a combined variable, sometimes called a pattern variable, to 

replace individual variables. 

Tbe Proposed AIP/MCA Approach 

The basic concepts of using AID and MCA jointly are derived 

from the work by Cleveland, et.al. (1981), based on the search 

strategy suggested by Sonquist (1970) and Sonquist, et. al. (1971). 
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It has been applied in the area of marketing research by Newman and 

Staelin (1971). A similar approach of using AID as the preliminary 

search tool, but followed by a logit model, was used for the 

analysis of dichotomous dependent variables (Green, 1978). The 

balsic concept of the joint Use of two techniques is for them to 

serve complementary functions. The former technique provides 

guidance on which predictors, which categories within predictor, 

and which types of interactions to be included in the second-stage 

analysis. Yhe latter provides an explicit parameterization of the 

model and appropriate significance tests. The approach proposed 

entails the following steps: 

1. All the predictor variables are expressed categorically. 

The continuous ones have to be transformed by the least 

singificant difference method, one of several methods 

available today. The number of categories within various 

predictors should be as large as limited by the AID 

program. 

2. AID is applied as a screening procedure prior to the second 

stage of HCA. The results will suggest the existence and 

general pattern of interactions. 

3. The interactions are located by a graphic method and tested 

for significance by AHOVA. Only significant interaction 

terms are to be considered. 

4. The variable.s having strong interactive effects are 

grouped, becoming a pattern variable to be included in the 
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MCA analysis. 

5. After making sure the problem of extreme multicollinearity 

is not present, the MCA program is used to estimate the 

additive model. 

ANALYSIS AND MODBLS 

A data set containing information on traffic, geometric and 

environmental conditions, and accident experience on tWo-lane rural 

roads within the jurisdiction of Taiwan Provincial Government was 

analyzed. The accident data covering a 2-year period, over 393 

sections of major provincial highways, each 3 kilometers long, were 

acquired from the official source; however, only those accidents 

involving deaths and injuries were available for the analysis. The 

entire sample has not been further classified by accident type, 

such 8S single-vehicle or off-road, because it would result in 

extreme skevness in the dependent variable. The data describing the 

physical and operational characteristics of these roads were 

immediately available through the inventory files maintained and 

periodically revised by the Bureau of Public Roads, Taiwan. The 

information on traffic flow along each road section should be 

noticed. The range of ADT selected is between 2,000 and 15,000 

passenger car units (p.c.u.'s) per day, characterizing high-volume 

two-lane, rural highways. Due to the mixing of motorcycles in the 

traffic stream, it is believed that number of vehicles is not a 

good measure of traffic conditions. Vehicular counts of different 

types were thus transformed into p.c.u.'s by their passenger car 

8q,uivalenta (p.c.e.). The percentages of motorcycles and trucks and 
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buses, respectively, were retained as other variables to measure 

the extent of flow nonhomogeneity. These variables and others 

related to geometric designs are listed in Table 1. 

Table 1 - The Description of Data File 

Variable Name Description Unit 

VY1 Accidents per section No. 
V1 Roadbase width 11\ 
V2 Pavement width 1ft 

V3 Length of bridge w/ width <= pavement width m 
V4 Culverts w/ length (= pavement width Ho. 
VS Pipes w/ length (= pavement width Ho. 
V6 Intersections No. 
V7 Guardrail III 
ve Ditch ID 
V9 Signs Ho. 
VIO I~ightings No. 
V11 Length w/ grade 5-7' III 
V12 Length w/ grade 5-8' 1ft 

V13 Length v/ grade 5-9' m 
V14 Length v/ grade 5-10' 1ft 

V15 Length v/ grade 5-11' m 
Vl6 Length w/ grade 5-12' m 
V17 Length v/ radius (= 15m 11\ 
Vl8 Length w/ radius (= 30m m 
V19 Length v/ radius (= 45m III 
V20 Length w/ radius (= 60m 1ft 

V21 A.D.T. p. c. u. • a/day 
V22 Motorcycles , 
V23 Tr:ucks & buses , 
V24 A.D.T. vehicles/day 
V25 Ter:r:ain 
V26 Speed limit kph 

Data Transfor:mation 

Prior to AID/MCA analysis all the continuous explanatory 

variables have to be transformed into categorical ones. This was 

carried out by some statistical methods of making-no overlaps of 

aver:agea betveen groups, subject to the criterion of least-

Significance difference set at a certain level. The number: of 
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categories within each predictor was arbitrarily set to six, which 

was automatically reduced, if necessary, by the merging feature of 

the program. The correlation between roadbase width and pavement 

width exists in the sample, resulting from the design practices, 

but can be remedled by using a new definition of so-called bundles. 

other variables that are highly correlated in their own nature and 

make up a factor in the factor analysis were investigated, e.g., 

Var~ables 11 thru 16, 17 thru 20, and 21 and 24. Only one variable 

was chosen from each factor and was eligible for entering the model 

later. Finally, some variables that are of similar nature and 

measuring the same effect, i.e., culverts and pipes shorter than 

the pavement width and signs and lightlngs, respectively, were 

grouped together. The definition of roadway width bundles and the 

resulting categories in the explanatory variables are shown in 

Tables 2 and 3, respectively. 

Table 2 - Definition of Roadway Width Bundles 

Roadway width 
Bundle (M.,l) 
category 

1 
2 
3 
4 
5 
6 

The AID Analysis 

Roadbase Width 
(VI) 

6.4- 9.0m 
9.0-10.5m 

10.5-l2.5m 
12.5-15.0m 

9.0-12.5m 
12.5-15.0m 

Pavement Width 
(V2 ) 

6.4- 8.0m 
8.0-10.5m 

10.5-12.5m 
12.5-15.0m 
6.4-l0.5m 
8.0-12.5m 

AID was first applied to the data using the variable codes of 

Table 3. Because fourteen potential variables, each ranging from 2 
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Table 3 - Definition of Categorzied Variables 

Variable 

NEW1 
V3 

NEW4 

V6 

V7 

V8 

NJ~W9 

V16 

V20 

V21 

V22 

V23 

V25 

V26 

Definition 
if New 

V1 & V2 

V4+V5 

V9+V10 

No. of 
Categories 

6 
6 

3 

2 

6 

6 

4 

2 

3 

3 

6 

6 

3 

4 

15 

Range Coding 

See Table 2 
1=0-5 
2=6- 10 
3=11-20 
4=21-25 
5=26-40 
6=41-1000 
1=0- 1 
2&2-3 
3=4-7 
1=1 
2=2-26 
1=0-25 
2=26-90 
3=91-130 
4=131-450 
5=451-700 
6=701-2798 
1=0-280 
2=281-800 
3=801-1300 
4=1301-1850 
5=1851-2800 
6=2801-4869 
1=0-20 
2=21-30 
3=31-50 
4=51-238 
1=0-30 
2=31-1310 
1=0-50 
2=51-100 
3=101-691 
1=2054-5400 
2=5401-11100 
3=11101-14729 
1=14-20 
2=21-30 
3=31-40 
4=41-50 
5=51-60 
6~61-79 
1=3-5 
2=6-10 
3=11-15 
4=16-20 
5=21-30 
6=31-45 
1=level 
2=r011ing 
3=mountainous 
1=30 
2=40 
3=50 
4=60 



to 6 categories, were involved, the output would become voluminous. 

The AID branching was truncated at the point where the minimum 

subgroup size of 5 or the reducibility criterion of 0.6' (in 

BSS/TSS) was not met. This AID run explains 40.86' of the variance. 

Figure 1 shOWs a partial description of the AID tree diagram that 

emerged from this stage of the analysis. 

Note that the sample is first split (at level 1) on the 

variable of roadway width bundles. In the category of the worst 

design standards of 2-lane rural roads, pavement width between 

6.4-8 ~ters and no lateral clearance, the major contribution to 

variance explanation is from splits based on the length of roadside 

ditches and on the terrain. In general, the worst-designed roads on 

level terrain (Group 22) have significantly more accidents while 

those in rolling or mountainous terrain (Group 23) or those with 

longer roadside ditches (Group 21) experienced fewer accidents. 

In the category of better-designed roads, most of them on 

level terrain having wider pavement with/without lateral clearance, 

the important explanatory variables are traffic related, ADT 

(in p.c.u.'s) and' of motorcycles. In the categOrY with 

mortorcycles consisting 50' or more of the traffic, the road 

sections with fewer signs and lightings (Group 10) or those on 

level terrain with longer guardrails as well as more signs and 

lightings (Group 19) are less accident-prone. On the other hand, 

those sections with shorter guardrails and lots of signs and 

lightings (Gourp 18) are more accident-prone. In the category with 

fewer motorcycles (less than 50'), the low ADT group (Group 6) and 

the middle ADT group on rolling terrain (Group 15) have fewer 
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accidents. The middle ADT group on level terrain but with shorter 

bridge length (Group 16) are less accident-prone than those with 

longer bridge length (Group 17). In the high ADT groups, the 

sections with more signs and lightings (Group 13) are more 

accident- prone than those with fewer signs and lightings (Group 

12). 

From the above discussion, and the asymmetry in the tree 

diagram itself, it is obvious that complex interactive effects 

exist among several road and traffic descriptors on the accident 

occurrence. Other strong predictors, although failing to appear in 

the AID splits because of their strong correlation with others, 

were also retained in the data set for further analysis. 

The Interaction Terms 

Besides the tree itself, commonly used methods for displaying 

the AID results include tables showing the proportion of variation 

explanable by each predictor, tables of effect profiles, and the 

graph of effect profiles. The means profile chart is most useful 

for revealing the differential effects of a variable in various 

subgroups. If there appear to be major differences between profile 

lines, then the variable can be considered a candidate for 

inclusion in an interactive term. 

The concept of congruence was applied in the analysis for 

locating the interactive variables and finding out the form the 

interaction takes. Variables were ordered in sequence by their 

explanatory power or theoretical importance, and the differential 

18 



effect profiles of each variable in various subgroups formed by 

major AID plits as well as in the total sample were plotted. 

Figure 2, as well as Tablf 4, shows the effect of variable NEWl 

(roadway width bundles) in groups 4, 5, 8 and 9 and in the total 

sample. The lines associated with subgroups 8 and 9 (also subgroup 

6 not shown) and their parent group 4 are not parallel. The major 

spIlt variable was AnT, which could be susceptibe to the effect 

of variable NEWl. The interactive effect between these two was then 

tested using an ANOVA and turned out significant at 0.005 level. 

Other similar, statistically significant 2-way interactive effects 

include those between ADT and number of intersections and between 

ADT and length of bridges. Having the largest explanltory power 

among the three, the interaction between ADT and roadway width 

bundles alone was considered for constructing a new term, to avoid 

too complex higher- order interaction terms. 

The process of combining the variables of ADT and roadway 

width bundles was aided by the AID splits and the cross­

classification means table so that it would not result in too many 

empty cells. category 1 (narrow pavement with no lateral clearance) 

and categories 5 and 6 (wide pavement with sufficient lateral 

clearance) of the roadway width bundles, respectively, are somewhat 

homogeneous and were considered independently with the ADT. The 

rest of the categories (medium or wide pavement with no lateral 

clearance) was classified by low ADT and medium and high ADT's. The 

definition of the resulting categories of the combined variable or 

interaction term is shown in Table 5: 
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Figure 2 - Plot of the Effect of Variable NEW1 in 
Groups 4,5,8,9 and in the Total Sample 

Table 4 - Hean Effect of Variable NEWl in Groups 
4,5,8,9 and in the Total Sample 

Variable Total Group 4 Group 5 Group 8 Group 9 
NEW1 
category Size Hean Size Hean Size Hean Size Hean Size Hean 

1 151 1.12 
2 17 2.41 11 3.00 6 1.33 8 3.88 
3 47 4.43 30 5.17 17 3.12 13 4.62 15 5.53 
4 23 5.22 17 6.18 6 2.50 11 4.82 6 8.67 
5 132 2.67 65 3.48 67 1.90 28 4.11 7 5.15 
6 23 4.17 18 3.94 5 5.00 6 3.83 7 4.57 
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Table 5 - Definition of Interaction Term Between 
Roadway Width Bundles and ADT 

Interaction Term Roadway Width ADT 
category Bundles category category 

1 1 All 
2 5,6 All 
3 2,3,4 2,3 
4 2,3,4 1 

The MCA Model 

The final stage of the analysis is to estimate the model using 

MCA. The model is of additive form with interactive variables of 

interest being replaced by combined variables (pattern variables). 

The data set manipulated previously was used as input to the 

statistical analysis package SAS for solving the normal equations 

used by MCA. The summary statistics printed by the program 

including the etas, betas, unadjusted and adjusted coefficients are 

listed in Table 6. 

The MCA model thus constructed explains approximately 30\ of 

the total variance, a moderately predictive system. The interaction 

term involving roadway width bundles and ADT's explains almost 

half, 15\, followed by percentage of motorcycles, 8\. Other 

significant variables, e.g., signs and lightings, terrain, and 

guardrail length explain between 1% and 3% of the variance. The 

variables insignificant by the F-test at 0.05 level, but having 

strong correlation with the significant ones, are retained in 

the model. The adjusted coefficients measure the predictive power 

of one variable by holding all other predictors, i.e., all other 
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Table 6 - Summary Statistics of the MCA Model 

Unadjusted Adjusted 
Variable/Category N Deviation eta Deviation beta 

NEW1V21 (Roadway Width 
& ADT Bundles) 

1 151 -1.35 - 1.01 
2 155 0.39 0.26 
3 70 2.12 1.68 
4 17 -1.93 -1.70 

0.50 0.39 
V22 (\ Motorcycles) 
1 16 0.80 0.62 
2 31 -0.64 - 0.38 
3 69 1.07 1.18 
4 123 0.24 0.28 
5 100 -0.70 -0.98 
6 54 -0.47 - 0.29 

0.25 0.28 
NBW9 (Signs & Llghtlngs) 
1 197 -0.53 -0.19 
2 69 0.30 0.14 
3 72 0.02 -0.39 
4 55 1.51 1.01 

0.26 0.16 
V7 (Guardrail Length) 
1 138 0.44 0.14 
2 37 0.38 0.37 
3 23 0.52 0.48 
4 74 0.02 0.05 
5 40 -0.91 - 0.66 
6 81 -0.63 -0.26 

0.19 0.11 
V25 (Terrain) 
1 279 0.47 0.20 
2 77 -0.91 -0.38 
3 37 -1.82 -0.71 

0.28 0.12 
V8 (Ditch Length)** 
1 58 0.20 -0.14 
2 79 -0.18 0.16 
3 60 -0.01 0.13 
4 59 0.10 -0.14 
5 82 -0.04 0.14 
6 55 0.02 -0.29 

0.04 0.06 
V3 (Bridge Length)** 
1 256 -0.19 -0.06 
2 20 0.94 0.75 
3 32 0.08 0.08 
4 10 -0.11 -0.24 
5 15 0.29 -0.57 
6 60 0.39 0.15 

0.12 0.08 
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Table 6 - Conti nued 

Variable/Category N 
UnadJusted 
Deviation eta 

Adjusted 
Deviation beta 

V20 (Length wl Radius <= 60m) ** 
1 355 0.10 - 0.03 
2 15 -1.24 0.12 
3 23 - O. 77 0.43 

0.12 0.04 
V16 (Length w/ Grade 5-1 2')** 
1 377 0.23 0.06 
2 56 -1. 37 - 0.38 

0.21 0.06 

Grand mean = 2.51 accidents/section 
2 2 

R = 0.33; R adj = 0.27 

F = 5.74; F*(41,361,0.05) = 1.35 

"**" - Nonsignificant by approximate F-test at 0.05 level 

predictors are assumed distributed as they are in population at 

large. To obtain the average number of accidents on a particular 

road segment, one simply add the adjusted coefficients of 

membership in certain categories to the grand mean. The main 

effects of individual categories within each variable are 

summarized as follows: 

1. The interactive effects of roadbase width, pavement width, 

and ADT are quite complex. The segments with narrow 

pavement and no lateral clearance and those with wider 

pavement and no lateral clearance but having lower AnT's 

have the lowest accident counts. The segments with wider 

pavement and no lateral clearance but having higher ADT's 

have the highest accident counts. Obviously, ADT is still 

the most dominant factor in accident occurrence. 
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2. For the effect of motorcycles, more accidents occurred in 

the range of 31- 40% while fewer in the range of 51-60%. 

Besides other traffic and road conditions, this may well be 

explained by the degree of disturbance versus the degree of 

homogeneity in the traffic stream. 

3. The effect of total number of signs and lightings seems 

somewhat contradictory. The sections with more signs and 

lightings have more accidents. The existence of these 

devices may imply somewhat complex traffic and environ­

mental conditions, their effects not being captured by 

other variables. 

4. The effect of guardrail length may seems contradictory as 

well. The sections with shorter guardrails have experienced 

more accidents. This may better be explained by relating 

guardrails with terrain. The sections on level terrain are 

less guardrail-dependent; they are characterized by more 

accidents associated with wider pavement having higher 

ADT's. 

5. The effect of ditch length should also be investigated 

along with terrain. The sections on rolling or mountainous 

terrain accompanied by longer ditches are generally 

associated with lower design standards and lower AnT's. 

Fewer accidents occurred on these sections. 
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6. The effect of bridge length is not montonic . More accidents 

occurred on sections in the middle range of bridge length 

while fewer in the high range. 

7. The effects of curve length and grade length are somewhat 

different. The sections with more length on curves are more 

accident- prone while those with more length on steep grades 

are less accident-prone. 

CONCLUSIONS AND RECOMMENDATIONS 

This study was concerned with accident occurrence on two-lane 

rural highways and its relationship to trdffic and road and 

environmental conditions. A national data set of two-lane rural 

accident experience, involving 393 three-kilometer road sections 

with ADT between 2,000 and 15,000 p.c.u.'s which recorded 987 

accidents in 2-year period, was studied. Within the data set, the 

continuous variables were first categorized, followed by the 

grouping of intercorrelated geometric or operational variables into 

bundles, or into factors to be represented by single variables. A 

descriptive model was then constructed by AID technique for 

revealing the general pattern of interactions. With the aid of the 

AID analysis, a series of means profile charts were generated; the 

variables showing significant interactive effects by the ANOVA were 

candidates for combination. Finally, an explanatory MeA model was 

constructed with parameters to show the importance of individual 

variables, including the interaction terms which have replaced the 

raw variables. 
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The most important findings from this research are viewed as 

follows: 

1. strong interactive effects exist among the road and traffic 

descriptors that simple models based on original variables 

will not suffice for the accident prediction. This 

necessitates the use of many combinations of variables, as 

bundles or interaction terms, in effective modeling. 

2. The joint use of AID/MCA techniques allows each to 

supplement the other's limitations. The AID provides some 

insight into the relative importance of individual 

variables and their complex interactive effects. The 

information on which predictors, and which categories 

within predictor, to include in the MCA analysis is also 

very useful. The MCA model having explicit parameterization 

and appropriate significance tests should check with the 

AID results. Nevertheless, some important variables not 

appearing in the AID splits should not be ignored in the 

MCA analysis; failing to include correlated variables 

generally leads to less predictive power for those 

included. 

3. The analysis uses section-length exposure rate rather than 

the conventional vehicle-mile exposure rate to permit the 

ADT to be treated as a classification or an independent 

variable. The results show that for the worst-designed 

sections, frequently associated with lower ADT's, the 

terrain-associated variables serve as a proxy for the ADT. 
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For better-designed sections, the traffic- related variables 

show much stronger effects; the terrain related variables 

are not as strong as previously. The var iable of signs and 

lightings seems to be a proxy for the complexity of road 

and environmental conditons not captured by other 

variables . 

4. The constructed MeA model explains about 30\ of the total 

variance in the dependent variable, having moderately 

predictive power. The adjusted coefficients show that the 

interaction term of the roadway width-ADT bundles has the 

strongest effect on accident occurrence, followed by \ 

motorcycles, signs and lightings, terrain, and guardrail 

length. By adding the effects of membership in certain 

categories to the grand mean, one can predict the number of 

accidents on a road section of interest. Such a simple 

additive model can be very useful for engineers in 

determining the location and magnitude of safety 

improvements. 

5. The analysis has illustrated the danger in basing decisions 

to improve a given element on simple comparisons when it 

really is the joint effect of the differences in several 

such elements that is responsible for observed accident 

differences. 

Beyond the procedures and findings summarized, several 

recommendations are made for further studies. As high-quality data 

files with many more accidents become available, this study should 
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be r epeated to test and refine the conclusions that were found in 

this research. To reduce the skewness in the dependent variable 

(accidents/section) for more effective modeling, it is usually 

achieved by increasing the length of sections or study period. Both 

suffer the problem of changes in traffic and/or road and 

environmental conditions; the optimum combination of length and 

perid should be studied. An option is to vary the length of 

sections having homogeneous physical and operational 

characteristics. Attention should also be paid to the development 

of more concrete, theoretically sound procedures for categorizing 

continuous variables. For the search procedure of identifying 

interactions, alternative approaches such as using the creterion of 

dependency between dependent variable and each of the predictors, 

rather than variance explanation of predictors, suggested by 

Perreault and Barksdale (1980) should be implemented. Their 

procedure also has the feature of pairwise merging, and then 

separating, of the response levels on each of the predictors to 

determine the smallest number of groupings. As for the final 

explanatory model, several alternatives are available, including 

log-linear models. In all, furthering the knowledge in the 

construct of accident occurrences and models would significantly 

improve the evaluation process of the highway safety programs. 
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ACCIDENT PREDICTION MODELS FOR TWO-LANE ROADS IN FINLAND 

BACKGROUND 

We developed models for describing the safety of two-lane 

main highways outside urban areas mainly for prediction 

purposes and to locate hazardous road sections. In the 

second phase we developed the model further to enable us to 

evaluate the safety effects of different road characteris­

tics, and to provide the road authorities with a tool for 

road planning. The model applied to road sections outside 

junctions. The work was commissioned by the Roads and 

Waterways Administration. 

Our study material consisted of 4857 road sections on two­

lane highways outside urban areas with a total of 15492 

police-reported accidents in the years 1981 - 1986. 4208 of 

these accidents resulted in death or injury. These sections 

were formed so that certain road characteristics, such as 

road width, speed limit etc., remained constant throughout 

the section. 

As the coverage of accident statistics varies between 10 

and 90 % depending on the type of accidents and the part of 

the country, we decided to concentrate on fatal and injury 

accidents. The coverage of accident statistics based on 

police reports is ca. 70 % for these accidents, and it does 

not vary considerably according to accident types. 
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ACCIDENT MODELS 

Basic models 

OUr goal was to produce accident models that would explain 

the accident occurrence on two- lane highways outside built­

up areas. These models should be based on the statistical 

data available for the road authorities. The data consisted 

of road sections with speed limit 80 and 100 km/h. Only 

road sections on paved main roads and sections with no 

major road improvements during 1978 - 1983 were included in 

the analysis. 

Homogeneous road sections were formed. A new road section 

was introduced when speed limit, the width of pavement and 

pavement material changed, pedestrian and bicycle way 

started or ended and road lighting started. Each homogene­

ous road section formed a record with data on accidents, 

traffic and road geometry. 

Models were based on the theory of generalized linear mod­

els. These models are extensions of classical linear models 

and consist of tripartite form: random component, systemat­

ic component and the link between the random and systematic 

component. We regarded that the error distribution was 

Poisson because our purpose was to explain accident occur­

rence. The systematic component of the models was to de­

scribe the way that the expected count of accidents were 

related to the independent explanatory variables. With 

Poisson error distribution we used the log link function. 

Our models consisted of six different models, two speed 

limit classes (80 and 100 km/h) and three traffic volume 

classes (ADT: under 1500, 1500 - 3000, above 3000 motor­

vehicles/day). The standard model formula was: 
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• where 

A = fatal and injury accidents in 1978 - 1983 

S = mileage 

xi = variables 

"K, a, b are coefficients to be estimated. 

Models were estimated with the GLIM-package and we used the 

Scaled Deviance (SO) for significance testing. The Scaled 

Deviance is: 

SO = -2 * (log(max L) - log(max Lf » 

where 

log(max L} = maximized log-likelihood for the current model 

log(max Lf ) = maximized log-likelihood for the full model 

The best explanatory variables were taken into the models 

after fitting mileage as the measure of exposure (table 

below). We noticed that all the models included both the 

width of pavement and the passing sight distance > 300 

meters (%) describing the effect of road geometry. The 

percentage of heavy vehicles, lorries and buses, turned out 

to be an important additional traffic variable on road 

sections with ADT less than 3000. 

Speed limit Avex'age Daily Modeltype SO Id.f 
Traffic 

(ADT) 

80 < 1500 S + L + N + K.RP 1.122 
1500 - 3000 S + L + N + RP 1.177 

> 3000 S + L + N 1.302 

100 < 1500 S + L + N + R + L.K 1.167 
1500 - 3000 S + L + N + K.RP 1.137 

> 3000 S + L + N + K 1. 567 
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The modeltype in the table above describes the variables 

that were included in the models. The K.RP formula if not 

preceded by K and R is interpretated as "RP. within K" and 

means nesting. The variables in the models are: 

S = mileage ( continuous ) 

L = pavement width ( < 7,5, 7,5 - 8,5, 8,6 - 9,5, >9,6 m) 

N = passing sight distance > 300 m ( % ) 

K = average curvature ( different classes 

R = percentage of heavy vehicles ( continuous ) 

RP = percentage of heavy vehicles ( classified ) 

Development of basic models 

The concept of basic models was to indicate the best ex­

planatory variables and dependencies between accident fre­

quency and variables. The models were not aimed at counter­

measure effect analysis. Therefore, we made some further 

analysis to get accident models for prediction of effects 

of safety. We used the latest accident and traffic data 

(period 1981 - 1986). 

The data had to be homogenized so that there would be com­

parable data sets for most of the alterations of the vari­

ables. We left out all the road sections that were conside­

red to be in built-up areas, all minor roads in the nor­

thermost part of Finland because of the under reporting of 

accidents and some very deviant road sections in southern 

Finlend. After several analyses we ended up with a single 

model with the necessary variables that can be used in road 

and safety policy planning. 

For the development of this model we used data from 2730 

accidents. The model was in close agreement with the data, 

the Scaled Deviance is 3040 with 2720 d.f (degrees of free­

dom). The mean-squared-error of the new model is even 

smaller than the MSE of the six previous models. 
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The new model is: 

A = 0, 1377 * 5 0, 9767 * exp ( r b i * xi) 

where 

A = fatal and injury accidents in 1981 - 1986 

5 = mileage 

expO: 

- O,·t581 * L2 (I, if pavement width 8,6-9,5 m, else 0) 
- 0,1555 * L2 (I, if pavement width >9,5 m, else 0 ) 

- 0,005455 * N (passing sight distance >300 m (%) ) 

+ 0,009096 * RP (percentage of heavy vehicles ) 

+ 0,001331 * K (average curvature ) 

+ 0,05874 * LR (1, if pavement width < 8,6 m and speed 
1 imit 100 km/h) 

+ 0,3564 * LR (1, if pavement width 8,6-9,5 m and 
speed limit 100 km/h) 

+ 0,2179 * LR (1, if pavement width > 9,6 m and speed 
1 imit 100 km/h) 

In the model, the expected number of accidents depends. on 

mileage, pavement width, passing sight distance, percentage 

of heavy vehicles, curvature and speed limit. The expected 

number of accidents on the road sections is directly pro­
portional to mileage (exposure), power of mileage is almost 

1,00. 

When the effect of the other variables is omitted the acci­

dent risk is lowest if pavement width is 8,6 - 9,5 m. Pass­
ing sight distance percentage has a remarkable effect on 

accident risk, risk decreases with improving road geometry. 
Heavy vehicles affect overtaking and seems to increase 
accident risk on road sections. 

The model predicts that higher speed limit raises the acci-
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dent risk. The effect of speed limit depends on pavement 

width. When speed limit is changed from 80 to 100 kmph, the 

risk increases 6 % if the pavement width is < 8,6 m, 42 % 

if the pavement width is 8,6 - 9,5 m, and 24 % if the pave­

ment width is > 9,6 m. 

This model Cqn be used for evaluation of effects of road 

improvements if the effect on variables in the model is 

calculated. We have also an interactive PC-program based on 

the model above that predicts safety effects of designed 

road improvements. 

THE STABILITY OF ACCIDENT COUNTS 

Various methods to estimate the expected number of acci­

dents were tested. The accident data of of the road sec­

tions was divided into two populations, the first period 

1978 - 1981 and the second 1981 - 1983. Road sections long­

er than 10 kilometers were excluded so that the study mate­

rial consisted of 3696 road sections on two lane highways 

outside urban areas. The data contained 1951 fatal and 

injury accidents in the first period and 1834 in the second 

period. The reported number of accidents was thus ca. 6 % 

lower during the second period. 

We used the Poisson probability function for the accident 

frequency of a single entity and the Gamma function for the 

populations of studied entities (see later: comparison of 

models). If the assumptions are reliable the negative bi­

nomial distribution reflects the number of accidents on 

entities of a real population. The results are presented in 

the table below. We concluded that the model describes very 

well the occurrence of accidents in the two populations of 

enti ties. Because of the definition of an entity it is 

natural that there exists variation and the expected number 

of accidents differs between the populations. Later on we 

made some further analysis of this variation. 
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Accidents Number of entities having x acc i dents 
per Section Actual Neg.Bin. Actual Neg . Bi n. 

(x) 78-81 78-80 81-83 81 - 83 

0 2605 2631 2598 2618 
1 644 609 682 652 
2 245 242 245 244 
3 1 07 109 100 101 
4 44 52 34 44 
5 25 26 19 20 
6 11 1 3 7 9 
7 6 7 4 4 
8 3 4 3 2 
9 1 2 3 1 

10 0 1 1 0 
11 0 1 0 0 

Our problem is usually two-fold. We do not know exactly the 

expected number of accidents on entities in the past with­

out analyzing accident data. The accident history of enti­

ties has very often been used as a direct estimate for 

future counts of accidents. Latest research results indica­

te that this belief may also be erroneous. 

We have used the Poisson and Gamma function assumptions 

when producing estimates for the expected count of acci­

dents on entities. As Hauer et.al have shown, the Gamma 

distribution can be estimated as follows: 

a = x / (S2 - x) 

b = x 2 / (S2 - x) 

Where x (mean) and s2 (variance) depend on n(x), the 

number of entities with x accidents: 

x =1:x*n(x)/n 

s2 = 1: (x - X)2 * n(x) / n 

The variance of the expected number of accidents (m) de­

pends on the reported accidents and is smaller than Var(x), 
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if the rn's are not equal in the population: 

var(m) = Var(x) - E(m) = s2 x 

It has been shown that the estimator Tl minimizes 

E«T - m)2. We assume that p(x) = n(x) / n where n is the 

total amount of entities. 

T1 = (x + 1) * p(x + 1) / p(x) 

The variance of T1 can be estimated by: 

Var(T1 ) = T12 * «1 / n(x+1) + (1 / n(x» 

The variance of estimates depends on the number of entities 

and accidents. Smoothened estimates are produced by fitting 

a weighted regression curve through the points of estimates 

T1 · 

We can get the third estimate for the expected amount of 

accidents in the populatition of entities using the equa­

tion /Hauer/: 

T2 = x + (E(x) / Var(x» * (E(x) - x) 

The average number of accidents in 78 - 80 was 0,528, vari­

ance 1,204, estimated a = 0,781 , b = 0,412. The estimates 

T2 can be calculated by the model: 

T2 = x + 0,4385 * (0,5279 - x) 

The weight in the curve fitting was inversely proportional 

to the points variation with the largest point having a 

weight of 1. We got the model: 

T 3 = 0,24 + 0,514 * T1 

The R2 of the model is about 0,99, so the fit is good. We 
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concluded that the estimates T3 are not much better than 

Tl : s (table below). All the calculated estimates are un­

doubtedly better than the number of reported accidents on 

various entities, and quite free from the regression-to­

the- mean effect. 

Accidents Average of Estimates 
per section accidents T1 Var(T1) T2 T3 
78 - 80 81 - 83 

° 0,29 0,25 0,0001 0,23 0,25 
1 0,71 0,76 0,0033 0,79 0,76 
2 0,94 1, 31 0,0231 1,35 1,28 
3 1, 73 1,64 0,0868 1,92 1,79 
4 1,45 2,84 0,5063 2,48 2,31 
5 2,36 2,64 0,9124 3,04 2,82 
7 3,83 4,00 8,0000 4,16 3,85 

When studying the number of accidents during the time-peri­

ods, it seems that there exists a trend in the development 

of safety. This trend should also be considered, because it 

affects the m:s (safety). Firstly, we have assumed that the 

expected number of accidents per unit of exposure remains 

unchanged. An estimate for the expected amount of accidents 

and the variance per entity during the second period is 

then: 

= (e2 / el) * E(ml) 

However, our data pointed out that this estimate for the 

reduction of the variance was not very accurate. It is 

possible that the safety improvement is more concentrated 

on the risky road sections. We assumed here that the reduc­

tion is proportional to the amount of accidents on entities 

and the average number of accidents equals the average 

during the second time period (est2). The calculated two 

estimates are presented in the next table. 
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Accidents Number of entities having x accidents 
per Section Actual Actual Neg.Bin. Neg.Bin. 

(x) 78 - 81 81-83 est1 est2 

0 2605 2598 2668 2608 
1 644 682 601 662 
2 245 245 232 246 
3 107 100 102 101 
4 44 34 47 44 
5 25 19 23 19 
6 11 7 11 9 
7 6 4 6 4 
8 3 3 3 2 
9 1 3 2 1 

10 0 1 1 0 
11 0 0 0 0 

It is possible to estimate the distributions of m:s within 

the groups of entities. The Gamma probability function is 

then: 

f(m/x) = (l+a)(x+b) * m(x+b-1) * e-m(l+a) / g(b) 

The expected number of accidents on entities in 1981-1983 

can then be calculated using the data from the first period 

and the conditional Gamma distribution. We have presented 

both estimates (est1 and est2) in the table below. 

The calculations indicate that the marginal estimates (to­

tals 1981-1983) are slightly better if the additional safe­

ty benefit is estimated. However, the differences according 

to the conditional Gamma distributions are insignificant. 
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Accidents Number of entities having x accidents 
per section during 81-83 

78-80 0 1 2 3 4 5 6 7 8 9 

0 est! 2187 312 76 21 6 2 1 0 0 0 
est2 2118 361 90 25 7 2 1 0 0 0 
data 2019 448 102 32 4 0 0 0 0 0 

1 est! 354 173 72 28 11 4 2 1 0 0 
est2 352 176 73 28 10 4 1 1 0 0 
data 422 104 66 37 14 8 3 0 0 0 

2 est! 88 73 43 22 10 5 2 1 0 0 
est2 90 74 43 21 10 4 2 1 0 0 
data 112 73 37 18 2 0 1 1 0 1 

3 est! 25 30 23 14 8 4 2 1 0 0 
est2 26 31 23 14 7 4 2 1 0 0 
data 25 34 25 8 3 1 1 1 0 0 

4 est! 7 10 10 7 5 3 1 1 0 0 
est2 7 11 10 7 4 2 1 1 0 0 
data 12 17 8 2 2 2 0 1 0 0 

5 est! 3 5 5 5 3 2 1 1 0 0 
est2 3 5 5 4 3 2 1 1 0 0 
data 5 3 4 8 2 2 1 0 0 0 

A COMPARISON BETWEEN DIFFERENT PROBABILITY MODELS 

Assumptions 

We studied the accidents by using the following assumptions 

/Hauer/: 

The POF (probability density function) of accidents for a 

single entity (junction, road section etc. in a specified 

period) follows the Poisson distribution if the expected 

number of accidents m is fixed. If the rn's of the ~opula­

tion of entities varies with a PDF of G(m), where G(m) is 

assumed to be of a two-parameter Gamma family, the POF of 

accident counts in the population is the negative binomial 

distribution. 
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The mean and variance of the fatal 

were in our material: mean 

variance 

and injury 

X = 0.866 

S = 1.470 

accidents 

I f the POF of accident counts in the population would be 

Poisson, the mean would equal the variance. This is clearly 

not the case. If this is a result of varying expected acci­

dent counts in the population i.e. varying m:s and the 

Gamma assumption above is correct, the probability density 

of m:s is: 

where g(b) is the value of the one-parameter Gamma function 

at point b. 

The parameters a and b can be estimated from the data 

/Hauer/: 

a = X / (S - X) 

b = x2 / (S - X) 

ThE! probability of an entity in the population to have x 

accidents is: 

P(x) = (a/(a+1»b (b(b+1) ... (b+x-1»/«a+1)xx!), 

which is the negative binomial distribution. 

Comparison 

In our data, a = 1.435 and b = 1.243. The table below lists 

the actual accident counts, and the expected counts on the 

basis of negative binomial distribution, and Poisson dis­

tribution (m = 0.866). 

Also this table shows that the Poisson model does not cor­

respond to the data very well. This is not very surprising 
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as the Poisson model assumes each section to have the same 

expected number of accidents . The negative binomial model, 

however, is in close agr eement with the data. 

Acci dents Number of entities having x acc i dents 
per Section Actua l Neg. Binomial poisson 

(x) Data Model Model 

0 2528 2517 2042 
1 1 268 1285 1769 
2 592 592 766 
3 265 263 22 1 
4 114 114 48 
5 56 49 8 
6 23 21 1 
7 7 9 0 
8 2 4 0 
9 0 2 0 

10 0 1 0 
11 2 0 0 

This shows that the rn's really vary in the population. But 

is it also a question of varying safety from the point of 

view of e.g. a single road user or a traffic engineer? 

Accident risks and risk exposure 

Accident risks are usually used as a measure of traffic 

safety, and expressed in the form number of accidentsl 

exposure. For road sections accident risk is traditionally 

calculated as the ratio between the number of accidents and 

vehicle mileage, and called accident rate. The expected 

number of accidents (m) can thus be expressed as a product 

between the expected accident rate (R) and vehicle mileage: 

m = R x mileage. The accident models presented elsewhere in 

this paper show that the number of accidents is indeed 

approximately proportional to vehicle mileage. 

To estimate the effects of different road characteristics 

on safety, or to predict the number of accidents, we are 

a l ways interested in the accident rates, as we usually have 
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reasonably accurate lrliormation on vehicle mileage, and its 

changes . The question is now: in which way do the R's vary 

in the population of road sections? To study this we di­

vided the data in different categories on the basis of 

vehicle mileage. The classification interval was 1 million 

vehicle kilometers, and the mileage as well as accident 

data were from a period of 6 years. The mean and variance 

of the accident counts for each mileage class are shown 

below. 

Mileage Accidents on Number 
class road sections of 

(million road 
veh.krn) Mean Variance sections 

1-2 0.1658 0.1604 550 
2-3 0.2509 0.2810 562 
3-4 0.3255 0.3489 513 
4-5 0.4869 0.5655 382 
5-6 0.6062 0.7508 353 
6-7 0.7560 0.9241 250 
7-8 0.7837 0.8424 245 
8-9 0.7940 0.9017 199 
9-10 0.9305 1. 2692 187 

10-11 0.9226 0.8900 155 
11-12 1.1159 1. 7472 164 
12-13 1.1927 1. 4904 109 
13-14 1.2692 1. 6246 130 
14-15 1. 5429 1.4813 105 
15-16 1. 3786 1.5122 103 
16-17 1.6477 1.5643 88 
17-18 1.5632 1.8303 87 
18-19 1.7683 1. 7852 82 
19-20 1. 9706 3.1336 68 
20-21 1.4310 2.1092 58 
21-22 1.9818 1. 9441 55 
22-23 1.9273 2.4762 55 
23-24 2.5135 2.2011 37 
24-25 2.3529 1. 8731 51 
25-26 2.3902 3.0440 41 
26-27 2.2973 3.1036 37 
27-28 2.4737 3.4451 38 
28-29 2.8837 2.9149 43 
29-30 2.8333 3.2472 30 
30-31 2.6857 3.8691 35 
31-32 2.7000 3.5276 30 
32-33 2.6000 1.9715 15 
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The close connection bet ween t he number of accidents and 

mileage is evident in the table. The mean accident count 

approximately equals i t s var iance in many mileage classes, 

and closer inspection of the accident data shows that the 

accident counts within these mi leage classes follow the 

Poi sson distribution . In the classes, where the variance is 

clearly larger than the mean, the negative binomial model 

f its better with the data than the Poisson model. Still, in 

most of these cases, the Poisson model does not differ 

significantly from the actual accident data. 

The conclusion to be drawn from the table above is that the 

variant.=e of the expected number of accidents in the total 

population is mainly due to the variance of mileage i. e. 

exposure instead of "safety" expressed as accident risk or 

rate. The accident rates seem also to vary, but in a small­

er scale. A part of the variance of accident counts within 

mileage classes is naturally due to the variance of mile­

age, too. Still it is evident that there exist real safety 

differences in the population of Finnish road sections. 

Some of the differences were explained by our accident 

models as shown elsewhere in this paper. 

On the basis of the study we stress the importance of ac­

counting for the effect of exposure on accident counts. 

Otherwise conclusions drawn from the available accident 

data can often be misleading. 
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ABSTRACT 

It is well known, that the determination of black spots on a road network is of 
great importance for the optimization of traffic safety performance. Since a 
long t,me, various methods based on statistical theory have been presented to 
permit the engineers to locate hazardous sections on road networks. This paper 
evaluates the rationale of the most common existing methods, which can be used 
to ensure the identification of black spots. Comparison and correlation of the 
results each method yields, is also attempted. 

Traffic accident data have been obtained from a research project on traffic 
saf ety held by Thessaloniki University. Concerning accident an~ysis on the 
national road network in Northern Greece. Four methods of black spot ,'dentifi­
cation have been used : 
a. Absolute number of traffic accidents 
b. Use of Poisson's distribution 
c. Traffic accident indices 
d. Accident severity indices. 

After the statistical analysis of approximately 2000 accidents, it has been 
concluded that : 
a. Important differences exist on identifying black spots according to 

the above mentioned methods. 
b. Poisson's distribution gives more optimistic results in comparison 

to traffic accident and accident severity indices. 
c. Lamm's absolute number of accidents method correlates better with 

all other methods. 
d. A combination _of methods must be used to confirm the existence of 

a black spot. 



DETERMINATION OF BLACK SPOTS. A COMPERATIVE AND CORRELATION 
STUDY OF EXISTING METHODS. 
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INTRODUCTION 

It is well known that traffic accidents consist a sign,ficant problem in modern 
societies with many social and economic consequences in either personal or na­
tional scale. The advent of motorvehicles, apart from its obvious numerous 
advantages, produced many serious problems, the most important of which is the 
road accidents. Throughout the world a significant number of people fall vic­
tims of road accidents creating serious personal or even social distress. 
Furthermore, the nation~economy of a country suffers consinderable losses as 
a result of accidents causing the killing of or injuries to people and the 
damaging of property. 

The problem of traffic safety is very keen in Greece. Proportionally to the 
number of vehicles, in Greece occured twice as many road accidents as those 
occured in other Western European countries, during the last decade. However, 
highway accident statistics indicate that the annual number and rate of 
accidents is declined(S). This, along with the fact that the annual vehicle­
kilometers of travel have consinderably increased throughout the same period, 
gives an indication that positive gains are being achieved from recent safety 
efforts. 

Generally, highway safety programs are aimed at reducing traffic accident fata­
lities, injuries and property damages attributable to highway system failures, 
as opposed to those attributed to vehicle or driver failures. An analysis of 
accidents on a road shows that in addition to a comperatively uniform distri­
bution of accidents over the whole road'slenght, a considerable portion of 
them occur on relatively short sections, generally known as black spots or 
bl ack ki l ometers. (depending on their length). The identification of these 
hazardous spots or sections in the road network, where traffic accidents tend 
to cluster and the proposal of certain remedial measures, is the most fruit­
ful way of preventing accidents and enhanCing roadway safety. 

Quite a lot of methods exist for the identification of black spots, most of 
them based on statistical theory. The results that they yield vary considerably 



depending on the rationale and the methodology each one follows. The evalua­
t,on of the most well known of the existing methods as well as the comparison 
and correlation of the results they yield, is the subject of this report. 

METHODS OF BLACK SPOT IDENTIFICATION 

The four most commonly in use methods of black spot identification are 
a. The absolute number of traffic accidents 
b. The use of Po~sson's distribution 
c. The traffic accidents indices 
d. The accident severity indices. 

A brief outline of these methods follows. 

Absolute Number of Traffic Accidents 

Us'ng the absolute number of traffic accidents, an accident risk level can be 
assigned in each section of the road network in proportion to the actual number 
of accidents occuring there in each year. Then, the level which corresponds to 
a hazardous road section can be determined and subsequently each road section 
can be classified in relation to its accident risk level. 

Babkov(2) considers a road section as a hazardous one, when 3 at least road 
accidents occur there every year, whilst Benner et al(3) consider this number 
to be 4. Lamrn et al(4) divide th~ specific road in one kilometer long sections 
and classify them in order of increasing traffic accidents. The sections be­
longing to the upper 15% of the above series are considered as hazardous ones 
and treated as black sections. 

Use of Poisson's Distribution 

It is generally accepted that road accidents are accidental events and therefore 
the probability of an accident to occur in a road section during a specific time 
period follows the distribution of accidental events known as the Poisson's dis­
tribution. However, in certain section or spots of the road network traffic 
accidents occur in considerably higher frequences which by no means can be 
accepted as accidental and is indisputably attributed to the specific road 
characteristics prevailing there. Thus, with the aid of Poisson' s distribution 
black sections on aroad can be identified. 

The first step is to separate the road network into sections with similar geo­
metric and traffic characteristics. In these sections the average number of 
accidents per kilometer represents the mean of the Poisson's distribution, i.e. 



the number of accidents expected to occur in each one kilometer long subsection, 
if only act.idental factors govern the occurrence of an accident . In sections 
with higher frequency of accidents their causes can be attributed with a certain 
level of confidence to other than accidental facts . When this level of confi­
dence exceeds 90% the researcher is quite convlnced that other than accidental 
events govern the high frequency of accidents in this specific subsection, 
which therefore is identified as a black subsection. 

Traffi t Accident Indices 

Traffic accident indices are widely used for the estimation of the accident risk 
in speciflc road sections. Quite a lot of indices have been proposed. In the 
most commonly used ones the number of accidents is given in relation to the 
population of the area, or to the traffic volume of the road section, or to the 
number of vehicle-kilometers travelled or even to the length of the road network. 
Black sections are considered those, where the above indices take higher than 
the average values. 

Accident Severity Indices 

In all methods described till now t,1e seriousness of the accidents has not been 
taken into account. However, the quantftative assessment of traffic accidents 
is quite necessary for a rational classification of road sections in relation 
to their acci~ent risk. This quantitative assessment can be achieved by the 
introduction of certain factors and coefficients, which take into consideration 
the severity of the accident and the amount of property losses occured. For 
this purpose the following formula have been proposed. 

Severity Index = P1·n1 + P2·n2 
where n1,n2 = number of accidents resulted in injuries or fatalities 

respectively 
and P1,P2 = corresponding severity factors for each type of accident. 
The formula can be easily extended to include more types of traffic accidents, 
if the relative data are available. 

The values of these severity factors are determined according to the losses to 
the national economy due to the specific type of road accident. Typical values 
of these factors are given in Table 1. The inevitable differences in assessing 
the cost of accidents existing in various countries result in the differences 
in the values of the severity factors appeared in this table. 

Critical Evaluation of the Methods of Black Spot Identification 

Traffic safety on road sections should be assessed according to the number, the 



Type of accident Severity factor according to 

Reinhold Sitzl Fisher U.S.A. 

Unregistered - - - -
Damage only 1 1 1 1 

Light injury 5 30 2 5 

Heavy injury 70 30 8 5 

Fatality 130 100 40 23 

Table 1. Values of accident severity factors proposed by 
various authors (source: ref. 2) 

U.S.S.R. 
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frequency and the seriousness of accidents occuring there. An integrated method 
of black spot identification must tak into account all the above factors. Thus, 
simply the number of accidents occuring on a road section irrespectively from 
the traffic volume is an imperfect criterion for black spot determination. Fur­
thermore, even if two road sections have the same traffic volume levels and 
number of accidents, but they markedly differ in the severity of the casualties, 
it is not again acceptable to be considered as similarly hazardous. 

Taking these principles into account the absolute number of traffic accident 
method of black spot determination, apart from its simplicity, has the serious 
disadvantages of not considering the traffic volume and the severity of the 
accidents. The same critisism applies to the use of Poisson's distribution for 
the identification of black spots. This method however, has the advantage of 
providing a sound statistical basis. The use of traffic indices to locate road 
black sections takes into consideration various parameters which reflect traffic 
conditions, i.(~. traffic volume, number of vehicle-kilometers travelled etc. 
The disadvantage of the ignorance of the severity of the accidents still exists. 
Finally, the use of various severity indices reflecting the seriousness of the 
casualties is the most advanced method for black spot identification. However, 
the discrepancies existing in the values of the severity factors proposed by 
various authors, is a certain weakness of the method. 

DETERMINATION OF THE STUDY AREA 

The Traffic and Road Research Laboratory of the University of Thessaloniki has 
recently completed a research project concerning the traffic accident analysis 
in the national road network in Northern Greece, during a 5 year period (1979-



1983). Six of the most important national roads (fig. 1) have been selected for 
a comperatwe and correlation study of the various black spot identificatl' on 
method::,. 
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All the roads are single carriageways and have been separated into sections with 
similar geometric and traffic characteristics. According to Greek normal prac­
tice as fatal accidents are determind those in which death occured on the spot 
or during the transfer of the victim to the hospital and as injury accidents 
are determined those in which the sufferer has .been transfered to the hospital 
for treatment. Due to incomplete data it was impossible to distinct between 
light and serious lnJuries. Furthermore, damage only accidents are totaly 
ignored. Table 2 shows the traffic accidents occured during this 5 year period 
in the 6 national roads in N~rthern Greece. To achieve a sound basis for com­
parison it was considered better to divide each road section in uniform, one 
kilometer long, subsections from which the most hazardous ones would be probably 
identified as black subsections. 

APPLICATION OF THE VARIOUS BLACK SPOT IDENTIFICATION METHODS 

The absolute number of traffic accidents method has been applied as it is des­
cribed in the relative paragraph. 

I n the identification of black sUbsections by using the Poi sson's distribution 
three level of confidence 90,95 and 98% are applied. In these level of confi­
dence accidental factors are correspondingly unlikely to be the unique causes of 
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the accidents. 

The traffic accident index selected in this study is based on the traffic volume 
of the road section. On road sections which are homogeneous as regards their 
geometric elements and their traffic volumes, the accident rate is determined 
by the formu 1 a : 

z .106 
VRt = ----

365·Q·L·N 
where: z = is the total number of accidents 

Q = is the traffic volume (vehicles per day) 
L = is the length of the road section (km) 

and N = is the time period (years). 
Addionally the traffic index on each road subsection is calculated by the ratio : 

z.106 

365·Q ·N 
where: z = is the number of accidents in each one kilometer long subsection 
and the rest variables as above. 
In those subsections where VRs > VRt the potential accident hazard is high so 
that the specific subsection is identified as a black one. 

For the application of the accident severity index method, three sets of severi­
ty factors are used, which are: (8.50), (7.70), (12.100), the first number 
assessing the injuries and the second the fatalities. Applying these values the 
severity index for each kilometer of the road section, as well as the average 
severity index over the total length of the road section are calculated. This 
last value is multiplied by a coefficient, which takes successively the values 
1.2 , 1.5 and 2.0. The product is compared with the severity factors found for 
each one kilometer long road subsections. Obviously, as black SUbsections are 
identified those in which the severity factor exceeds the value of the product. 

The number of black SUbsections identified by using each method are presented 
in table 3. 

Critical Evaluation of the Results 

Since the number of road sections examined. as well as their total length is 
quite high, arbitrary limits reflecting the average acceptable percentage of 
black subsections in relation to the total number of subsections, can be set. 
Thus, as acceptable percentage is considered every figure lying between 15% and 
20%. Results found within these limits are obtained by Lamm's method of abso­
lute number of traffic accidents, by using Poisson's distribution in practically 
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all three levels of confidence and by using the accident severity indices with 
the mu1t,p1ying coefficient having the value of 2, irrespective1y from the 
values of the indices themselves. Benner's and Babkov's proposals for black 
spot determination identify unacceptably low number of black subsections, ob­
v,ous1y because the criterion set (3 and 4 at least traffic accidents annua1y) 
is difficult to be met. On the other extreme, traffic accident index method 
gives a very high percentage of black subsections (40.2%). Also, Poisson's 
distribution method yields more optimistic results than those obtained by the 
traffic index method and by the severity index method. Finally, inspection of 
Table 3 shows that the influence of the coefficients used in the accident seve­
rity index method in the determination of the number of black subsections, is 
considerably stronger than the influence the values of the severity factors 
have. 

Correlation of the Results 

An attempt to correlate the results, the four methods of black spot identifica­
tion yield, is made by the calculation of the correlation coefficients (r) be­
tween all pairs of the different methods. The results are presented in Table 
4. In cases where the value of r exceeds 0.85 , the correlation is considered 
to be high. On the other hand, where r is less than 0.)0 the correlation is 
considered as poor. 

Inspection of Table 4 shows ~hat the use of the Poisson's distribution at the 
98% level of confidence yields the lowest correlation with every other method, 
whereas Lamrn's method of absolute number of traffic accidents has the highest 
correlation with all other methods. Poisson's distribution method at the 90% 
and 95% level of confidence correlates fairly well with the rest of the methods. 
The same applies to the traffic index method and the accident severity index 
method. The values of the severity factors which presents the better correla­
tion with other methods are (7.70) and (12.100), the second being slightly 
better. Finally, the value of the coeffic~ent which enhances the correlation 
of the severity index method, is 1.5 • 

CONCLUSIONS 

This study confirmed the important differences existing in black spot identifi­
cation according to the various methods in use. Thus, it is the authors ' opi­
nion that a combination of two methods of black spot identification should be 
always made. The methods proposed for this combination are the Poisson's dis­
tribution at the 95% level of confidence and the accident severity index method. 
The most appropriate values of the severity factors determined here are 12 for 
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TABLE 4. Correlation coefficients between numbers of black spots on 
each road section determined by various methods. 



1nJury accidents and 100 for fatal accidents, as well as, the mOre appropriate 
value for the multiplying coefficient is 1. 5. Finally, Lamm's proposal of the 
characterization as "blacks" of the 15% of the most hazardous road subsect 10ns 
appears to provide a sound initial estimation for a black SpOt identification 
study. 
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this paper argu.. in support of a structured method of conducting safety 
analyses that is dire ctly related to the title of the conference. 
Specifically, we arsue tl.lt safety theory should be explicitly cona1dered 
duriQg the development and application of statistical methods for safety 
analySeS. 'lb1e 1e more than simply a call for "correct" use of statistics. 
We believe that significant progress on contemporary safety issues can only be 
ude if theory is consonent with statistical method. Ar. initial research 
st8las, the theory may evolve from a conceptual model; at subsequent st,!es it 
uy be inferred froll relevant disciplines such a8 psychology, phyeiology or 
ecoQom1 cs for example. 

In addition to closer connections between theory and statistical tests, 
there is a need, we believe, for greater fertilization across methodologies 
and discipline8. For example, findings obtained through laboratory 
experjgents should be considered when formulating 1IlOdels of driver cOg nitive 
proc:e,,"es. P08itive cros8fertilization occurs all too infrequently. The 
secoM section of this paper discusses potential linkages between different 
safety IIII!I thodologies. 

Pinally. we present an example of a statistical method, based upon 
survival analysis, that is at lea8t consistent with conceptual models of 
exp08ure.. We pre,. nt the methodology and an example of a new technique that 
can be used to test important empirical questions, but in a way that is 
consistent with contemporary notions of exposure and other theory. 

The occurrence of accidents, must be compared to the number of 
opportunities available to be involved 1n an accident. Some representacion of 
these opportunities is cOlIIDonly referred to as exposure to accident risk. 
Hauer develope a definition of a unit of exposure as a trial in which the 
outcomes are an accident (possibly of several types) or a non-accident (Hauer, 
198.2) I> Safety (sa measured by accident occurrence) is the product of the 
probabUity of having an accident (also called riSk) and the number of 
expaaure units. Factors contributiQ,g to accident risk are thus conceptualized 
as affecting the probability of an accident. 

A major problem in combining accident data with exposure is that 
accidents are discrete events. Data describing accidents routinely come from 
reports describing accident outcome and characteristics such as driver, 



vehicle, roadway and environment at the time of the accident. Exposure data 
are IIJch aore aggregate, typically based upon lIeasured or estimated daily, 
weekly, aonthly or often yearly travel. A fundamental dilemma in studie8 of 
accident occurrence i8 how to combine exposure and accident data in a 
meaningful and conalstent way so that the contribution of individual factors 
to accident risk Cdn be identified. 

All accident prediction models in the previous 11 terature have been 
developed ue.iag algresate exposure data. The uae of aggregate data to 
conatruct an accident analysia model re8ult8 in the 108a of individual 
information and a cloUC!ina of the relation8hip between ri8k components and 
accident occurrence. Di •• "reg.ate data have been cOllllllonly u8ed In travel 
demand reaearch due to their improved explanatory capabilitie8, but they have 
not been commonly used in aafety re8earch, particularly for exp08ure data. 

A variety of reaearch approaches have been uaed to explore the risk 
factor8 of highway operation8. Theae include the laboratory driving aimulator 
[e.g. Hulhert and Wojcik, 1971] inobtru8ive observation of oft-road operationa, 
detailed multi-disciplinary aasessment of accident causea (e.g. Treat et al. 
1977] and a wide variety of atatistical analyses. A ahortcomlng of these four 
approaches is the failure to relate their findings quantitatively to accident 
risk due to the lack of appropriate exposure data. These methodologies are 
reviewed in more detail in Section 11 of this paper. 

One factor hindering resolution of these proble_ is failure to use a 
consistent explanatory framework for accident occurrence. ~s framework 
should clearly differentiate risk of accident involvement from accident 
occurrence which ia the interaction of ri8k and exposure. Bauer provide8 an 
excellent discu8sion of these i8sues (Bauer, 1982}. It would be advantageou8 
if one could utilize concepts froa Hauer to develop a framework that could 
provide a bridge between the aggregate observation of accident data and the 
di8aSgregate re8ults obtained from laboratory experiments and detailed causal 
a8sa8aaentB. This connection would be an advsnce over the way of in which 
accidents are thought of a8 the result from interaction8 of the driver. 
vehicle, roadway and environment (ITE, 1976} without careful coneideration of 
how theae interaction8 occur. 

The r-. inder of the paper is divided into three sections. Firat, we 
discuaa four methodologie8 cOmBonly used to study accident occurrence and 
caU8es. The methodologies are coJlt)ared along four dimensions with the 
objective of identifying opportunities for findings froll one methodology to 
influence another. This 18 intended to meet the objective of idnetifyina 
areas of croaafertili;ation across methodologie8. 

The following se,ction develops a fraaework for the study of accident 
occurrence that we believe ia conaistent with theory and the concept of 
expoaure. We believe that the framework can be u8ed to guide statistical 
analyse. that are more theoretically and conceptually consi.tent. The paper 
concludes with a 8ummary de8cription of a methodology ba8ed upon 8urvival 
theory that offers significant advantagea over many other statistical 
technique •• 



11. A T!'POLOGI SAn'n USIWlCllIIBTBODOLOGIBS 

A. o.,em.-
We have constructed a typology of traffic safety research methodologies 

in Table 1. Four different methodologies are identified: laboratory 
exp et1JM nts, on-the-road study, accident causal analysis and correlational 
analyses. For each of these categories, we denote whether data are collected 
at the aggregate or disaggregate level and also whether these methodolgies 
address 4 topics that, we believe, are important in the identification of 
accident causality. the four topics are defined as follows: 

Driver actions - the ability of the methodology to identify specific 
driver actions (or lack of actions) that may contribute to a crash. 
This includes both studies of driver capabilities (through laboratory 
experiments) and studies of driver behavior during on-the-road 
studies. 

Accident Occurr.ence Process - the ability of the methodology to 
identify the process of accident occurrence as a series of events or 
collisions. 

Exposure - the ability of the methodology 
exposure to accident risk as well as 
characteristics. 

to explicitly include 
accident data and 

Actual Accident Involvement - the ability of the methodology to 
ana In e actual accident data. 

• • 1.aboratoEY bp,erDeRt 

Laboratory experiment or simulation can be used to study details of driver or 
vehicle actions which may be li~ed to accidents but are difficult to observe 
in the field. Laboratory experiments commonly study actions such a8 steering 
wheel movement [erandall, Duggar and Fox, 19661, lateral and longitudinal 
pOSition [Barrett, Kobayashl and Fox, 1968], velocity estimation [Salvatore, 
1968], breathing rate [Beers, Case and Rulbert, 1970), and vigilance 
[Hei1l8tra, 1970]. In those experiments or siDllations, the relationship 
between independent variables and these intermediate measures i8 applied 
directly and then inferenCe:s are made about the effect of these independent 
variables on highway accident risk. 

The Advantages of laboratory experiments include safety of the subjects, 
control ofSOale confound1ag variables and possibly reduced COlts compared to 
field observation. We also face several shortcomings, foremost among them is 
the questionable I eneralbation of the laboratory findings to the actual 
hfslhwayenvironment [Shinar, 1978]. 

While laboratory experiments aUQI us to obtain individual dbaggregate 
performance data they are limited in their ability to provide insight in the 
proce,8S of accident occurrence and, obviously, do not contain data on sctual 
involvements. It is also difficult to generalize observations frOIl the 
laboratory to a broad population to g,a1n insight on exposure to risk. In the 
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parlance of thi. conference, these studies can be thought of as testing 
cognitive lIO,dela. 

B. OD-tbe-...... Studi. 
Studies of drivers in actual conditions include application of the 

traffic conflicts technique [e.g. Perkins, 1969. Oider and Spicer, 19761. 
inobtrusive obeenll tion of individual drivers and vehicles [Shinar, Roc1c.well 
and Malecki, 1975] and on-road measurements of drivers in instrumented 
vehicle. [e.,. platt 1970; &relander. 1976 and Fuller, 19801. 

The major advantase of on-the-road research is that results obtained from 
it may be immediately applicable to the highway envi ronment. It s maj or 
disadvantage is that lUny variables are not under strict experimental control 
and the resulee may be due to uncontrolled variables, .and/or limited to the 
specific locationvhere the study was conducted. While individual drivers are 
studied, it is not possible to directly relate these studies to outcomes 
(accidents). Exposure to the risks understudy are also difficult to assess. 
Many of these studies can be thought of as addressing "behavioral" models. 

c. kClUu I: Ca 118&1 Aaal,. .... 
An accident results whenever one or more factors - labeled as the 

accident cause or causes -- deviates from the norm to such an extent that the 
system cannot accommodate it [Shinar, 1978]. One of the IIlOst consistent 
findinss in accident research is that accidents are typically caused by more 
than one factor. Each factor cited as causal may be a cause only in the 
context of the other causes. 

The most prominent study for accident causal analysis is the Indiana 
~niversity's Trilevel Study of The Causes of Traffic Accidents [Treat et al., 
1977]. lb·ele three levels of accident investigation include: (1) routine 
police investita tion, (2) "on-eite" investigation by specially trained 
technicians who rushed to the accident site immediately after notification by 
the police, and (3) "in-depth" investigation by a multidisciplinary accident 
invest~ation team who examined and interviewed the driver, reconstructed a 
complete diagram of site and vehicles' paths, and examined the accident 
vehicle in a specially equipped garage. The study results show that human 
factotl, identified as probably or definite causes, are related to 
approximately 91 percent of the traffic accidents. 

This Itudy has had a great influence on subsequent safety research so 
that it is obviously of major importance. It's major limitation is the luck 
of exposure data which does limit some interpretation of their results. 

D. Cltrre1a t~ Aaal.J aie 
A variety of Itati.tical approachel have been applied to safety 

studies. Usually, analyats combine the accident data with controlled exposure 
and test the hypothesis of interest.. lbe simplest type of study is the 
comparison of the mean and variance of the accident involvement rates, which 
is undertake n to t. t the equality of accident risks between different 
exposure groups. Examples of this technique include the work of Poldvary 
[1979], who explored accident involvement rates in terms of characteristics of 
driver, _hicle. road, and driving environment, Heyere I 1981], who compared 
the accident rates of trudt and passenger-cars on !i.m! ted-access facilities 
and a comparison of waather effect on auto and truck accident involvement 
rates by Jovanta and De lleur [1982]. 
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Linear regression models have been widely used in safety studies. 
USUally, the accident involvement rates are considered the dependent variables 
in most of linear regression analyses of safety study, and the risk components 
to be detected are assigned to the independent variables. Those risk 
components include travel speed [Hall and oickinson, 1974; Lavette, 1977] t 

traffic volume [Oppe, 1979; Ivey et al., 1981; Ceder and Livneh, 1982]. as 
well as weatber and vehicle [Jovanis and Oelleur, 1982]. 

Three particula:r properties of accident occurrence argue against the 
application of linear regression analysis to highway safety studies. First, 
the discreteness of accident occurrence will cause the error terma to be 
beteroalted.aetic in the linear regression analysis [R.uijgrQk and Van Essen, 
1980; Montgomery and Peck. 1982], even if one uses accident rates instead of 
the number of accidents [Jovanis and Chang, 1985]. Second, the non-negativity 
of accident measure of tbe dependent variable also impose restrictions on the 
applicability of the linear regression techniques. Third, the error terms are 
not normally distributed due to tbe characteristics of non-negativ1ty and 
small value of discrete dependent variable. This makes us unable to generate 
tbe correct confidence intervals for estimated parameters. In order to 
improve the sbortcomngs of linear regression analysis in safety study, one 
discrete model -- tbe Poisson Regression MOdel, has been applied in the study 
of accident occurrence. Hamerslag {1982] used it to detect the effects of 
road characteristics and traffic volume on the accident involvement rates. 
Jovanis and Chang [1985] described the accident occurrence on a closed highway 
system as a Pois.on process in which the daily expected number of accidents is 
a function of daily traffic exposure and weather t:ondition. 

Some multivariate analysis techniques other than regreSSion analysis are 
also used in safety study. The automatic interaction detection (AID) 
technique has been used to categorize the explanatory variables in order to 
discriminate the accident involvement rates for different exposure groups 
[Snyder, 1974; Cleveland and Kitamura, 1978]. Koornstra [1969] used one set 
of categorical data to detect the relationship between type of seat belt and 
location of injury. Hakkinen [1979] studied how professional drivers 
classified as safe drivers versus accident drivers differ in terms of driver's 
characteristics by discriminant analysis. Be also reduced the original 
twenty-six driver characteristics to six factors by factor analysiS to give a 
concise representation of risk components to accident involvement. An 
a.,regate logit model of discrete multivariate analysis was applied to study 
the sev8rity of large-truck and combination-vehicle accidents in over-the-road 
service h1 Chiracbava1a [1984]. 

Tbe common denominator of all above statistical or correlation analyses 
for traffic safety study is the absence of an explicit explanatory framework 
for accident occurrence. That is, those efforts emphasized the estimation of 
atatistical relationships in the available data and attempted to intepret 
those relationships. A preferred approach is tbe development of an 
understanding of the underlying process which determined those relationships, 
and the develOpment of an analysis framework which can capture those 
relatioaahipa. Furthermore, all exposure-based accident prediction models in 
previous literature were developed with aggregate data. The uae of aggregate 
data to construct an acc:1dent prediction model will cloud the relationships 
beeveen rt.k components and accident occurrence. 
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B. '!be .. latioaab:lp of '!he Proposed Burnv.1 '1'beo,ry IIDclel to Previoua 
llathoclolosl_· 

A complete traffic aafety reaearch framework should combine the knowledge 
of the driver's behavior. accident occurrence process, exposure and accident 
.lnvolvement togethar. While Each research approach has its own advantages and 
disadvantages, it would be useful if we could evolve a set of statistical 
methods that have the capability to use knowledge gained from the other three 
types of methodololiea. 

If we can develop a method to capture disallrelate exposure, we may be 
able to connect the study findings regardinl driver behavior with actual 
accident involvement. We all know it is hard to collect disallrelate exposure 
data, but it is harde.r to collect dballrelate exposure data without a 
research framework to guide us how to collect it. The survival theory model 
ia proposed as an example of how to fill the tbeoretical gap between previou8 
traffic safety a twit. s. It is our main purpose to develop a research 
framework for d1saaregate modelina on highway safety study by combining 
elements of driver behavior wi tb a conceptualized model of the accident 
occurrence process, expo. lure data and data describing actual accident 
outcomes. The conceptualization of accident occurrence i8 described next. 
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Ill. A COIfCBnUAL n...,. FOI.'l'IlB 
PROCBSS 01' ACCIDBft OQ2jI'QCB 

• • !b e DrI.Yer AB AD lIlfor.atioll Proc:ea.or. 

Though driving has been mode led as information processing for some time 
[Shinar, 1978). there have been no attempts so far to use these concepts to 
develop a feasible and quantitative model for highway safety research. In 
order to ~tead this conceptual idea, Bome effort needs to be placed on the 
detailed observation of how the information comes to a driver as well as how 
the driver responds to it and keeps his vehicle on the road. 

'ieu re 1 ShQ1<8 U8 how the risk factors bring their inforlD8tion to driver 
thl'ough direct or indirect ways. This hypothetical information propagation 
stl~ucture offers a useful guideUne to think about the risk potential of the 
dd-ving task and help. U8 to realize the possible interactions between risk 
factotl. We observe that there are three paths to bring the environment 
infon. tion to the driver. Pirst. the environment can directly pa •• its 
inforu tion to the driver and affect driver'. performance. The driver's 
vision, for an example. will be hurt when driving under the bad weather or 
poor lighting conditions. Second, environment can affect the roadway 
conditions and then indirectly deliver its information to the driver. One of 
these lIItamplea 18 t~,t snow will make the roadway slippery and require much 
more driving .effort of drivers. Third, envirODlllent also affects the vehicle 
and alks more careful driving of the drivers, e.g., strong wind will make 
a mall vehicle. le_ UQl table. 

Roadway has two ways to transmit its information to drivers. Dlfferent 
roadW.y designs can bring different extents of driving difficulty directly to 
the driver, or indirectly to the driver through affecting vehicle's 
performance. e.g., a narrQf mountain roadway .tght bring a lot of pressure to 
driver particularly for large vehicles. 

The vehicle 18 the closest element of contact to the driver while 
driving. The vehiCle pasaea its information directly to the driver. Though 
most of this information ia coming from the environment and the roadway, there 
18stUl some information to the driver created by the vehicle itself, such as 
travel speed or mechanical defect problems. 

A driver makea his decision based on the information he receivese 
Dif!erent drivers may make their decisions in different ways. These decisions 
then result in different drivers' performance. Driver's decisions control the 
vehicle performance and feedback to affect the driver's further dec18ion 
again. They have no effect on altering the conditions of the roadway and the 
envirGlM nt. 

An attempt trying to conceptualize the accident occurrence process starts 
with a micro8copic observation of individual vehicles, from the start to end 
of their movement. Intereat of this observation centers on how an accident is 
initiated, what the contributing risk components are, and how those risk 
components work together. The knowledge received from this microscopiC 
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obef rvation can then help us to develop the conceptual model we seek. Based 
on ~ bis conCeptual relationahip between accident occurrence and corresponding 
rlst components, the risk to be involved in an accident can then be 
mat. ematicall), formulated in terms of those risk components. 

The movement of a vehicle cannot continue infinitely due to the 
li tation of fuel tank capacity or fatigue of driver. Temporary stops may be 
ne aaary during traveling,. Hence, tra,vel to fulfil! an activity may be 
fin ahed either by only one continuous movement or by several segments of 
co 1nuous movement. 'or different segments of continuous move_nt, th~ 
ope ating characteristics mayor may not dramatically change. Furthermore, 
the time between two conseputive segments of continuous movement may affect 
the operating risk for t~ continuous movement following the stop, if the 
fat sue of driver ia a fac~r affecting the highway operation risk. In order 
to apture the reality of ~ghway operation risk. the selection of time frame 
to ~nd.rtake observatio~ aud model for.ulation is a crucial iaaue. The time 
fr~ vill Var)', however, ~epending on the nature of the safety system to be 
In~.tl,ated. For example, we may choose a twenty-four hour observation on 
auto traveling process due to the periodical characteristics of daily activity 
pat~rn. AD origin-to-deaUnation observation may be undertaken on truck 
tra~eling procesl. In general, a trip usually mea~s a complete journey. It 
may consist of more than one segment of continuous movement, that starts after 
an4 en'- with a 10Q,s enough rest, in order to make the observed trips in our 
sel. cted time frame reasonably independent from other trips not observed. 

Tbe traveling proce.s for one vehicle trip is conceptually described in 
Figure 2. Basentially, the characteristics of driver, vehicle and trip (e.g. 
tr ~p purpose) are given before the vehicle trip starts. We call those given 
cha.racteristics the initial condi tiona of movement. In ter1l8 of accident 
ri~~ , thoee initial conditions imply some risk potential for accident 
in~lve .. nt. For example, the lack of enough rest prior to starting one trip 
wi l;l affect driver's alertness and increase the accident risk. Wi th these 
in~~ial conditions, the dr~ver starts to undertake his information processing 
ta~k and seeke to attain the required performance in order to maintain vehicle 
ope.ration.. Workin, alon, with the varying environment and roadway conditions, 
thdse initial conditions m*Y or may not change as the vehicle proceeds to run. 

The vehicle ends its ~ xposure with a stop. Stops can be clas8ified into 
two ~t~goriel -- accident involvement and nonaccident stop, according to the 
definition of the chance set up. A nonaccident stop always results in a 
period of reat before the vehicle starts another continuous movement. Based 
on the crite rion we have chosen to define the trip, we can assign the 
no~accident stop to be t~ end of one trip or a temporary reat depending on 
hOl long the nonaccident stop lasts. A new continuous movement following the 
st p may come into the Infqrmation processing system again with another set of 
in tial conditions. 

Our micr08copic observation on individual vehicles terminates with the 
8ucceaeful finiah of one trip or being involved in an accident. We call the 
accident generating process the process that the driver experiences in aeeking 
to survive in a riak system from the starting to the ending of one trip. For 
accident involved trips, our observation can measure the lifetimes of those 
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trips and outc01D8S of those accidents. However, for nonaccident trips, the 
only information we have Is their survival after a given amount of exposure in 
the risk .y.tem. In terms of the survival analys1s, modela in the next 
section, these individual trips are censored (i.e. we do not observe the 
failure time). 

B.2 Accidaac pattera1ac Proces •• 

In the accident generating process, our interest is to figure out how the 
r isk BTstem determines whether or not an accident will occur. However, when 
an accident is initiated, the risk system will affect the outcome of accident 
-sain. This outcome includes the number of involved vehicles, type of 
c ollision, Severity of injury and so on. We call the accident patterning 
process the process in which the risk system determines the outcome of an 
accident. Therefore. the riak system will not only dominate the accident 
generating process, but also control the accident pattern determining 
proce8s. lbe risk components for the accident generating process operate 
during the whole vehicle trip, but only have an instantaneous effect on the 
accident patteming process. 

Contrary to the accident generating process, the accident patterning 
process may have little to do with the travel exposure. Hence, the study 
associated with accident patterns can be easily undertaken through the data 
already in accident reports, obviating the most difficult issue in highway 
accident study -- exposure data. However, though studies of accident patterns 
can help us to find the strategies to reduce the severity of injury or 
property damale when a vehicle is involved in an accident, they are limited in 
how much they can contribute to identify how to avoid accident involvement. 

B.3 eo."etiac k cideat Pattenaa. 

In precediQg sections, the accident generating process and accident 
patterning proces. are thought of as two sequential steps. However, 1£ 
specific accident patterns are tho~ht to have their own accident lenerating 
processes and compete with each other to stop the continuation of one vehicle 
trip, then the accident occurrence process may be constructed as a competing 
risk problem. Those specific accident patterns can be classified by accident 
cause., or accident outcomes. Whenever one of those two accident patterns 
appears firat, the vehicle trip will be terminated, and the other will not 
occur. 

It might be interesting to see the transition between accident patterns 
as 8 ,Ome aa.ociated risk factor for one specific accident pattern has been 
reduced, if the accident occurrence process is formulated as competing 
accident patterns. Por example, we might like to identify the reductic.n in 
right aqgle accidents along with possible increases in rear end accidents if 
skid resistance treatments are given to an intersection approach. 

Several probl.... should be carefully considered before we formulate the 
accident occurrence proces8 by competing accident patterns. First is the 
interdependency between different accident patterns. This is because 
different accident patterns might not be mutually exclusive. For example, an 
injury acciden t always comes with some property damage. Second, there are 
usually several cOllJllon risk component. between different accident patterns. 
The critical controversy is whether the accident generating processes for 
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different accidant patterns work independently. If they do not work 
independently, it will be very difficult to formulate the accident occurrence 
process by co.petina risk approach and further theoretical consideration will 
be required. At this initial stale of 1I0del development. we aasuM that 
accident patterns are independent. 

We next procede to the mathematical formulation of an analysis approach 
based upon this cODceptualization. 
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IV. II)DBLLIRG BIGllfAY ACCIDBft OCQJUJUICE 

A. 1'o~.t;101l of t;he a.aar4 Paaction 
Accordiq to our conceptual structure, we can find that the accident 

gellerating process poss.sses some characteristics which will critically affect 
our consideration about what mathematical approach is appropriate to formulate 
this problem. First, syatem hazard is composed of all the risk cOllponents 
which may be conatant, situational, and elapsed-tiMe Hence, the .ystem 
hazard varies during the trip. Second, an accident ia the only event that can 
occur during a vehicle trip otlle r than to successfully complete the trip. 
These characteristics allow the accident seneratins process to be modelled aa 
a survival proceas. Third, only a few trips amons the observed tripa will be 
involved in an accident. USing the concept of variable systell hazard, our 
interest is to observe how long the vehicle can survive before an accident 
occur •• 

Let T be a nonneaative random variable repreaentins the Hfetimes of 
individual trips in some population. Let f(t) denote the probability density 
function of t and let the distribution function be 

F(t) • Pr (T < t) • J~ f(x) dx (4-1) 

The probability of an individual trip surviving till time t is given by the 
survival function 

Set) - Pr (T > t) • r; f(x) dx (4-2) 

Note that Set) ia a monotone decreasing continuous function with S(O) - 1 and 
S(·) - lim

t
+. Set) • O. The concept of hazard function het) is defined as 

het) • lim 
At+o 

Pr (t < T < t + At IT) t) • ~ 
At ~ 

(4-3) 

The hazard function specifies the probability density function of being 
involved in an accident at time t, given that the vehicle trip aurvives up 
until t. 

The functions of f(t), F(t), Set) and het) sive mathematically equivalent 
apecification of the distribution of T. It is easy to derive expressions for 
Set) and f(t) in terma of h(t), since f(t) • -S'(t). Eq. (4-3) implies that 

hex) d log Sex) • di thus 

log sex) It • - It hex) dx 
0 0 

(4-4) 

and since S(O) - 1, we find that 

Set) • exp [- It hex) dx] 
0 
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Por some purposes it 18 also useful to define the cumulative hazard 
function 

H(t) • It h(z) dx 
o 

which, by Eq. (4-4), le related to the survival function by 
Set) - elq) [-H(t)]. It can be observed that aince S(c). 0, then 
B(-) . l1m H(t) - -. Thus the hazard function h(t) for a continuous 

lifetime dis£~bution posaeases the properties 

het) > 0 lID het) dt • CD 
o 

Finally, in addition to Eq. (4-4), it follows immediately from Eq. (4-3) that 

f(t) • het) exp [-J~ hex) dx] (4-5) 

Because the fUnctions of f(t), set) and het) are mathematically 
equivalent SPeciUcations, we can undertake our analysis in terlDS of anyone 
of them. Cox and Oakes (1984) raised a number of reasons why consideration of 
the hazard function may be a glood idea. We prefer the hazard function het) to 
the others aince the notion of failure rate is basic and conceptually 
simple. The function het) provides a convenient starting point for 
undert .. ing the aurviVa 1 analysis.. Presumably, the lifetime of an individual 
vehicle trip i8 affected by the concommitant variables. Therefore. in 
general, we can repr • . ent the hazard function aa h(tIX), where X 1& a vector 
of explanatory variablea which are the risk components we mentioned in Section 
3, Further components of X may be synthesized to examine interaction effects 
in a way that ia broadly familiar from multiple regresaion analysis. The 
hazard function h(t!X) indicates the probability to be involved in an accident 
at time t for a vehicle with risk components vector Xt given that the vehicle 
trip survivel up till t. 

IS. 'fJpea of Ba Bard Pa.nctioae aII4 1helr bplicatioa8 
SeveQal types of hazard models for survival analysi8 have been introduced 

in the bi(Mdical literature (e.g.. Aranda-Ordaz, 1983; Cox and Oakes, 
1984). They differ in the way in which the explanatory variables are assumed 
to influence the underlying hazard. Par reasons explained in detail elsewhere 
[Chang, 1987] we chooee the proportional hazards model proposed by Cox as the 
basi. of our formulation. 

Specifically the Cox Model is: 

h(tlx) - ho(t)· exp (B*X) (4-6) 

while B*X - ~x1+b2z2+------+b x and the b 's are unknown regres8ion 
coefficients. 1fte Cox model possi.ies the charac@eristic that the incresse of 
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system hazard due to the increase risk of one specific risk component depends 
on all the other risk components. That is, when the risk component xi 
increases AXe the hazard function h(tIX) will increase to 
hQ(t)*IKp(B*X)*Eip(b i * Ax i ). This characteristic is quite s~lar to the risk 
of the driving task In which the risk components work together. 

Ther,e are several re,asons for considering the proportional hazards 1I0dels 
(Cox and Oakers, 1984). First, there is a simple eas11y understood 
interpretation to the idea that the effect of the risk components vector is to 
multtply the hazard by a constant factor. Second, censoring t111e and the 
occurrence of several types of failure are relatively easily accolllllodated 
within this formulation, and in particular the technical problems of 
statistical inference when ho(t) ls arbitrary have a simple solution. Third, 
the proportional hazards assumption sppears to be reasonable in many 
situations. Some examples and references to this in the biomedical area are 
contained in Breslow (1975). and Prentice and Kalbfleisch (1979). In 
eag,ineerina contexts, proportional hazards are considered by Lawless (1976), 
Mann (1978), and many others. 

The eff.ct on accident r1ak due to the change of one specific risk 
component depends un otber risk cOllponents. For example, the accident risk of 
a mechanieal defect (e.g., failure of brake or flat tire) might depend on the 
vehicle speed and the level of surrounding traffic. The multiplicative risk 
mode,l can capture this operating characteristic better than an additive r1ak 
model. 

Accordins to the risk propagation proces8 discussed in Section 3, the 
effect of riak factors on accident risk can be divided into three sequential 
stages. In a multiplicative risk model, each stage can be thought of as one 
multiplicative subfactor. In addition to those three sltiplicative 
subfactors, there are sOlle interactions between risk components across 
different atages. Tho.. interactions bring additional effects on accident 
risk and resulting tile fourth multiplicative subfactor for hazard function. 
Therefore, formulating the system hazard function by a multiplicative model, 
we wlll have followins five elements to be considered: 

(1) Nuisance hazard ho(t) 

(2) Multiplicaltive subfactor of driver risk factor 

(3) Multiplicative subfactor of vehicle risk factor 

(4) Multiplicative subfactor of roadway and environment 
risk factors and their interaction 

(5) Multiplicative subfactor of the interaction between 
riSk components across different risk propagation stages. 

Among those five elements, the nuisance hazard ho(t) can be a time­
lndependent function (1.e., constant) or a time-dependent function of 80me 
specific parametric distribution family. The four multiplicative subfactors 
should be nonnegatlve and it is natural to suggest the exponential expressions 
for tbee,. 



17 

c. Pra,o. . Made 1 for &:cicleDt Occurrellee 

We consider a population of individual vehicle tr1ps; for each vehicle 
trip we obeerve either the time to be involved in an acc1dent (1.e., lifetime) 
or the time to reach its destination (i.e., censor1ng time). That is, for the 
nonaccident vehicle trips we ass\IIle that the times to be involved in an 
accident for those vehicle trips are greater than the times they spent to 
finish their trips. Hence, an accident trip contributes a factor f( t IX) to 
our model formu lation, but a nonaccident trip contributes a factor S( t 1 X) to 
the model. Therefore, the likelihood function for a set of observed data on n 
vehicle trips can be expressed as follows when the lifetime distribution of an 
individual trip is considered to be a function of regreSSion vector Xi: 

n cS 1-6 
L • W {f(tilx

i
)} i * {S(tilxi )} 1 

J.l 
n cS 

• • {h( t
l lx i ) * EXP[-H(tilx1»)}i 

1.1 
1-4 * {Esp [-R(tl /X

i
)]} i (4-7) 

where ti 1a the lifetime or censoring time for the ith individual and 0 is 
the usual indicator variable taki~ on the value 1 if ti is lifetime and 0 if 
C1 ia ceDlloring time. 

The hare I'd function h(ttIXi) is aaeumed to be a proportional hazard 
model: 

(4-8) 

where Q(B,~) is the formulation of the risk components vector Xi as a 
multiplicative factor and B 1s a vector of parameters to be estimated in the 
specified model. In this research, only time independent risk components are 
included in Q(B,Xl ); the effect of time dependent risk components are assigned 
to tbe nuisance hazard function ho(ti). Then, the likelihood function Eq. (4-
21) can be formulated a8: 

n 
L • n {ho(t!) * Exp[Q(B,Xi )] * 

J.l 
I-cS 

* Exp [-HCt i Ix
i
)] 1 

n 0i 
- n {ho(t i ) * Exp[Q(B,Xi »)} • {Exp[-H(tilxi )]} 

:1.1 
(4-9) 

Usually, for convenience purpose, we take a monotone transformation and make 
the 10lariQua of Eq. (4-23) and g et the log-likelihood function as 
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n 
LL - t {al * [log(ho(t i » + Q(B,XI )] - R(tl/X t )} 

i-l 
(4-10) 

Yith the a , •• um.ed proportional ha~ard8 model like Eq. (4-20), the LL(B) is 
twice differentiable and bounded. We can deduce the existence and uniquenes8 
of the solution of estimated coefficient vector 8 which maximizes Eq. (4-24), 
f ro. the literature of aurvival analysiS (Lawles., 1982; Cox and oakes, 1984). 
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v • ......,. 

We have tried to call attention to 2 issues that are important as ,we 
consider traffic safety theory and methodology: 

1. That there a re lbliCed studies that U8e reaults from one type of 
safety methodlogy to enhance other methodologies. A typology of safety 
aethodologie. ia developed and discussed to illu8trate this point. 

2. theory and concept should be directly considered before statiatical 
methoda are u.ed. A conceptual framework for accident occurrence is 
developed ba_,d upon the principle of the driver as an illlformation 
proce.8or. 'l'he frallla'work underlies the development of a new modeling 
approach. 

3. Survival theory is proposed as an example of a statistical 
technique that i8 consistent with the earlier conceptual structure and 
allows the exploration of a wide range of the factors that contribute 
to high.,>, operating risk. 

It i. hoped that other papers 
di'8cu8Sed in this paper. The authors 
conceptual linkages to statistical 
empirical ... e •• _nta will follow. 

support at leaat some of tbe Ideas 
believe that once the tbeoretical and 
methods are clarlfted, more useful 
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