apri 26 - 28, 1988 .

amsterdam
the netherlands

T EARERAE



This book was made possible through the support of 3M Europe



SESSION 5: TIME DEPENDENT MODELS

Summary of the paper presented by the additional speaker

Siem OPPE, Matthijs KOORNSTRA & Bob ROSZBACH, Institute for Road Safety
Research SWOV, Leidschendam, The Netherlands
Macroscopic models for traffic and traffic safety

FPull papers of other contributors

Angel MARIN & Pedro PABLOS, E.T.S. Ingenieros Aeronauticos, Madrid, Spain
Flov optimization with traffic safety constraints

Frits BIJLEVELD, Siem OPPE & Frank POPPE, Institute for Road Safety
Research SWOV, Leidschendam, The Netherlands
State space models in road safety research

J. WISMANS, P. DE COO & C. HUYSKENS TNO Road-Vehicles Research Institute,
Delft, The Netherlands and T. HEIJER, Institute for Road Saety Research
SWOV, Leidschendam, The Netherlands

Computer sinulation of crash dynamics

B.Ch. FARBER, B.A. FARBER & M. POPP, University of Tiibingen, Federal
Republic of Germany

Evaluation methods for traffic safety aspects of new technologies in
vehicles

Helmut T. ZWAHLEN, Ohio University, Athens, Ohio, U.S.A.
Research methodology to assess the importance of peripheral visual
detection at night

R.L. ERICKSON & H.L. WOLTMAN, 3M Traffic Control Materials Division,
St. Paul, Minnesota, U.S.A.

Sign luminance as a methodology for matching driver needs, roadway
variables and traffic signing materials



Marien G. BAKKER, Ministry of Transport and Public Works, The Hague, The
Netherlands

Method floating car: A research method to study the speed-behaviour and
routes of car drivers in residential areas

G. BLIKMAN, Delft University of Technology, The Netherlands
A nev method for traffic safety research on driver distraction

Ake FORSSTROM, Chalmers University of Technology, Géteborg, Sweden
Simulation of casualties in person transport systems



Summary of the paper presented by the additional speaker

Siem OPPE, Matthijs KOORNSTRA & Bob ROSZBACH, Institute for Road Safety
Research SWOV, Leidschendam, The Netherlands
Macroscopic models for traffic and traffic safety






MACROSCOPIC MODELS FOR TRAFFIC AND TRAFFIC SAFETY
These related approaches from SWOV

Siem Oppe, Matthijs Koornstra & Bob Roszbach
Institute for Road Safety Research SWOV, The Netherlands

FIRST APPROACH: MODELS FOR THE DEVELOPMENT OF TRAFFIC AND TRAFFIC SAFETY
IN FOUR COUNTRIES (S. OPPE).

Introduction

Recently there has been an increased interest in the application of
macroscopic models for the description of developments in traffic safety.
At SWOV this new interest was initiated in the early eighties by the dis-
cussion on the causes of the sudden decrease in the numbers of fatal and
injury accidents after 1974. Before that time these numbers had increased
steadily over the years. A satisfactory explanation for this decrease
could not be given.

Blokpoel [1982] presents data for the development of traffic volumes,
accidents and accident rates in the Netherlands (see Figure la). In-
dependently the same data was given by Appel [1982) for Germany (see
Figure 1b).
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Fig. 1a. Traffic volume and traffic safety data forthe  Fig. 1b. Traffic volume and traffic safety data for
Netherlands according to Blokpoel (1982). Germany according to Appel (1982).

Figures la and 1b support the assumption that the development of the ac-
cident numbers follows from the combination of two more basic processes,
the development of the traffic volumes and of the accident rates. The
first culve is monotonically increasing, the second monotonically de-



creasing, and the rise and fall of the accident curve is then supposed to
result as the product of these two monotonic curves. The rise of the
number of accidents up to 1974 is part of the same process as the fall
after that year, and there is no specific explanation needed for the
turning point in this curve. The combination of these basic curves may be
used to predict developments in the number of accidents in the future.
Several approaches start from one or both curves in order to describe or

predict safety results. Oppe [1984] suggested two mathematical curves and
estimated from this a total of 1080 fatal accidents in 1990 for the
Netherlands.

This approach will be described and applied to the data of the Netherlands,
the USA, West Germany and Great Britain. These data are collected from the
various national sources. The US-data are from Accident facts 1974 and
Traffic accident facts 1986. The data for West-Germany are from SBA
Verkehrsunféille 1986. The data for Great Britain are from Road Accidents G.B.
1985. The data for the Netherlands are from CBS, stat. verkeersongevallen op
de 0.V. (statistics of traffic accidents on public roads), and additional
data from SWOV.

The model

The model is based on the above mentioned assumptions that:

- there is a monotonically increasing S-shaped saturation curve with regard
to the development of the number of vehicle kilometers per year;

- there is a monotonically decreasing curve for the development of the
fatality rates per year, to be called "the risk curve";

- as a consequence, the number of fatalities per year follows from these
curves by multiplication of their respective values.

Two very simple mathematical functions turn out to fit the data rather well.
A negative exponential according to model 1 is used for the fatality rates.

Model 1:
f
log (-) = ot + B8 (oxXo) Fh
v

Vith £ the total number of fatalities for a given year, v the total annual
amount of vehicle kilometers, t the respective year and « and B the scale-
parameters to fit.



This means that the decrease of the ratio between the number of accidents and
the number of vehicle kilometers is proportional to time.

The decrease is supposed to be the combination of all efforts made to improve
the traffic system, such as the improvement of the road system, vehicle
design, crash measures, legislation, education and individual learning [SWOV,
1986]. The traffic density as such may also have had a direct effect on the
decrease in the fatality rate.

For the description of the amount of traffic, a good fit was found from
simple assumptions. First it was assumed that this development starts from
zero and rises through time to a certain saturation level. A simple model of
this kind is the S-shaped logistic curve. A generalization of the function
for y-values between 0 and some arbitrary but positive value, instead of
y-values between O and 1 results in

Model 2:

v
log (———--) = o't + B (2)
vmax-v

The assumption is, that the rate between the traffic volume already realized
at time t and the remaining traffic volume potential to be realized in the
future increases proportionally to time. The value of vmax is not given in
advance and will be chosen in such a way that the fit of model 2 is
maximized.

Results

Both models fit the data rather well. As was already known before, the
decrease in the log-rates for the fatalities per vehicle kilometer over the
years, turns out to be fit indeed by a linear function for all four coun-
tries.

A maximum value for the annual amount of vehicle kilometers is found from the
best fit of the linear function to the data according to model 2. Using this
proportionality factor vmax, the fit for model 2 is, generally speaking,
slightly better than the fit for model 1.

Furthermore an empirical relation has been found between the parameters of
model 1 and 2, suggesting the combination of both models to.



Model 3:

£, = C\/ v, .(vmax -v ) (3)

vhere f is the number of fatalities in year t, v  the total amount of
vehicle kilometers in that year and ¢ is a given constant,

Koornstra (1988) noticed that this function is of a particular form. If we
rewrite model 2 in its ordinary form as:

Vg W e -

then it follows that the first derivative of this function with regard to t

is:

V,! = cemee v, (vmax - v ) (5)

(see also Mertens [1973])
This shows that the functional relationship between the number of fatalities

and vehicle kilometers as suggested by the empirical data analysis can be
written as f, = g(v,.')= c(vt')k.



SECOND APPROACH: RISKREDUCTION AS A LEARNING PROCESS (M.J. Koornstra)

Minter (1987) interpretes the relation between traffic volume and the
exponentional reduction of fatality-risk as a community learning process,
based on the cumulative past experience with traffic.

He conjectured that this learning process is rather independent from actions
of gouvernement, like legislative reforms.

Minter used Towill’s model (Towill, 1973), in our notation written as.

-] o it
v a -b L vV
.8 = do + e B, (1)
FI'I.
Rewritten as
_ Fn 1
SR — — (2)
cVn a’-b’ L th
l+e _—
or as
t=n
1 - ?n a'-b’ I th
______ e gu (3)
P

WVhere cV, is interpretated as a measure for the number of learning events in
time interval t and fu as the mean probability of a fatal result of an event.
Refering to Sternberg (1967) the postulated learning model is an agregrated
Luce-Beta Model in which the learning probability P_,
related to P as follows:

3 of the n+l - event is

or

By B e B s (4)
(1 -P) +aP_



This is a one-parameter learning model characterized by

- path indepence of events

- commutativity of effects on events

- independence of irrelevent alternatives
or arbitrariness of definition of classes of outcomes of events

- valid approximation by mean-values of parameters, assuming parameter
distributions over individuals concentrated at its mean.

Although the learning-model interpretation of Minter is followed, we start
with another assumption on the community learning process. We will assume a
community learning process, that reduces the probability of negative out-
comes of encounters by actions of institutions and that the amount of
investments is such that a constant probability reduction for negative
outcomes of encounters results. By this assumptions we obtain:

P =aP, + (1 -a) X\ (5)

t + 1

Where a is the constant probability reduction factor and A the level of the
limit of the learning process.

P, = XA fort--> &2 (6)

Following Sternberg (1963) and using the explicit formula by repetitive
application of (5) we obtain

P =atd‘1 P =at P (?)

Assumption 1: B o=k g R (8)

Formula (5) to (8) forms a general isation of the so-called linear -operator
learning model (see Sternberg) from Bush and Mosteller (1955) based on a
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society controlled learning process, where a is constant over time. As
Sternberg noted linear-operator models and the Beta-models are hardly
distinguishable on the basis of empirical data, since the difference is
in the generally unobserved preliminary learning phase.

Let us nov define a measure of encounters as the total exposure to traffic
for a country in a year t as a function of traffic volume in year t

U, = dv.*® (9

Let R, be the total quantity of some well defined class of outcomes of
encounters, then we identify P as

P, = ——- (10)
Combining (10) and (8) we obtain

at+p
R, =AU +U e (11)
Identify R, as F, and assume that instutions are taking effective actions
mainly on the basis of fatal accidents, then P, for t —> = approaches zero,
than A = o for R, = F_, by which ve obtain:

Ft Ft at + P
= e

= — = (12)
U dvt‘

which for s = 1 gives a theoretical justification for the curve fitting of
Oppe.

Taking (9) we generalize Oppe’s logistic function for the growth of traffic
volume as assumption 2:

Assumption 2: U = —~—--7—- oOor -—-—--=e (13)

vhich is only symetric for V, if s=1, see Nelder (1961).
For 0<s<1 shows a curve for V_ that is initially growing fast and slowing
down later, while the opposite is true for s>1.



It will be noted that the derivative of (13) with respect to t is.

' -’ - 2 a't+p’
U == . U . (U, -U) =-wU" e (14)
Uaux
Vhere v = —=-
Ull&‘

Oppe’s results points to the finding that the number of fatalities is a
simpel function of the derivative of U, for s=1. We state this as our third
basic assumption as:

Assumption 3: F, = p(U,)*? (15)

From assumption 2 and 3 it follows that

F, = p.wi.e?* ®*98° y 29 (16)

Since p is a free parameter, we define p=w"q and combining (12) as the result
of assumption 1 and (16) we obtain

e¢t+B _ eqa't + gp’ . Uth_l (1?)

This equivalence only holds if the last factor of (17) diops out by 2q-1=0.
So we prove that if assumptions 1 to 3 are true, there only can exist a
simpel relation between the logistic time parameters for U, and exponential
time parameter for F /U, if q = %, vhich for s = 1 must result in the finding
of Oppe that

a = %ho! and B = hR’ (18a)
and by which

Y’
F, = ¢ [V,(V,,, -Vl (18b)

From the functions of U and F, it is easily proven thar for s = 1

F =% c Vm.

max x



2 F

so that ¢ = —————— 18¢c)
v

max

It also follows that

2 2

F.°=a'V, - b'V, (19)
from vhich ve may estimate V_,_and F  as follovs
af
F ooy =b:~ (20a)
and
af
Vaan = o7 v b’ (20b)

Ve take Oppe’s results as an empirical justification for our assumptions.

Combining the results of (11) and assumption 3 as (15) we obtain a
generalized assumption as

Generalized Assumption 1: R, =f(U) +¢g (U;) (21)

where by (9) and (15) for s=1 this reduces, for q = % as the solution for
(17), to

N\

R, = Md.V, + (1-N).c.(V))" (22)
Depending on A, ranging from 1 to 0, we obtain R_ as the ordered quantities
for exposure (X=1), conflicts, less severe accidents, severe injuries and at
last fatalities (A = 0).

If we identify R, as the quantity of severe injured people (S, ), we obtain
from (22) for o<Xl1

t

S, = Md.V, + (1-N.c. V(v -v,)]" (23)

max

or by (19) and (18)

r r 2 I
S, = Ad.V, + (1-1.(a'V, b’V ")* (24)



Fitting (19) and (23) directly on V., may give better fit for F_ and S,
since departures of V., from the logistic curve may explain variations in F,
and S, .

Some results will be shown.

Moreover, transforming (23) as

S F
s w X e X
dv v

t t

we ohtain also as another example of assumption 1 for 1>X0

S ka't+é
t
o (25)

Ve

Where ¢ = % B’ + 1In (b°.d) and a° = A.d vhile o is the same pairameter as in
(13) and (12) where o = %o’

Comparable results to the curve of Oppe for I, are shown for 5, and show a
rather good fit as well.

It will be noted that curve fitting for V,, F, and S, is ex!iemely
parsimonious by the assumptions of ouir theory.

Only 6 parameters are used to fit 3 observational independent times series by
theoretical deduced shapes of curves.

The fit for the predicted shape of the curves and the empirical close
identity of the o-parameter are taken as evidence for the justification of
this mathematical theory.

Ve disagree with Minter’s (1987) interpretation of the learning process as
community learning based on cumulative experience, without effects of
institut ional actions, for two reasons:

Firstly: the difference in learning curves for F,_ and S, supposes
discrimination btetween situations with fatal accidents and with less severe
accidents, resulting in better learning for avoidance of fatal accidents than
of less severe a’cidents. This cannot be explaind by individual cumulative
experience.

Secondly: transforming Minter’s Beta-model for learning to an equivalent
linear-operator model would result in the expression as



vhich only reduces to the well fitted curves of Oppe if V_ is constant over
time. This is evidently not true.

The observation that the curves do fit rather well for s=1 is somewhat

puzzling, since this relates exposure to traffic volume by a ratio-scale
factor only.

Taking encounters between two classes (say 1 as mopeds and 2 as passenger
cars) and defining exposure as

L k
Up 3,2 =d (Vg D7V, ,) (26)
wve would obtain for 1 = 2 according to s=1.

U, = dv,
Using (26) in the framework of our theory by substituting (26) into (11) we
expect some well fitted results.

This leads to the conjecture that growth of traffic volume itselve reduces
the number of independent encounters by a square root transformation of the
relevant volumes. Roszbach (1988) points to this third approach of explaining
for risk reduction by higher density of traffic.



THIRD APPROACH: DENSITY, EXPOSURE AND ACCIDENT RISK (R. Roszhach)

Processes proceed in time. In time related models, as presented in the
preceding parts of this paper, basically some regularity in time is assumed
with respect to some process. For explanatory or predictive purposes one
would like to know more about these unknowns or, rather, eliminate time from
the time dependent model and replace it by measures which are more directly
related to the processes at hand.

At the same time, one should try to move in depth in the sense that, on the
basis of the processes assumed, alternative predictions for subsets of the
material are attempted. If not, one arrives at general formulae such as
Smeed’s, which pose comparable problems of interpretation. That such formulae
are hard to interpret has been aptly demonstrated in last years issues of
Traffic Engineering and Control (Adams, 1987; Minter, 1987; Andreassen,

1987 a,b), some forty (!) years after the birth of said formula.

(It is interesting to note, however, that some countries - among which the
Netherlands - have already reached the safety level of about 3 fatalities per
10.000 motorvehicles per year - predicted by Smeed’s formula at a saturation
level of 1 vehicle per person - at much lower levels of vehicle penetration).
At the risk of incurring people’s wrath (on stretching intended meanings or
inducing unintended generalizations), I would hold that basic to such
formulae are:

- a monotonic decrease in accident risks

~ for conditions of growing motorization

With respect to the first part this leaves questions as to how these risks
are defined. With respect to the second part we may wonder whether this is a
fundamental constraint or an empirical (in the sense that we have as yet no
data on conditions of non-growing motorization, with maybe the exception of
the depression and wartime period in the USA.- It would be haid, however, to
generalize from such specific conditions) -

Relating amount of travel to accidents may be relevant in cost-benefit
considerations or in theories relating accidents to societies safety
tolerances. It is not necessarily the best way, however, to define the set
of potentially hazardous events from which accidents may or may not result
(exposure). Also, we have to be very careful as to how ve aggregate- I will
give one example:



If, for the Dutch situation, we divide yearly fatalities by total amount of
travel we get a neat exponential function, as Oppe shows. The decrease in
fatality rate is about 50% per 10 years. 1f, however, we divide into vehicle
categories and do the same per category (bicycle, moped, motorcycle, car,
goods vehicle) we get fatality rates that are essentially constant for the
period 1950-1970 and then rise and fall for the various categories in no
easily interpretable manner. (A lovely result for those who cherish constant
risk ideas). This is, of course, caused by the fact that car-kilometers
predominate in total amount of travel and consequently e.g. bicycle victims
are then divided by strongly increasing car-kilometers.

Constant risks for bicyclists over a period in which a tenfold increase in
number of automobiles took place may of course be interpreted as a signifi-
cant safety accomplishment, if one holds an exposure model which is
multiplicative in nature or some other function of the various combined
categories of vehicle involved. The exposure model Oppe uses, therefore, is
more of a multiplicative model than it looks like, as a result of properties
of the distribution of accidents and the distribution of growth in numbers
over vehicle categories. (Taking the above results into account a variation
on risk compensation theory may be offered in teirms of compensation for
increased mobility. We may be ordering our increasing traffic flows in such a

wvay that we effectively control for any multiplicative exposure effects).

A basic exposure model defines single vehicle accidents as straightforwardly
related to the amount of travel of that vehicle category and multiple vehicle
accidents as related to the product of the amount of travel of the categories
involved (Smeed, 1974). The second part of this model is not unlike a
comparison of moving vehicles with randomly moving particles.

Vehicles, however, move in a network. If the number of vehicles increases and
the network does not, vehicles tend to queue up. If we - loosely - introduce
the term encounter for potentially hazardous events, it may be that
encounters between single vehicles are replaced by encounters between such
queue’s or between single elements and such queue’s. If such encounters aire
seen as units of exposure, it then follows that exposure is not related 1in
any simple manner to the amount of traffic in the network at any one time. (A
basic assumption in this model is that the continuous interactions within
queue’s are essentially without risk).



There does seem to be some plausibility in the idea that for e.g. a
pedestrian who wants to cross a street it does not really matter - in terms
of exposure to risk - whether he meets with one motorvehicle or with 5 or 10
vehicles in queue. If he acts on the first one, he is not likely to fail to
act on the others. It does matter, however, if these vehicles are
sufficiently spaced so as to lead to distinct encounters.

Conceived in this manner exposure would be relative to quite specific
properties of the distribution of traffic over the road network and in time.
An attractive side to such a conception is that, although derived from
general considerations on the development of traffic safety, it is testable
on the specific level of limited sets of locations.

Following this line of reasoning, two propositions can be made in relation to

the development of traffic safety:

. descriptions of such developments may - from a process-oriented point of
view - overestimate exposure and thereby overestimate risk reductions

. part of what may be conceived as risk reduction is inherent to the
condition of growing traffic densities in the road network.
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FLOW OPTIMIZATION WITH TRAFFIC SAFETY CONSTRAINTSE

by Angel Marin and Pedro Fablos
Departamento de MatemAtica Aplicada y Estadistica
E.T.S.Ingenieros Aeronauticos. MADRID.

ABSTRACT

The authors consider the introduction of safety criteria
(depending on management) on the equilibrium traffic models

Cdepending on users).

Two typical traffic situations have been considered where
it is necessary to take into acount the safety. One consideration
is safety distance between vehicles and the other 1s the

acceleration limit used as vehicle enter the freeway.

To treat the non-linear bounds in the flow resulting in
the consideration of safety situations, we adapt an ad hoc
procedure of decomposition, where the management considerations
relative to safety inform the flow bounds of the wuser’'s

equilibrium model of the next iteration.

The use of the equilibrium models with upper and lower
flow bounds implies an adaptation of the Ffrank-Wolfe method Lo

include them.

INTRODUCTION

Traffic equilibrium models have ignored =1stematically
safety cosiderations, partly because they have not- been wvalued
enough and partly due to aditional mathematical complications.
These are due to considerations of management decisions of

responsible authorities besides wuser’'s characterizations.

On the other hand., whenever a study has been done, it has
been restricted to a few links related to a crossroads. This work
tries to extend techniques used in traffic equilibrium models of

large dimension, including safety considerations.
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If we want to include safety considerations 1t 1s
necessary to separate on the one hand , classic equilibrium models
and on the other hand, safety considerations. In spite of the
reduced experience in this field and limited reach of the study,
the results obtained and enormous possibilities that are beginning
to be seen, allow us to say that these methods may be of great use
in the considerations of reliable safety criteria for traffic

systems.

USED TRAFFIC MODEL

This model tries to characterize on the one hand the
user’s route choice process and on the other hand, the authorities

decision process, which controls the transport system.

For user's characterization the relations of the model of
non-linear optimitation for convex and separable networks will be
considered. This model results in stating the relations with a
given fixed demand, route choice according with Wardrop's first
principle; non-linear, separable, non decreasing monotone
congestion functions and linear equilibrium relations in network

nodes -

With all these hypothesis the following optimization
model is obtained C Florian, 1984 O

£
a
Min [Fc:‘)=z I C Cx) dx
a a
2 0

i 1o
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» where fa is the flow along link a, Ca is the congestion
function; hk is the flow in path k; dw 1s the given demand for an
origin-destination pair w; 6ka y 6kw are indicators of wether the
path k uses link a or belongs to origin-destination pair w; 1a Yy
u, are fixed lower and upper bounds for link a.

Management models will consider a congestion function Ea
that will depend on control variables ta together with link flows
fa. They will determine the cost in the link a Cca) and the

capacity anb.
{ c. , g } = E ¢t , £ 'V a «ad
a a a a

The management relation m represents decision making by
traffic systems controllers, characterizes the control variable t
depending on system’s state { f, c, g } and management recourse

parameters C r .

-~

t =mdcr, f, c, @ 3

The management model is complemented with feasability

conditions from (1), where bounds are not fixed now:
f e [1_, ul =gq VY a 4

The resulting management model is so complicated that it
requires the use of proper decomposition techniques which are fit

for the kind of relations used in the model .

A simple and intuitive procedure of making decomposition
is used by Gartner, Gershwin and Little ¢ {980 ), who consider a
iterative scheme in which the traffic assignment 1s looped with a
signal optimization program and with a mode split in relation with

fuel consumption and reduced air polution.
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We will consider a user's optimization cycle i1n which
control variables and 1link capacities will be considered as
parameters. The management cycle states new flow bounds ¢ q >
according to safety criteria and consideres as parameters Lhe

variables {f,c) related with user'’'s equilibrium.

The global interaction procedure may be represented by
the following diagram:

MANAGEMENT MODEL
Relations 2, 3, 4 | |
{q> {f,c>
USER MODEL
Relations 1
TRAFFIC MODEL SPECFICATIONS
As congestion functions Ca ’ the weil-known BPR
volume-del ay curve has been used:
- f'a 4
c. =C_(Cf D> =+t 1 +0.15 [—-—-«-h] s, ¥V a L5
a a a oa ka

» where <, is the average travel time in link a, Lf::a is free tlow
average travel time C travel time without any congestion eftect 2,
f‘a is the link flow and ka is the practical capacity of t.he
link a.

The management model can be reduced to the utilization of
control variables ( just as flow regulations, signal control 1in
the influence area, etc 2 which improve flow bounrds that guarant*=e
the accomplishment of several safety constraints. In this way the

above diagram may be represented as follows:
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MANAGEMENT MODEL

FLOW BOUNDS :
ARE CALCULATED constraints | yes
accomplished { END
WHICH SATISFY P g
SAFETY CONSTRAINS
al I £
USER’S MODEL e Inicialitation

Now, let’s see how safety constrains are obtained and

bounds are assigned in the management model.
SAFETY CRITERIA
Minimun distance between vehicles

As a result of a flow along a link, an average distance

between vehicles is obtained.

The average travel time Ca depens on the tlow {a
Ccongestion function (5)). The average speed v, can be expres<ted

then as follows

ea
C Cf >
a a

. where ﬂa is the lenght of the link a. The average distan’e
between vehicles will be

v A
d = fa = 2 &)
a a f CCf D
a a

This is a decreasing function. This means that as the

flow increases, distance becomes shorter . Therefore, an upper flow
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bound has to be imposed in order to satisfy a minimum distance

between vehicles.

The safest distance between vehicles is that which allows
a vehicle to stop without colliding into the leading vehicle when
it suddenly stops. According to Papacostas (1987) the breaking
distance bda is

vz

— — a -
bd, = 2°g-Cu_%*tg 6 F 1.8, . e o=

» where Va is the speed in the moment the motorist notices he has
to stop; g is 9.8 m/sz; Hy is the friction coefficient; tg ea is
percent grade divided by 100 and 1.5 is the average motorist

perception-reaction delay (in seconds).
We can establish a flow bound by i1mposing that the
distance between vehicles must be greater than or equal to

breaking distance

d = bd , V a can

Taking into account ¢6),0(7),(8) and (9) we obtain Lhe
following inequality

KT

I\1 = ~2 2 + Al‘s » YV a 19

f CCf D cCCf D c f D

a a a a a

» where
aa
= 110
Kl ZoCu, ¥ lg 65 va 3

We can obtain from (10) the following variable flow bound
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As a result of this upper flow bound we obtain flows so
small dCabout 1000 wveh-/hr) that it is impossible to acomplish
safety distance and satisfy ordinary demands in the networks
studied. As ':lm C7) is a decreasing function of flow, it will
approach bda if we impose an upper bound to the flow as low as
possible.

Nevertheless, another weaker minimum distance safety

criteria should be developped.
Acceleration bounding
The entrance ramp to a freeway will be cdansidered in

order to bound the average acceleration that a vehicle needs to

Join the main stream.

If link 1 (see graph) represents the entrance ramp and

link 2 and 3 are the freeway, the needed acceleration a, is

Av ;
= C
a, AL 13
d 2 d
At = Eiw 2 14>
av v + v
1 3
Av = v = v c1sD
3 1
» where dz is vehicle spacing in link 2 ; v1 and ?3 are the speeds

in links 1 and 3 <(initial and final speeds of acceleration

maneuver) ; d2 is the distance between vehicles in link 2, that 1s
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the maximum space in which the maneuver has to be finished; and av
is the average velocity in the maneuver if acceleration 1s

constant . As

31 74
vV = —— and v =T—’—- c1ed
% C Ccf D 1 cC cf D

i 3 3

we use (7),(14),C(15) and (16) in order to develop (137 as follows

Y 2 ¢ 5
& £ «CCED oy | | s 17>
N2 P RE C CfDd ccr D
3 '3 1 1
Ir an is the maximum desired acceleration, 1t has to be

greater or equal than a,
a X< a cisd

» where a2, is the function of f‘l c17). As f’ = f1 + fz » 1f we
take fz as a parameter, a, depends only on f‘ S0 we can obtain a
flow bound for this link.

THE FRANK-WOLFE METHOD

The user's model (1) with bounds like
f =20, V a 19D

will be refered to from now on as usei's model C(1-18J. The
Frank Wolfe decomposition method is used to solve it. This met-hud
has been choosen because it is very efficient to resolve

non-linear networks.

At first we look for a feasible descent- directd ari, whith
1s obtained by making the objective function linear and keeping
the node equilibrium conditons. After we look for the optimum sStep
along the above mentioned direction, taking inte account the non

linearity of the function.
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a) Initial step:
Let f‘L be a feasible solution of (1-19)

b) Descent direction search:
Min © FCfLJ Yy » where y is a feasible } <200
solution of C1-19)
Let y' be the optimal solution of C20) in the step L.
If v Fceh Cykﬂib < £ , stop: ylis an £-optimal
solution of C1-19)

c) Line search:
Min Frf' + oCy'—f'9) , with o e [0,1) c21d
Let al be the optimal solution of (21) in the step 1.

Let f‘"ﬂ—-b f‘L + ¢::AI'C)fl "ft) and come back to b)

The more important performance of the method is that it
can sol ve the linear model 200 decomposing it by
origin-destinations pairs. Then it is possible te solve it by
using a shortest path method which provides the path to which we

assign the known demand. ¢ Florian, 1984 D.

The resulting method is a very efficient one that uses
little memory. Therefore it is possible to use a Personal Computer
with only 640k of internal memory, to solve network of S00 links
in only a few minutes. For more information in relation to the use
of this method to solve large networks the article of A.Marin
C19870 may be used.

The introduction of a double flow bound as i1indicated in
C1) is fundamental to solve the user’s model taking i1into account

the successive bounds associated to safety criteria, but then 1t
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is neccesary to include modifications in the indicated algorithm
C20-215.

It is neccesary to maintain the shortest path algorithm
with the typical bound (19) because it is very efficient 1n the
resolution of the model (202, although it can not be adapted to
treatment of double bounds. Then it is necessary to put between
(200 and (21) a procedure to get the maximum step along the
descent direction compatible with the mentioned double bound on
the one hand, and a procedure to get a initial feasible solution

with the double bounds on the other.
To get the maximum step C . ) compatible with C1):
L L L
f +aCy —-f Dell_ , u 1, vV a a2
a a a a

a

is enough to define it how:

_ e Ak
a a a a
O s ™ min T T 1 : 23D
Y a

To get the initial feasible solution we begin in the

lower bound (1) and from over there determine an extreme point
C y‘) » Ssolution of the lineal model (203, from this point is
localized a second extreme point C yz) , and then the segment from
y" to yz is particioned locking for the initial soclution of the
model (C1). If the search don’'t find the feasible point it 1is
possible to try with other pair of extreme points.

With these modifications the Frank-Wolfe algorithm may
a) Initial step:

+ with the above method determine a feasible

solution to model C1)D.



e 1 L
b) Descent direction search:

+ To determine the shortest possible path i1n
order to Join each origin with its
correspoding destination.

+ Load the demand in the paths.

+ Verify the termination criteria.

¢) Line search:
+ Determine the maximum step compatible with
the double bounds as has been indicated.
+ Determine the optimum step, optimal solution
of the unidimensional model C(21).
» Obtain the new flow and get back to solve
the step b)

NETWORK DESCRIPTION AND RESULTS

A freeway corridor section used by Gartner et al. ({9800
has been studied. A graphic representation of this network can be

seen in the appendix.

The urban freeway and adjacent links of arterials is a
specially interesting scenario for safety considerations. Shoulder-—
lanes have been modelled separately in order to better

characterize entrance maneuver -

Freeway links have been characterized with a2 free flow
speed of 120 km/hr. Arterials have been characterized with a
free flow speed of 60 km/hr. The free flow speed fogether with the
link length Cof about 300-S00m) allow us to obtain the free flow

average travel time of the congestion function (5).

The practical capacity ca that appears in (52 is about
2000 wveh/hr - For an estimate of this capacity see Valdes (1978
and Highway Capacity Manual (1988).

The used vehicle demand is the same used by Gartner and

others:



To 2 4 s 6 7 a 12 14 15
From 1 225 600
3 860 375
4 375 225
5 225
6 300
7 a7s
8 330 150 225
10 3810 225 225
11 3758 187
12 180
13 225
1% 150 378
15 225
16 4510

Not taking into account safety constraints, the needed
acceleration a, obtained by user’s model (17> was 1.5 m’s® in the
more critical entrance ramp: node 26 . The user’s model (1) with
safety consideration (18) has been solved for the mentioned method
with smaller values of al at each time. In this way, the value of
a, was reduced to 0.7 m/s® in the mentioned node. For smaller
values of a_ the lower bound in the ramp link is so large that it

is impossible to find any feasible solution of C1).

However, when flow bounds are reduced 1in order' to
increase vehicle spacing, the upper flow in the <shoulder-lanes
Clinks 48 and S0) has proved specially critical. An upper {low
bound is imposed in freeway links Cas 49 and 502 1in order to
reduce vehicle spacing. Lower bounds are imposed i1n ramp links Cas
31 and 389) according with (18) in order tU minimize ramps
acceleration.

We are trying to increase freeway entrance flow and
reduce upper bound at the same time, so the conflict appears. If
vehicle spacing in freeway links is trying to be indreased, then
ramps acceleration increases dangerously Cuntil values of 2.8
m/s? . Flow bounds in shoulder -lanes can be reducted to 3300
veh/hr, and 1700 veh-hr in the other links. However . these bounds



are much greater than the safest one that we can obtain from (125,
that is about 1000 veh-hr.

FURTHER RESEARCH DEVELOPMENT

It is necessary to acumulate more experience with real

problems, and with large networks (1000 links or more).

It is important to work with other congestion functions
that consider the signal control, not only because of the
necessity to include it in an urban context, but their possibility
to be used as a control element by the management in coordination
with speed indicators (Smith, Van Vuren, Heydecker and Van Vliet,
1987).

We are working also in the characterization of other
safety situations, for example, to study the lane-changing
maneuver in the freeway. Other situations have to be also
included.

Another possibility is the inclusion of an elastic demand
in the user’s equilibrium models, or using other less heuristic
decomposition methods. The possibility of introducing stocasthic

variables will be also consider.
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STATE SPACE MODELS IN ROAD SAFETY RESEARCH

Frits Bijleveld, Siem Oppe & Frank Poppe
Institute for Road Safety Research SWOV, The Netherlands

INTRODUCTION

The OECD-S1-group developed in its report on Integrated Road Safety
Programmes a conceptual framework to analyze the accident process
(OECD, 1984). The three following elements characterize this framework.
1. The road user is the elementary unit of the system and must be
viewved in his interaction with the surrounding system(s). The system is
a dynamic one.

2. The processes are viewed as separated steps in succeeding order
according to a phase model.

3. All (sub-)systems are governed by various levels of control. The
control can be individual or collective, internal or external.

In this paper dynamic aspects of the model with regard to internal
control are explored. In the Sl-report this was seen as a risk control
process. We will not bother with a predefined model of a control-
mechanism. Instead we will show how the input and output of a system
can be analyzed in such a way that the behaviour of the system under
certain inputs can be defined and possibly interpreted. At SWOV the
theory of state space models is used in order to investigate the diffe-
rent aspects of the dynamic (sub) systems in relation to traffic
(un)safety.

THE DYNAMIC SYSTEMS IN TRAFFIC AND THE ROAD SAFETY ASPECT

The unsafety of road-traffic becomes clear from its end products. These
final products can be material damage to cars, or physical or mental
damage to people. The end products are the consequence of a series of
events. This series of events (a process) can be divided into different
phases, each phase having its own starting conditions, and its own
context. The context defines the set of options that can be chosen
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during each phase. The phases range from the conditions and events that
lead to the planning and undertaking of a journey, through the dif-
ferent choices that have to be made during that journey, up to the
events that lead to an accident, to damage and the consequences there-
of. This way one views the system along a chronological line, which is
at the same time the causal chain. The word "causal" does not mean that
somevhere along this line the one-and-only "cause" of the accident can
be found, but is used to reflect that the end of each phase determines
the options in the next phase.

At the same time the well-known elements of the system must be consid-
ered, being a second viewpoint: the driver, the vehicle, the road and
the surroundings (surroundings can be taken in a broad sense, including

social surroundings).

The third way to describe the system is by means of the different
control mechanisms. In this paper we want to explore the possibilities
for such an analysis. If an analysis would prove to be possible it
would have to take into account the following.

The system is governed by control mechanisms on different levels. The
levels are hierarchical, going from the control model describing the
individual driver, to different collective levels. E.g., an analysis of
acclidents of a particular type at a particular (type of) intersection
can take into account the behaviour of the driver, but can be extended
to the decisions and motivations of those who built the intersection or
designed it, or the authorities that imposed regulations. The same goes
for the car.

An analysis of the way a system is controlled by the operator can

start from different points. In the OECD-report a general description
is given of an operator who makes his decisions using an assessment of
the risks related to the options he (thinks he) has. Research would
then go on trying to build hypothetical models describing the percep
tion of risk and the strategies handling it. A lot of work and a lot of

discussion has been done in this direction.

An alternative would be to analyze the system itself, trying to find
trends or cycles, relating known inputs to known outputs. Of course,
the input one selects for analysis reflects some concept of what is

relevant and what isn’t. The information on how the system "bhehaves"
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and on the internal control necessary for such behaviour, could then be
used to exercise an external control as efficiently as possible. The
result of this kind of research (if any results are reached) would

rather be a predictive model instead of an explanatory one.

A SYSTEM AND ITS STATE

Fundamental in the system approach is the idea that the relation
between input and output of the system is not fixed. E.g. it is a well
known fact from biological research that an organism adapts to a
certain stimulus. A reaction to that stimulus therefore changes over
time. The same effect is to be expected from the behaviour of road
users. A road user having passed three intersections where he had right
of way, will under the same conditions expect also to have right of way
at the fourth intersection. This may change his reaction to a car
coming from the right on this fourth intersection.

Vith other words, a system is supposed to have a history and a memory
about this history that influences its reaction to input. This memory
is incorporated in the state of the system, also being the link between
input and output and to be taken into account in the model.

A "system" can be anything with some internal coherence. In this
paragraph we introduce some general ideas about the systems we want to
consider. Later on these ideas will be expressed in a more explicit and
exact manner.

The systems will be time-dependent. As a consequence the ordering of
the observations is important (in contrast, e.g., to a regression
analysis where the ordering of the observations is totally irrelevant).
At each moment in time the system can be characterized by the "state"
it is in. The state can be seen as a memory of the system, in which all
information necessary for a reaction on a particular input is contained
in the state. The system is acted upon by input-variables which influ-
ence the state, and the system adapts and produces output. The input

is supposed not to be influenced by the system.

A simple example that is often used is the bath-tub. Somebody has
opened the tap but forgot to put in the plug. The input-variable is the
rate of in-flowing water, the output is the rate of out-flowing water.
The output is dependent on the level in the tub, which is the state of
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the tub-system. This state is only partly dependent on the input, it
also depends on the previous state.

The assumption that the input is independent of the system is not
always easily ensured. Sometimes the definition of the system-bound-
aries must be chosen carefully, regarding also the time-scale chosen.
When one is interested in the choice of speed along a road one can
define the individual driver in his car as the system, and regard the
different speed-limits along the road as inputs. This is acceptable,
although the behaviour of the driver can influence the speed-limit.
However, this happens only in the long run (on a different time-scale)

and through another level of the complex of systems.

INTRODUCTION TO THE THEORY OF THE LINEAR STATE SPACE MODEL.

As previously mentioned, road safety is one of the outputs of the
traffic process we wish to study. A central assumption of state space
models is that a process is assumed to have an (unobserved) internal
state, which is essential in order to characterize the process. The
output of the process is observed (at least what may be assumed to be
output of that particular process). It is also possible that the
process is influenced by input from the process environment. This
influence can change the state of the process or even the process
itself. This last phenomenon is assumed not to occuir, the process
itself is assumed to be invariant, at least for long enough to make
this assumption practical. These processes are also called stationary.
When ve start monitoring a process, it is logical to assume that this
process was in a particular state the instant just before we started
monitoring. One might be interested what that state could have been,
and whether, or, for how long this state influenced the successive
states of the process. This last point can be useful comparing proces-
ses: two equal processes must end up in (almost) the same state when
they are both kept under the same circumstances for a long enough time.
This is only valid for a special, to be further specified, class of
processes.

An example could be the state drivers on the highway are in at some
point in time. Two distinct initial states could be whether they just
came up the slip road or they have been on the high way foir a long
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time. It could be reasonable that there is hardly any difference to be
seen (in state) if two drivers have been on the road for a long time.

One might ask whether the state of the process can be determined from
it’s output alone or not. This can be very useful if we want to know in
vhat state the process must be to achieve something, or even which
process states are to be avoided (e.g, some danger zone). Of related
interest is whether and in what manner we can manipulate the state.
Further it is assumed that the state of a process can be characterized
by a finite number of real valued parameters, composing the state
vector.

This state vector and the internal structure of the process are un-
known, and this rises to the problem of its dimensionality. The selec-
tion of the number of dimensions of the state space is mostly done by
trial and error.

These considerations led to the start of a research project concerned
wvith the development of a mathematical model and the development of a
field experiment based on the concept of traffic safety problems as
part of the dynamical systems approach. This experiment was done using
car drivers as individuals and measuring various (environmental)
parameters, such as maneuvers of other road users, the speed and
acceleration of the car, the driver’s heart beat, position of the car
on the road and information on the road the car is on at that moment,
such as its type, the average traffic product and its accident ratio
(Janssen, 1988). This experiment has not been completed yet. The other
part of the project is the development of a program to analyze data in
this manner. This is being done by the Department of Data Theory of the
University of Leiden, (De Leeuw, J and Bijleveld,C.C.J.H, 1987 and
1988). This research led to an experimental version programmed in SAS
(a package for statistical analysis), and a Fortran-77 version is in
development. A special experimental version was developed at SWOV and
used in this paper.

FORMULATION OF THE MODEL

First some assumptions must be made:

1. The process is invariant.

2. In the general case, a particular system is exposed to environmental
influence, or input, and is producing output.
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3. The output does not influence the input.

4. The input does not influence the output directly, the only effect
being through the system itself.

This describes a system for which we will attempt to establish a
mathematical model.Recapitulating, a state of the system is dependent
on the system its previous state and the present input. This state
'produces’ some output.

In more precise terms, for every given moment t (t=1,...,T) there is
an input vector x,  (this maybe a zero dimension vector) with fixed
dimension p and an output vector y, (this may not be a zero dimension
vector) with fixed dimension r. For each t (t=0,...,T) we get an

unknown state vector z, of dimension q.

t

This may be described as follows:

Zt = f( zt_l ’ xt ) t=1’to.’T

yt - h( zt ) t=1’ll!'T

The first equation is called the system equation, the second equation
is called the measurement equation.

Restricting ourselves to linear versions of these functions, this may
be written as:

z, = F( 2z, _, ) + D( X, ) t=1,...,T (1)
¥ = H( 2z, ) T (2)

Where F, D and H are linear functions (transformations), often refer-
red to by the matrices that symbolize them. F is called the transition
matrix, symbolizing the transition function, D is called the control
matrix and H is the measurement matrix. This approach is not new,
descending from the linear control theory approach (Kwakernaak, 1972)
the matrices F, D and H were assumed to be known, but in this case we
wish to estimate them as well.



PARAMETER ESTIMATION

Generally all matrices and state vectors are unknown and must be
estimated. It is assumed that neither the system equation nor the
measurement equation are error free, therefore a particular loss
function is minimized. In this case a sum of squares function denoted
by first introducing some error terms in the formulae (w, for the
system equation, v, for the measurement equation) in the following
manner:

<
n

% z, -F(z,_, )-D(x. ) (la)
v, y. - B( z, ) (2a)

Both v, and w, are vectors of error terms whose components are assumed
to be mutually independent random variables with zero mean normal
distribution, implying unbiased estimation.

At this point, it can be useful to state that there is no unique
solution to this minimization problem. Basically the freedom lies in
variation in the state space. For example, all orthogonal transforma-
tions (i.e. choosing R( z, ) instead of z, with R being an orthogonal
transformation) on the state space result in equivalent solutions.

R(v,) =R(z -F(z_, )-D(x, ))
R(z, ) -RF( z,_, )-RD(x, )
R(z, )-RFR'(CR(z,_, )) -RD(x, )

and

v, =y, -BRI(R(z )) (2a)

This means that given a solution consisting of z, ( t=0,...,T ),D,F
and H one could use R( z, ) ( t=0,...,T ), RD, RFR™! and HR™! as well.
In other words one could use another basis for the state space, for
instance one for wich RFR™! is a diagonal matrix or the components of
R( z, ) are uncorrelated.

Another variation is choosing a * z, ( a real ) instead of z, for all
t resulting in an equivalent solution in (1) and (2) but not in (la)
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and (2a). This last remark leads to the necessity of some standardiza-
tion in the state space or the measurement transformation.

A special case is choosing H fixed, which is very effective if the
dimensionality of the state space is equal to the dimensionality of the
measurement space.

THE MEASUREMENT FUNCTION , THE MATRIX H

The matrix H, or the measurement matrix, is of fundamental importance.
It defines how the individual aspects of the output space are related
to the state space, and if there’s a kernel present. It also defines a
subspace in the state space that is of no direct relevance to the
output. This does not mean that it is not relevant at all, because an
element of the kernel of H can be mapped outside the kernel by the
transition function F. In this manner a periodic phenomena can be
fitted in the model. A simple example could be F a rotation and H only
mapping one dimension of the rotation surface onto the output space.
The manner in which a variable of the output space is dependent on the
state space , say the i*" variable , is defined by the i*" row of the
matrix H. The inner product of this vector and the state at that moment
offers an estimate of the i*"™ variable of the output space due to the
model. If one is interested in comparing the dependency of the i*" and
the j*" variable of the output space one could use the inner product of
the i*" and the j*" row of the matrix H as a measure. Unfortunately
this is not generally sufficient due to, for instance, ovelr dimensiona-
lity of the state space or less than complete fit of the model. One
could proceed as follows. First an estimate of every component of y, ,
the output vector, is defined by the corresponding component of

H( z, ). One first studies the correlations between the components of
those vectors or the explained variance. This offers an impression of
the extend the model explains the output. The correlations between the
estimated values of the i*M and j*" component could then offer a more
sensible measure of mutual dependence (within the system) of different
compoueﬁts of the output.
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THE CONTROL FUNCTION , THE MATRIX D

The matrix D, or the control matrix, is important only when input to
the system is assumed. It defines how the input alters the state of the
system. If a kernel is present, this subspace is the space in which the
input can vary without changing the manner in which it alters the
state. This can be clarified by stating that, defining d an element of
kernel (D), then D( x +d ) = D( x ) for any x element of the input
space (or set of the available input vectors). So:

z, = F( Z,_, ) + D(x) = F( z, _, ) + D( x +d)

This means that it makes no difference to the system whether it is
exposed to the signal x or x + d. In other words, if the difference
betveen two vectors of input lies within the kernel of D, then both
vectors have the same effect on the system. Unfortunately, this is not
generally useful vhile one will rarely get perfect fit of the model (no
stress at all). This results in varying effects of each single input
vector on the system. One could define the mean effect of each single
input vector on the system.

Assuming all error in the system equation due to the control of the
system, one derives while rearranging (la):

D( X, ) +v, =2z - F( z

t t t‘l)

By computing correlations between components of D(x,) and z, -F(z, _,),
one gets an impression how well the alteration of the state can be
predicted by the input.
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THE TRANSITION FUNCTION , THE MATRIX F

The interpretation of the matrix F in relation to the state space is
simplified by the theory of invariant spaces. For instance, if the
largest absolute value of the eigenvalues of F is sufficiently smaller
than 1 than the effect of older states on later states is decreasing.
This can easily be seen by stating: (using r as the largest absolute
value)

I PCz) | S x|z |
| PC FCz ) )| = |PP(z )| <x* |P(z)| <r? *x |z]
P (Cz) | £ x|z |

Here | x | means the norm (length) of element x, in this case a vector.
In this paper the euclidian norm is used , although this is not neces-
sary.

In case there is no input one obtains:

z, = P( z,_, )

z, =F“(z°)
Hence:

Lz | < % |z, |.

This means that the state always converges to Zero if we don’t apply
any input to the system. If, on the other hand, this value is greater
than 1, then it is possible that the system is getting out of control,
i.e, the norm on the state vector is increasing. This is the case if
the initial state contains a non-zero element of a subspace that has a
ratio larger than one. If we apply the system to one constant input
vector, say x, the state vector develops as:

N
"

s F( z, ) + D( x ).
b F(z, )+ D( X) =
PCF(z, ) +D(x))+D(x) =

N
]
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]

F2(z, ) +F(D(x))+D(x)
FP(z, )+ {F(D(x))+ ...+ F(D(x))+D(x)}
z =F'(zy )+ M(x)

For each n M is a linear transformation (M = 2:;; F* (D (x)) and
F* =1I)

If the largest ratio r is less than one M even exists if n moves to
infinity:

M —> (I-F)!'B(n->o, | F| <1).

(I is the identical transformation).

A general result is that the state vector conver s to one state if the
input remains constant. This can be of use if one is interested in
controlling the system. If one is interested in keeping the state in
one position, this can be extended to the case were the ratio is larger
than one. Assuming the state is z, a suitable input vector x can be
derived from:

z
z-F(z)

F(z) +D( x)
D( x )

This results in the following equation:

(I-F)(z)=Dx)
Of course, if D has a kernel this equation cannot be solved uniquely,
but in that case one has more optional input vectors to consolidate

the state of the system.

A THEORETICAL EXAMPLE

Consider a particle moving in one direction while a force is acting
upon it. While moving it encounters air resistance, proportional to the
square of its velocity. This seems an example simple enough to under -
stand and nonlinear enough to experiment with. To keep things simple, a
force in one direction only is assumed and a particle with mass 1 kg

is used in this simulation. We assume the aii” resistance to be

vt‘ / 10 , acting in opposite direction as the movement. The force is
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taken as a function of time: F=SIN( w * t ) + SIN( 5 * w *x t ) / 3.
This precise function was not chosen for any particular reason other
than getting reasonable fluctuation in the input. The elapsed time
between two time points in the model is denoted by ét. In this manner
we end up with a nonlinear state space model defined as:

Ve = Voo, +3_, ¥t
a, =(f -B*xv, x| v |)/H
Here v, denotes the velocity at time t = time, + t * &t

a, denotes the acceleration at time t,

L

ft denotes the external force at time t,
M denotes the mass of the particle, 1 kg,

B denotes the air resistance parameter.

Including the velocity being v, = v,_, + a _, * &t in the second

equation, while v, > 0, gives:

¢ (f, -B*(v,_, +a_, *8t))/M

a, = (£ -B* (v,_,*+ 2%tka,_ v + (8tka__)? ))/ M

Clearly this is a nonlinear system but if &t is taken small then this
should not differ too much from a linear model.

As an experiment data was generated for five seconds of time sampling
with time laps of 0.05 sec, 0,1 sec and 0.2 seconds. In this case, the
model is slightly simplified using a fixed value for the measurement
matrix H. This can be done without loss of generality and reduces
possible rotations in the state space to the identical. It also norma-
lizes the state space such that multiplication is not a valid transfor-
mation. Another advantage is that the interpretation is far simpler
this way, the state space being the expected output space.
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RESULTS

Notable is first a low correlation (less than 0.126 in absolute value)
between the two output variables. This means they are not dependent and
this will result in a proper distinction between the two dimensions in
the state space. Another aspect is the low correlation (less than
0.075) between the input and the first output variable, the force and
the velocity, in contrast with the high correlation (greater than 0.99)
between the force and the acceleration. This last correlation is not
equal to one, Therefore the acceleration is not totally explained by
the force. At this point, one can only explain the acceleration from
the input.

The results from the runs relevant to this aspect are:
First run:
Time step 3 0.05

D -5.283669452E-05
9.962226748E-01

rov mean std dev corr
zt’th-1 1 0.0002993 0.0008931
DX, 1 -7.309E-06 0.0000410 0.10729
z,-F2 _, 2 0.1442387 0.7713191
DXt 2 0.1378167 0.7723025 0.99977

Second run:

Time step 0.1

D -7.550053997E-04
1.015115142E+00
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rov  mean std dev corr
Zz,-F2, | 1 0.0005538 0.0019106
DX, 1 -0.0001006 0.0005912 0.36769
Zt-l'Zt_1 0.1416896 0.7939345
DXt 0.1352468 0.7948840 0.99979
Third run:
Time step H 0.2
D 1.572910580E-03

1.035519719E+00

rov mean std dev corr
2.-F2, _, 1 0.0012209 0.0034674
Dxt 1 0.0001932 0.0012555 0.31475
Zt-FZt_1 0.1330888 0.8257702
DX 2 0.1271998 0.8265505 0.99980

t

Printed here are the mean and standard deviations of the first and
second rows of the matrices DX, = (DX,,...,DX ) and 2 -F(2Z,_,) = (Z,-
F(Zy)yees2,-F(Z,_,)).

One should note the low value of the first element of D together with
the low standard deviations of and the low correlation between the
first rows of DX, and 2 -F(Z, ). From this the conclusion is made that
the input hardly influences the first component of the state space. The
information about the second component of the state space suggests a

reasonable influence of the input on the second component.

Interpreting the results, listed below, about the transition matrix F
one can clearly see that the first row delivers excellent estimation.
The first component, as suggested above, not dependent on the input, is
perfectly estimated by the previous state. This can be seen using the

correlation between the first rows of FZ,  _, and 2, DX :

1



First run:
Time step = 0.05

F 1.000008106E+00
-1.427406520E-01

row mean
Z,-DX, 1 0.9830164
¥2,_, i 0.9827098
2, -DX, -0.1337881
FZ,_, -0.1402101
Second run:

Time step = 0.1

F 1.000073552E+00

-1.450375617E-01

rowv mean
z,-DX, 1  0.9837848
FZ, _, 0.9831304
2, -DX, -0.1368614
FZ -0.1433041

15

5.016898364E-02
-4.843976814E-03

std dev corr
0.5617061

0.5622465 1.,00000
0.0924366

0.0803185 0.99150

1.010929644E-01
-3.097852506E-02

std dev corr
0.5670522

0.5682030 1.00000
0.0951249

0.0830380 0.99220
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Third run:
Time step = 0.2

F 9.999271035E-01  1.990711838E-01
-1.459238529E-01 -6.734193861E-02

rowv mean std dev corr

z,-DX, 1  0.9827600 0.5782808

¥Z, _, 0.9817323 0.5800890  0.99999
z,-DX, 2  -0.1391711 0.1013326
FZ,_, 2 -0.1450600 0.0906569  0.99150

Applying the information due to F leads for the first dimension of the
state space to:

zt,l = zt—l,l + 8t * Zt-1.z
Hence , due to H = I vhich means 2, | = v,
v, =V, , + 8 *a |

The second dimension is somewhat less clear:

=f, - ®%2 R

t,2 t t-1,1 1,2
= - * - *
a, = ft ¢ Vs 1 e LT
Hence:
= *
¢ = Ve, +8t*a
- - & % -Q *
t = ft ® Vet e Ay

The first equation could be substituted into the second, but for now
it can be seen that raising the force at one time results in a raise
in acceleration, this results in extra increase of the velocity and
both result in a decrease in acceleration.
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A REAL LIFE EXAMPLE

Oppe (1987) describes an analysis of the relation between fatalities
and traffic volume in four countries. This analysis shows that the
number of fatalities is a function of the derivative of the traffic
volume v with respect to t.

This results in the following functional relation:

F2=axv, +b*v?
Although this function fits the data quite good, there are still some
systematic deviances between the model and the data. Furthermore this
relation seems to be independent of time; at least time cancels out as
an underlying variable. However if the development of the mass trans-
portation and the side effects of it in terms of accidents are regarded
as the development of a system, and system improvement over time in
terms of accident reduction as part of this development, then time is
an important variable. We therefore reanalyzed the data with the state
space model to find out whether an improvement in fit was possible by
the introduction of a system component. This seemed likely because
there is a high correlation between the number of fatalities in one
year and the next year (auto correlation). The auto correlation for
number of fatalities is 0.957, for the squared number of fatalities it
is 0.951.

Three analyses have been carried out:

1. State space model with input v_ and vt2 and output d, .

t

2. Ordinary regression modelling dt’=b*vt+c*vt2 (without intercept).

3. Ordinary regression modelling dt2=a+b*vt+c*vtz (with intercept).

The second analysis can be seen as an state space model eliminating the
transition of the state component, assuming F = 0. This was done to
find out to what extend the addition of the state space component
improves the fit. In the third analysis the intercept was added to find

out whether this parameter could account for the same improvement.
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results were as follows.

first analysis, the state space model, resulted in:
z, = 0.837 * Z,_, + 0.0830 * v, - 0.00110 * vtz

dt =2,

equation can be rearranged into:

z, = 0.836 * z_ + 0.00110 * v, * ( 75.5 - v, )

1

2

second analysis, using v, and v, * without intercept, resulted in:

2
d, = 0.385 * v, - 0.00410 * v_
third analysis, using v, and vt2 with intercept, resulted in:

d, = —2.12 + 0.476 * v, - 0.00533 * v,?

2 with intercept.

Residuals of: Mean STD
State space model 0.0 0.767
Regression ¥ o vt2 5.0 1.300
Regression v, , vt2 vith intercept 0.0 1.108
The correlation between z and F z, ., + D x, was 0.996

. Dx, and z, -Fz _ was 0.935

- y, and H z, vas 0.975

The state is well explained from its previous state and the input and

better quality estimates of the number of fatalities were acquired then
using the regression models.

From figures 1 through 3 it can be seen that the state space model (fig
1) tends to explain the peak better than the simple regression models

(fig 2 and fig 3). This phenomenon will be due to the property of the
state space model that it is adapting itself to the output. The solu-

tion mechanism of the state space model that the model searches for a
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vector z, balanced between P z +Dx, and B! y . This means that

t t-1 t’
the prediction of the state as being wrong does not always mean that
the next state of the system is also wrong. This could explain the fact
that the one step ahead predictions of the model are better than the

findings o f Oppe.
CONCLUSION

In both examples the linear state space model proved to be able to
supply good results. The model is able to improve the results of
standard regression techniques, because it uses time dependent
information to explain the variation in the data. The model has to be
tested on a wider scale to find its usefulness in practice, furthermore
some extensions are to be made; for instance a nonlinear transformation
on the input and output data could supply a better fit of the model in
various cases. Research in this direction is done at the moment by the
Department of Datatheory of the University of Leiden in order to apply
the technique to the data from SWOV projects mentioned above.
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Abstract

The objective of this presentation is to give an overview of the ’state-
of the-art’ of crash models in automotive safety. Crash models can be sub-
divided roughly into four categories:

-~ accident reconstruction models

- vehicle and obstacle structural models

- crash victim simulation models

- body segment injury models
The most important features of the various categories will be summarized
and illustrated by means of typical representative examples. An ocutline of
future developments in this field will be given.

Introduction

"Accidents will happen", an old adage and one of the many examples of
proverbs produced by mankind to depict its fallibility in spite of its best
efforts. Although accident rates in practically all western countries are
steadily decreasing, the absolute number of accidents is still consider-
able; a pattern that will probably not change dramatically in the foresee-
able future. In the Netherlands alone, almost 4 people are killed and 16
people are injured in traffic daily. So, as our attempts at accident pre-
vention occasionally fails, we must resort to ways of controlling the
outcome of these accidents, ways to increase the" passive safety" of ve-
hicles and roadside appurtenances. In the past decades this field of
reserarch yielded some rather spectacular improvements in the safety of car
occupants with the introduction of seat belts and crush zones while at the
roadside, vastly improved guard rail and effective impact attenuators save
lives every day. But also nowadays developments in injury prevention con-
tinue and, although results may not be as spectacular as before, much is
still to be done. Traditionally, full scale crash testing and real world
accident studies are the "tools of the trade" but in recent years, along
with the expansion of digital computing, additional and powerful methods
have been developed in the form of computer programs that emulate or re-
construct accident reality; this paper reviews some of the most important
developments, their use and their prime characteristics-
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Computer models for road accidents
Why computer models

As knowledge of the mechanism of accidents increased, the need for more
detailed measuring and testing increased proportionally. This meant, that
more and more sophisticated (and vulnerable) measuring and testing equip-
ment was introduced in full scale testing and this, along with the increase
in labour costs, has gradually driven the costs of the tests to a point
where the development of alternative methods can pay off. Development of
computer models in itself is neither cheap nor simple but the costs per
simulated accident are only a tiny fraction of what a similar full scale
test would cost. Apart from lower operational costs, these models offer
additional advantages to the researcher like unconditional repeatability
and the possibility to vary important parameters separately in order to
establish their influence. The models can be applied as a substitute for or
in addition to full scale tests in practically all types of research like:

- reconstruction of actual accidents,

~ design of (crash characteristics of) vehicles and roadside facilit-

ies,

- biomechanics of impact to the human body and related safety measures,

~ development of new and better safety regulations.
Furthermore, application and required results of a certain model may be
part of safety regulations, much like standard crash tests.

Reliability of the models

Although the models are generally quite complex and usually employ a large
number of parameters to describe the modelled objects and circumstances,
"reality" is always even more complex. As a result, many models include
generalized correction factors to account for influences that are not in-
cluded in the causal chains of the model proper or contain some parameters
that are impossible to determine exactly and therefore must be approxima-
ted. This is why calibration or verification of the models on "real life"
data will always be necessary and why we will always need at least some
full scale tests. Moreover, as correction factors or estimates of para-
meters will generally change as modelled circumstances differ signifficant-
ly, new calibration tests are necessary whenever the models are to be used
in thus far "unknown territory". Without these tests, models may still
produce correct results but the user will not be certain as to when these
results are correct and when not.

Types of models

Depending upon the nature of research, several types of computer programs
have been developed, each with their own, but often overlapping, area of
applicability. Most of the models are of the predictive type, that is,
based upon (measured or estimated) parameter values representing charac-
teristics of vehicle and surroundings and using the laws of common mech-
anics the most probable outcome of the modelled accident is calculated-
Although the models may differ in many aspects, they are all dynamic
models; they all account for inertial affects by somehow deriving equations
of morion for all movable parts and solve these equations by some iterative
method. Some models, with a slightly different setup, reconstruct accidents
that actually took place, on the basis of "ex post facto" measurement of
post impact posltions, damages to vehicles, tyre marks etc.
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Thus the following categories*) may be distinguished:

1- simulation of vehicle accidents (HVOSM, VEDYAC, CRASH3, EES)

2- simulation of structural deformations (MARC, ABAQUS, PAMCRASH, PIS
CES/ELK 3D)

3- simulation of human whole body response in a crash (MADYMO, CALSPAN/CVS)
4- simulation of human body segments

Some of these models, with the application of some of them the authors have
experience, will now be reviewed in more detail.

——————— e

*) Program names between parentheses need not necessarily to be the only
applicable programs in this field.

Simulation of vehicle accidents

Crash Reconstruction Modelling

Generally, these programs are used for investigation and interpretation of
physical evidence from vehicle accidents. The rest and impact position data
provide bases for estimating the speeds of the vehicles at the time of col-
lision contact. On top of that, extra information can be provided by inser-
ting the geometry of the structural deformation. From this, the deformation
energy can be approximated, comparing the vehicle’s structure with data
base vehicle stiffnesses and deformation parameters. They are mostly based
on work-energy relationships for the spinout trajectories and the principle
of conservation of linear momentum for the collision or they make use of
the locations and extends of structural deformations on the structures
involved and are based on energy approximations.

One of the programs used at TNO for this purpose is CRASH3 [5]. As an
example a reconstruction of a real world accident will be shown. From this
accident, which happened in France, most of the parameters were known. As
part of a comprehensive European research program on the biofidelity of
prototype side-impact dummies, at the TNO Crash Facility this accident has
been simulated by a number of full scale tests (see Figure 1) High speed
filming was used to analyse the vehicle motions during the tests and to
evaluate the CRASH3 reconstruction.

Figure 1: Snapshot of both vehicles during collision.
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Some data from the real accident are:

- At the moment of collision the striking vehicle’s velocity was 75 km/h
and the struck vehicle was assumed to be still In a rest position.

- The collision angle was 70 degrees (see Figure 2); the steering wheels of
vehicle 2 were 20 degrees left.

- The mass of vehicle 1 (including belted occupants) was 1385 kg.

The mass of vehicle 2 (one unbelted occupant) was 1290 kg.

Data from the experimental reconstruction are:

- The initial velocities and positioning were as stated above.

- After impact, from both vehicles the wheels were blocked after 20 m; both
vehicles sticked together for some time, where the rear end of vehicle 2
touched the right door of vehicle 1.

- Vehicle 1 slightly turned left. Vehicle 2 spinned to the right due to
impact in front of the centre of gravity.

The results from the CRASH3 reconstruction appeared to be in good agreement

with the experimental reconstruction. The vehicle motion simulation shows

the same trajectory as was observed in the film (see Figure 3). Even the
sticking between both vehicles is achieved in this simulation.

It can be concluded that programs like CRASH3 are of great importance to

reconstruct accidents for instance for litigation purposes.

The VEDYAC model

This model has been originally set up as a general purpose computer program
to simulate both vehicle manoeuvres and vehicle crashes. The basic tools,
that the program offers the user to define and describe the vehicles and
moveable or fixed obstacles to collide with, are so versatile however, that
the simulations are not confined to simulation of road vehicles only: the
program can be used to simulate dynamics of man-like structures, trains,
helicopters, lighting poles, guard rail etc. Moreover, the number of simul-
taneously moving and interacting objects is not specifically limited and so
it is possible to simulate a crashing car having occupants colliding with
its interior at the same time. The model has been used extensively in the
development of new or improved types of gquard rail, research of slope ac-
cidents using various types of passenger cars and trucks, development of
crashworthy helicopter parts and may be used to investigate train crashes.
The model has proven a cheap and versatile replacement of often too costly
full-scale tests. However, these high costs have also prevented an exten-
sive validation of the model on "real world" data, which sometimes makes
the results of the simulations uncertain. Still, verifications with the aid
of smaller scale mechanical models in laboratory tests have been carried
out successfully.

Characteristics of the program in brief

The basics of the model are simply the Newtonian laws of reaction and
motion, applied to an unlimited amount of freely moveable rigid bodies. To
these bodies, deformable shapes (cylinders or plane elements) can be at-
tached in specifyable places to describe the outward shape and to enable
forces to be generated upon contact with other (moveable or fixed) bodies.
In order to model vehicles, several types of suspension are available (in-
dependant wheel movement, rigid axle, swing axle, steering gear) that can
also be attached in any place to moveable bodies. Bodies may be coupled in
one or more places by means of deformable joints, the characteristics of
which (elastic-plastic-frangible deformation, damping) can be specified for
each point separately.
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Figure 3: Vehicle trajectory as derived from computer simulation
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Thus articulated vehicles (truck-trailer) can be modelled, but also more
continuously deformable objects like guard rail beams can be described by
dividing the beam into a large number of coupled elements of finite length:
in such fashion, the program allows the use of "finite elements" to provide
for deformation of complex constructions. Simple finite element shells can
also be attached to moving bodies to enable modelling of more complex de-
formation properties than planes and cylinders would allow. The program
solves the equations of motion of each body separately in a large number of
small timesteps with the aid of a simple predictor- corrector algorithm.
Results can be presented in the form of tables (time series indicating po-
sition, rotation, speed and acceleration of all bodies), graphs or 3 dimen-
sional drawings.

Applications

As already mentioned, the program is extremely flexible and applicable in a
great range of dynamic problems ranging from simple manoeuvring on hard or
soft soil via cars impacting pedestrians to impact of complexly structured
train fronts against heavy trucks. The program has also shown some poten-
tial in dynamic analysis of assembled steel structures (vibration of net-
works of girders and beams). Some examples of recent applications of the
program are illustrated in Fiqures 4, 5 and 6.

Figure 4: Comparison of full-scale test results and model output in case of
a slope accident on a 1:2 slope at a speed of 100 km/h

Figure 5: Simulation of a truck, loaded with a 5 ton steel roll, colliding
at 80 km/h with a concrete median barrier

Figure 6: An example of a finite element structure: an aluminum train beody
colliding at 70 km/h with a 30 ton truck.

Simlation of structural deformations

With these programs the vehicle'’s structure can be optimized and the struc-
tural behaviour can be predicted. They are based on finite element and
finite difference techniques. With the current general purpose finite
element and finite difference computer programs problems such as static
crushing and low and medium velocity impact can be dealt with. By the
appearance of supercomputer systems these problems can be of rather extent.
However, to perform a simulation of a full vehicle crash, a very complic-
ated and cpu consuming model is needed. Specialized computer programs for
crash analysis have been derived from existing advanced packages by uni-
fying their respective virtues and by adding new features. In this way,
special purpose crash analysis packages have been developed. Until now,
application of such programs in the automotive industry is not common use.
Composing the model and defining the input parameters require specialized
knowledge on engineering and computational mechanics (8]. As an example, in
Figure 7 the difference is shown between an overall structural analysis
mesh and a special front-end crash analysis mesh.

For type approval a road vehicle must undergo a series of tests. One of
these tests is a frontal collision with a velocity of 50 km/h with a rigid
wall. During this collision certain parameters must be measured which
should not exceed prescribed values. A simulation of this test is presented
here.

During a real crash, the kinetic energy (1/2.m.v2) is dissipated by the
structure and transformed into deformation energy (F.s). Normally, the
deformation length is of order 0.5 m, which results in an average decel-
eration of 20 g. The total impact has a duration of about 100 ms.
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Figure 4: Comparison of full-scale test and model output




Figure 5: Truck, loaded with a 5 ton steel roll, colliding with a concrete
median barrier

Figure 6: Aluminum train body colliding with 30 ton truck



PAM-CRASH Dynamic Mesh

Figure 7: Static structural mesh and dynamic local impact mesh
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Figure 8: Finite element model
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A finite element model of the front structure of a Volkswagen Polo is shown
in Figure 8. It consists of 5555 shell elements and 106 beam elements, re-
presenting the structural and physical properties of the vehicle.

Only 60 ms of crash time have been simulated. This simulation took 4 hours
of cpu time on a CRAY1l supercomputer. The results are shown in Figure 9.

In Figure 10 some comparisons are shown from simulation and a full-scale
test. The results are in good agreement.

Simulation of human whole body response

This type of models has been developed to describe the dynamic response of
a vehicle occupant involved in a collision event. However, they also can be
used to study for instance the motions of a pedestrian or a cyclist if im-
pacted by a vehicle [1]. The human body in this type of models is described
by a number of rigid elements connected by hinge or ball and socket joints.
The dimensions and the mass of the body usually can be changed to represent
an actual accident victim. The earlier programs were two-dimensional models
developed to study frontal impacts. Later models, however, have fully
three-dimensional capabilities. A review of various models developed in the
past is given by King and Chou [2].

One of the most recent programs available now is the MADYMO crash victim
simulation program (3]. This program has been developed at the TNO Road-
Vehicles Research Institute in the Netherlands in co-operation with the
Institute for Road Safety Research SWOV. The program is widely used by car
companies and research institutes for instance in computer aided design
applications and for biomechanical analyses. Advanced graphics possibili-
ties are available which allow visualization and animation of the motion of
the body during a crash event. Special submodules allow for the simulation
of the human body with the vehicle interior and crash safety devices like
an employing airbag. The MADYMO program has been validated in the past in
mumerous studies by comparing the predictions with results of experimental
crash simulations. Illustrations of the possibilities offered by MADYMO are
given in Figure 11. Results are presented for the reponse of an occupant in
a frontal collision, a side impact and the motions in a pedestrian impact.

Simlation of human body segments

The final type of crash models to be discussed here are the body segment
models where the model representation is restricted to a specific organ or
structure. They particularly have been developed to study injury mechanisms
in the most frequently injured body regions like the head, neck, spine and
thorax. For a review of this type of models see Ward and Nagendra (4].

In these more detailed models the distribution of the forces inside the
tissue and bone is studied and internal stresses and strains are calcu-
lated.

Due to the complex geometry involved and the non-linear and elastic proper-
ties of biological tissue in mostly finite element or finite difference
representations are used. However, many of the significant parameters of
biological material are not or only partially known and consequently the
realibility of the predictions of such models appears to be still rather
limited if correlated with experimental test data. Figure 12 illustrates

a typical example of this category of model namely a finite element repre-
sentation of the human brain developed by Ward [4].
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Discussion

In the past years application of crash models in traffic safety research
has shown a rapid growth. To a large extend this is due to a strong in-
crease in features offered by software packages. But also more powerful
computer hardware systems have become available which have contributed
significantly to this trend.

In this paper the most important categories and applications of crash
models have been reviewed. They vary from relatively simple lumped mass
models to study vehicle trajectories during a crash to very complicated
non-linear finite element programs to simulate the vehicle deformation in a
crash or the response and injuries in a specific body segment like the
human brain. Practical application of this last type of models (i.e. human
segment models) is still rather limited mainly due to the lack of informa-
tion on material properties of biological tissue.

In the field of accident reconstructions, particularly for litigation pur-
poses, models have been applied in the past years extensively. Also in
vehicle design more and more use is made of crash models (computer aided
design). Though these analyses are not common practice yet in automotive
industries, it is expected that simulations will be of increasing impor-
tance during the design period of a vehicle. However, these simulations
will never superfluit the need of testing, because it is not possible to
take account for or to model all phenomena which may be of influence during
a real crash test. By applying simulation techniques in an early stage of
the design, a considerable decrease in the number of prototype crash tests
can be expected. As a result, in a shorter time and a more effective way a
vehicle can be designed with optimal safety features.

A final development which is expected to contribute significantly to the
acceptance of simulation programs for crash analysis is the increasing use
of technical graphical workstations. Most recent developments in this field
allow real-time animation of the dynamics during a crash which appears to
be a real advancement in understanding the complex mechanisms involved in a
crash.
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EVALUATION METHODS FOR TRAFFIC SAFETY ASPECTS
OF NEW TECHNOLOGIES IN VEHICLES

B. Ch. Fdrber, B.A. Fdrber & M. Popp
University of Tuebingen, FRG.

INTRODUCTION

Electronic systems in cars are becoming more and more
important and the project PROMETHEUS is only the logic con-
sequence of a long development in car electronics. Electro-
nics gives us the possibility to measure and display a huge
amount of information, which is mocre or less helpful to the
driver. The problem for traffic safety researchers is to
evaluate the value of these additional systems on a ratio-
nal way, excluding esthetic and emotional points of view.

Some of us remember the "good old times", where car instru-
mentation consisted only of a speedometer and two control
lamps for oil preasure and high beams. They may have the
feeling, that these indicators have been sufficient, and are
sufficient even in nower days. There 1s another group of
persons who may be termed as "high-tech freaks". These dri-
vers want to have as much information as possible and like
the feeling of steering an aeroplane. Which group of dri-
vers causes more risks or more accidents?

It is evident that this is an unanswerable question. The
question should only demonstrate a problem:

we are able to compare cars with respect to their horse
power, fuel consumption or crushable bin, but we don't have
any safety marginal to compare different displays or con-
trols. Until now, the designer of automobil dashboards may
have some ergonomic rules in mind, all the rest is based on



principles like customers fancy or expected salery rates.
In spite of the lack of such a measure, the design of dis-
plays and controls can be seen as an 1mportant part of the
closed-loop "driver-car-environment", and therefore of save
driving.

PREREQUISITES FOR EVALUATION PROCEDURES

The development of evaluation procedures for different dash-
boards must take into account several factors, which belong
to the closed-loop driver-car-environment. These factors
are:
- the optical, acoustical and mental processing capacity

of the driver.
- the variability and constancy of driving situations.

Perceptual chanels and divided attention

Mental load: Several experiments from basic research (e.g.
SPELKE et al. 1976) or from traffic safety research (FAR-
BER, 1987) show mens ability to divide attention without
lack of accuracy, if different input chanels are used.
Other investigations (MORAY, 1967) demonstrate, that sepe-
ration between different 1nput chanels 1s no sufficient
condition for unrestricted information processing (compared
to undivided attention).

There seems to be a second variable, which is responsable
for the performance differences in single or multiple chanel
processing. This second variable concerns the similarity
between the task and the subjects internal model of that
task. Therefore we have to look for appropriate criteria to
predict, which information is best suited to the internal
model of a driver. Unfortunately we are only partly able to




predict the accordance of physical lay-outs and cognitive
structures of men. As a consequence we must find a general
measure for mental load which allows the comparison of dif-
ferent realisations in representative driving situations.

Motor load: With respect to controls, motor load 1s mainly

important for arms and hands. Motor load seems to be less

important than visual distraction, if two restrictions are

fulfilled:

1. handling of controls must be possible without visual
feedback,

2. the driver rests in his normal position and one hand
remains on the steering wheel.

These conditions are satisfied, if controls are positioned

in the optimal reach and are haptically separable from each

other.

Visual distraction is undoubtedly the biggest problem in
car driving. Not only the huge amount of information in

the road environment, but also inside the car tends to over-
load the driver. This general accepted statement leads

to the question: how to measure visual distraction with
sufficient accuracy and external (i.e ecological) validity?

Control of situational parameters

Another precondition for the comparison of traffic safety
effects of two ore more realisations of dashboards is the
systematic control of situational variables. On one hand it
is important that the driving situation is held constant -
otherwise the effects of the driving task and the secondary
task are confounded. On the other hand, the repeated presen-
tation of the same situation 1s impossible. Especially cri-



tical events change their characteristics from the first to
the second presentation. What we need, is a model to con-
struct parallel, equally loading traffic situations.

A cybernetic model of driving situations

The proposed model has three dimensions:

- The driven speed,

- the predictability of the situation and

- the manoeuvring space.

If each dimension has only two realisations, the eight situ-
ational variations in figure 1 result:

7 8
5 6
|
fast
narrow 3 4
1HToeuvring i
spa @ speen
1 2
broad <low

e capility
0194 1 ow

Fig. 1: Three-dimensional model of driving situations

The situation with the lowest operator load is characteri-
zed by low speed, high predictability and ampleous manoeu-
vring space (e.g. driving alone on a wide airfield with low
speed). In the most loading situation speed is fast, pre-



dictability low and the street narrow (e.g. driving 1n a
busy narrow urban road, where pedestrians can cross the
road).

Following this model, several experimental realisations
where definied and tested in two different driving simula-
tors. The static simulator uses a film projection and has
no motion simulation. The other one is a fully dynamic
simulator with computer generated interactive video display
of traffic scenes and realistic motion simulation. Heart
rate, tapping (= producing a constant rhythm, MICHON, 1965)
and subjective ratings were taken as dependent measures.
For most experimental realisations the predicted change of
subjective and objective measures could be observed. Gene-
rally speaking the lowest values were obtained in cell

1 of figure 1 and the highest values 1n cell 8.

Figure 2 exemplifies the change of the heart rate due to
increasing speed.
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Fig. 2: Heart rate for "slow" and "fast" situations.
slow = 80 Km/h, fast = 130 Km/h.



Figure 3 and

4 show the 1ncrease of tapping irregularity

for the variables "manoeuvring space" and “predictability".
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Fig. 3: Tapping irregularity for narrow and wide manoeuvring
space
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With this classification in mind we are now able to define
traffic situations with high or low visual and mental opera-

tor load.



EVALUATION MEASURES

In analogy with other diagnostic processes (e.g. the dia-
gnosis of managers), multiple measures are treated as more
reliabel than single measures. Besides we must accept that
a single safety measure for displays and controls will
never be found. Too many aspects have to be taken into
account. According to the above mentioned distractions of
visual and motor channel and to mental load, lots of measu-
res have been tested within the last years.

Parameters of driving accuracy:

Experiments in driving simulators provide a lot of measures
like acceleration and decelaration, braking behavior or
variance of side distance. Of course it is also possible to
get all these measures in field experiments with instrumen-
ted cars - only the technical problems are somewhat higher.
These measures can reflect driving accuracy, but they must
not do so. For one reason the participation in any kind of
experiment is an unnatural situation and people will not
behave as they do in normal life. From a theretical point
of view it would be best to test displays and contrcls in
high loading and critical situations. The rational behind
this experimental paradigma is the opinion that a system
that works in critical situations will also function in
normal situations. But, if the driving task in the experi-
ment 1s highly difficult, subjects will never watch their
instruments or try to change the radio station. They tell
you: "in the moment I'm not able to do that". On the other
hand we know from accident analysis and daily life, that
people manipulate their controls even 1n busy traffic si-
tuations.



The second reason, why parameters of driving accuracy must
not be overestimated, is a question of valitdity. WIERWILLE
et al. (1968) found that experienced drivers have bigger
variances in side distance than beginners. As a consequence
they believe steering corrections to be the more valid mea-
sure. But, steering corrections themselves depend on the
difficulty of the driving task and the amount of physical
obsticles. As we can see, the objective driving parameters
can only be taken as one 1ndicator of divert from traffic
environment.

The measurement of visual distraction

Visual distraction from traffic environment can be measured

in several ways:

- The most simple way is a mirror at the dashboard and a
video camera that watches the subjects eye-movements;

- the more sophisticated method uses Electro-Okulo-Gramm
(E0OG) - a measure that analyses the muscle potential near
the eye;

- the most sophisticated way is eye-movement recording by
an eye-movement camera.

Our own experiences show, that the measurement of visual
distraction is best done by EOG. This measure is precise
enough to decide, wether the subject looks at the traffic
or watches the dashboard. Of course it 1s not possible to
define the exact position of the dashboard where the driver
looks on. But for most questions of traffic safety this is
not necessary. The only relevant question 1s: how often and
how long the gaze of the driver 1s distracted by the secon-
dary task.



Compared to eye-movement cameras the main advantage of EOG
is the minimal impairment of the subjects.

Performance measures

Performance measures in the secondary task are useful for
the evaluation of displays and controls as well. The best
parameter is solution time for a specified task. If a task
is self-explaining, no long mental operations for the solu-
tion are necessary. Performance measures of the secondary
task alone are useless, because the capacity distribution
between primary and secondary task can change. Performance
differences in the secondary task must coincide with con-
stant performance in the primary task.

Some illustrative results.

The above mentioned measures haved been applied for the
evaluation of several new display and control technologies.
One example is the comparison of analog and digital devices
in a driving simulator (see figure 5 and 6). Digital devi-
ces attracted subjects glances more often than analog ones
(see also FARBER & FARBER, 1987). This is because the pe-
riphery of mens eye is sensitive for brightness differen-
ces. With respect to the task of the driver these looks are
useless, because they are not necessary for speed control.
Under this point of view analog devices are preferrable. On
the other hand one must admit that no negative influence on
driving behavior could be observed. Following our results,
the discussion wether analog or digital speedometer are
better, is more a question of esthetics and not of traffic
safety.



l = |

Oldruc Oltemp

e ( ks }

(¢44

1n Hass temp .
J

Fig. 53

Radio-Sender
Zeit: 10,16

Fahrzeit: Std. nin.

S ! = l . Ankunft in 4 Std. 2 4 min

Dldruck Oltemp. durchschn. Verbrauch: |
- sial wimm iy — r
-_|__1 1*'_‘ 0145 kn 080150 km
Benzin Hesserta ( B —

2e (A [=][=] (= ](m)(oe])[0t])[ =

Fig. 6: Example of the digital display

A second example demonstrates the possibility, to evaluate
new controls. Four different realisations of modern con-

trols were tested:
- Softkeys (the key-function can be definded and changed by

the operator)
- Hardkeys (controls with fixed function) in combination

with cursor control



- Cursor control
- Voice control.

Figure 7 and 8 show the differences between these four
experimental conditions 1n the EOG-measure.
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In contrast to the monitoring of displays, the handling of
controls has some influence on steering and braking beha-
vior. Here, manual and visual distraction coincide. Brake
reaction times increase significantly from voice control to
softkey, hardkey and cursor control. The same negative
effect can be observed for tracking behavior in critical
sitations.

CONCLUSIONS

The adequate presentation of information in the cars has an
important influence on traffic safety. Undoubtless many
other factors like experience, risk perception and calcula-
tion, fatigue or motivation are also important for safe
driving. But as 'conditio sine qua non' right information
acquisition and processing can be seen. As evaluation pro-
cedure for dashboards with respect to traffic safety, a
combination of:
- time and frequency of visual distraction using
EOG-measure (visual load),
- driving performance in a simulator (motor load), and
- performance of control operations (mental load)
seems to be best. Prerequisite to the application of these
measures is the definition of traffic situations with spe-
cified operator load. The proposed three parameter model
using "speed, manoeuvring space and predictability" can
generate parallel traffic situations that fulfill this re-
quirement.
Even if we do not have a single safety marginal for dash-
boards, we are able to measure this part of traffic safety
beyond the momentary taste of designers or customers.
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RESEARCH METHODOLOGY TO ASSESS THE IMPORTANCE OF
PERIPHERAL VISUAL DETECTION AT NIGHT

Helmut T. Zwahlen

Department of Industrial and Systems Engineering
Ohio University, Athens, Ohio 45701-2979

ABSTRACT

Past investigations and experimental studies dealing
with the visual detection of either non-reflectorized or
reflectorized objects or targets in the driving environment
at night have been primarily limited to foveal or 1line of
sight wvisual detection. This study presents a research
methodology which includes a geometric analysis of reflec-
torized targets located ahead of the car at different loca-
tions along a tangent-curve and curve-tangent section of a
highway, typical driver eye scanning data, and demonstrates
that in many cases unknown or unexpected reflectorized tar-
gets such as a reflectorized license plate or an advance
warning sign will initially appear at moderately large per-
ipheral angles up to 20 or more degrees away from a driver's
foveal eye fixation point or line of sight. A methodology
to obtain experimental data from a field study involving the
foveal and peripheral detection of a reflectorized target is
presented and has been used to demonstrate that the periph-
eral visual detection distances decrease considerably as the

peripheral visual angle away from the fovea or line of sight
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increases. A 10 degree peripheral visual detection angle
results in an average visual detection distance which is
approximately one half of the average foveal detection dis-
tance. Based upon the geometric analysis, the eye scanning
data and the experimentally obtained foveal and peripheral
visual detection distances, 1t is concluded that in a situa-
tion where drivers approach or negotiate a curve at night
and where reflectorized objects or targets will become visi-
ble for the first time, most likely in the periphery of the
visual field, appropriate increases in the reflectivity of
the target should be made to assure early detection in order
for timely recognition, information processing, decision

making and appropriate control actions.

INTRODUCTION

Past investigations and experimental studies dealing
with the wvisual detection of either non-reflectorized or
reflectorized targets in the driving environment at night
have been primarily 1limited tco foveal or line of sight
visual detection. One exception which may be found in the
current literature is a field study by Zwahlen (1986) which
investigated human subjects' ability to detect an approach-
ing reflectorized <+arget in the field foveally, as well as
at peripheral visual angles of 10, 20 and 30 degrees at
night. The experimental methodology used and the results of
this study are discussed in more detail later in this paper,
however, it should be noted that Zwahlen (1986) found that

at a 10 degree peripheral angle the average detection dis-



tance was 47 to 59 percent of the average foveal detection
distance and at a 30 degree peripheral angle this distance
declined to 25 to 33 percent of the average foveal detection
distance. Like the investigations of human detection capa-
bilities in the driving environment, the past investigations
of a driver's recognition capabilities have also been pri-
marily limited to foveal or line of sight recognition of
symbols or shapes of targets. One exception to this is a
laboratory study by Karttunen and Hakkinen (1981) which
investigated subjects' ability to recognize various symbolic
road signs commonly used in Finland at peripheral angles of
10, 20, 30, 40, and 50 degrees. Karttunen and Hakkinen
(1981) found that when signs, which subtended a visual angle
of 4 degrees of visual arc (from bottom to top), were pro-
jected on a screen in a laboratory for 125 milliseconds, the
subjects' ability to correctly identify such a commonly used
road sign decreased from 100 percent for foveal presentation
to 92.4 percent for a peripheral angle of 10 degrees and to
32.5 percent for a peripheral angle of 50 degrees.

Since Zwahlen (1986) showed that a driver's ability to
detect a reflectorized target at night decreases consider-
ably as the peripheral angle at which the target is first
ptesented increases and Karttunen and Hakkinen (1981) showed
similar results for peripheral recognition accuracy of com-
monly used symbolic road signs, it would seem that the use
of data, based solely upon human foveal visual detection
capabilities, 1in the design of reflectorized targets in the

highway environment may be inadequate if such a target is



likely to first appear in the periphery of a driver's visual
field. Therefore, the objective of this paper is to present
a methodology to assess the importance of peripheral visual

detection in the driving environment at night.

METHODOLOGY TO ASSESS THE MAGNITUDE OF PERIPHERAL VISUAL

DETECTION ANGLES IN THE HIGHWAY ENVIRONMENT

Knowledge of human peripheral visual detection capabili-
ties would not be of great practical value in traffic safety
if it were not possible to demonstrate that driving situa-
tions exist where targets are most likely to first appear at
relatively large peripheral visual detection angles in a
driver's visual field. Since highways are designed based
upon geometric principles, it should be possible to develop
a geometric model to accurately determine the peripheral
visual detection angles which exist for particular driving
situations and targets in the driving environment and to
employ a computer to quickly analyze multiple situations as
an alternative to conducting much more time consuming and
costly field investigations for situations where large per-
ipheral visual detection angles might be present.

A geometric model was developed which is based on the
assumptions that: 1) the driver looks ahead of the car in a
direction which is parallel to the longitudinal center of
the car, 2) the driver is driving on a two-lane highway, 3)

the driver is driving on a level and flat road surface as



opposed to a road with vertical curves and 4) there are no
physical barriers along the highway which might obstruct a
driver's direct view of the target of interest. The analyt-
ical model was developed to evaluate situations which
involved tangent sections combined with either left or right
curves, where large peripheral visual detection angles were
expected to occur. These situations include tangent-curve
sections of a highway, where a driver is on a tangent sec-
tion of a highway approaching a target which is located
along the right edge of a gurve section of the highway, and
curve-tangent sections of a highway, where a driver is nego-
tiating a curve while approaching a target which is 1located
along the right edge of the tangent section on the highway
beyond the end of the curve. Large peripheral visual detec-
tion angles may also occur when a driver is negotiating a
long curve and approaching a target which is 1located along
the right edge of the same curve ahead of the driver. This
case was not separately analyzed since for certain short
distances between the driver and target in the tangent-curve
or curve-tangent sections of a highway both the driver and
the target are very close to being in the same curve. Tan-
gent-curve and curve-tangent sections occur frequently in
the driving environment since each curve is preceded and
succeeded by either a tangent section or another curve sec-
tion of a highway and curves along highways are common,
especially in locations where there are hills or when high-
ways follow natural rivers. For example, according to Zwah-

len (1983) in the state of Ohio there are over 18,000 curves



along the two-lane rural state highways. Since the state of
Ohio has a total of about 19,000 miles of highways of which
about 1200 miles are interstate highways and several hundred
additional miles of highway are four-lane highways, one can
see that about one curve exists for every mile of two-lane
ru-al state highway in oOhio.

To explain how one defines and calculates the peripheral
visual detection angle and develops the computer model, a
single tangent section of a highway wiil be used. Looking at
Figure 1 one can see the variables which must be considered
in such an analysis and their relation to the eye position
of a driver. These variables include the lane width (LW),
the lateral distance from the driver's sagittal plane to the
center of the driver's lane (DSP), the lateral distance from
the edge of the highway to the center of the target of
interest (D1) and the 1longitudinal distance from the
driver's eyes to the target of interest (Sl1). Based upon
geometrical calculations, one can see that the euclidean
distance from the driver to the target of interest (L) and
the peripheral visual detection angle (ALPHA) can be calcu-
lated from the equations shown in Figure 1. However, per-
ipheral visual detection angles calculated for targets along
a tangent section of highway are normally relatively small
when the target is viewed at distances of 400 to 1000 feet.

Based upon the approach and equations for calculating
the peripheral visual detection angles for tangent sections
of a highway as shown in Figure 1, similar equations can be

developed for tangent-curve and curve-tangent sections of a



CENTERLINE
L=v51%822 .
ALPHA=ATAN(S2/S1)

L = DISTANCE FROM DRIVER'S EYES TO
CENTER OF TARGET

ALPHA = PERIPHERAL VISUAL DETECTION
ANGLE

LW = LANE WIDTH

DSP = DISTANCE FROM SAGITTAL PLANE TO
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highway. As one can see from Figure 2, which shows the
geometric conditions and equations for calculating the per-
ipheral visual detection angles for tangent-curve and curve-
tangent sections of a highway for right curves, in addition
to the variables of lane width (LW), lateral distance from a
driver's sagittal plane to the center of the highway (DSP)
and the lateral distance from the right edge of the highway
to the target of interest (D1), which were considered for
the tangent section, one must also consider the radius of
the curve (RADIUS), the distance from the driver's eyes to
the beginning of the curve (D2) and the angle subtended by
the radial line at the beginning of the curve and the radial
line to the target of interest which will be called the
curve position angle (BETA). It should be noted that the
equations have been established assuming that the curve
radius is measured from the center or the centerline of the
two-lane highway.

Similarly, the peripheral visual detection angle can be
calculated for the curve-tangent section of a highway, as
shown in Figure 2. From Figure 2 one can see that the vari-
ables include the lane width (LW), the lateral distance from
a driver's sagittal plane to the center of the highway
(DSP), the lateral distance from the edge of the highway to
the target of interest (Dl), the radius of the curve
(RADIUS), the rectilinear distance parallel to the direction
of the tangent section of the highway from the end of the
curve to the target of interest (D3), and the angle sub-

tended by the radial 1line at the end of the curve and the
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radial line to the driver's eyes which will be called the
curve completion angle (GAMMA). For the curve-tangent sec-
tion for a right curve two equations had to be developed in
order to calculate ALPHA2. The appropriate equation may be
chosen by first calculating the distance S3 as shown in Fig-
ure 2. This distance may then be used to determine the
appropriate equation for calculating the peripheral visual
detection angle (ALPHA2). If one wiéhes to calculate per-
ipheral visual detection angles to aid in the determination
of what ranges of magnitudes could be considered as common
in the driving environment, BETA and GAMMA should probably
not exceed 40 degrees due to the optical properties of most
retroreflective materials and the reduced projected areas
of the targets.

Figure 3 shows the geometry and equations which can be
used to calculate the peripheral visual detection angles
(ALPHA1 and ALPHA2) and distances (L) for the tangent-curve
and curve-tangent sections for a left curve. When calculat-
ing the peripheral visual detection angle (ALPHAl) and dis-
tance (L) for the tangent-curve section it was necessary to
develop two equations from which one equation must be chosen
based upon the position of the target in the curve. The
distance S2 must be calculated before the appropriate set of
equations can be chosen when investigating the tangent-curve
section for left curves and the appropriate formula for the
peripheral visual detection angle must be chosen based upon
the magnitude of S2 as shown in Figure 3. It should be

noted that calculated peripheral visual detection angles to
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the 1left of the driver's sagittal plane are represented by
negative values, while calculated peripheral visual detec-
tion angles to the right of the driver's sagittal plane are
represented by positive values. Figure 3 also shows an
equation which may be used to calculate the peripheral
visual detection angle (ALPHA2) for the curve-tangent sec-
tion of a left curve. It should be noted that all periph-
eral visual detection angles for tangent-curve and curve-
tangent sections for right curves are measured to the right
of the driver's sagittal plane and all .angles for tangent-
curve and curve-~-tangent sections for left curves are meas-
ured to the left of the driver's sagittal plane except when
S2>(RADIUS+0.51LW~-DSP) for the tangent-curve section for left
curves, where the peripheral visual detection angle is meas-
ured to the right of the driver's sagittal plane. A common
spreadsheet package (Microsoft Excel) and a graphics package
(Cricket Graph) for the Macintosh computer were utilized to
perform the calculations and to graphically display the
results for the selected combinations of the variables pre-
sent in the model. The use of a spreadsheet package combined
with a compatible graphics package enables one to calculate
the peripheral visual detection angles and to display them
as a function of the distance from the driver's eyes to the
reflectorized target graphically in a quick and efficient
manner without developing special software for this particu-
lar application.

In order to make this small set of calculations repre-

sentative of conditions which might exist in the highway
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environment it was necessary to use conditions which com-
monly occur in the normal driving environment. According to
Zwahlen (1983) there are 18,093 curves on two-lane state
highways in oOhio. It was found that the vast majority of
these curves have a curvature of between 3 and 28 degrees
with an average of 12 degrees of curvature. Therefore, in
performing these representative calculations the effect of
curves with a curvature of 3, 12 and 28 degrees (radii of
1906, 477 and 204 feet respectively) upon the peripheral
visual detection angles were investigated.

Two lateral offset values on the right hand side of the
driving lane were chosen to represent two typical reflector-
ized targets which might appear in a driver's peripheral
visual field. These targets include a reflectorized 1license
plate of a disabled or abandoned vehicle and a reflectorized
roadside warning sign. Once again, to achieve a represent-
ative sample the analysis assumed that the disabled vehicle
would be situated such that the longitudinal center of the
vehicle and the reflectorized license plate would be posi-
tioned above the right edge line of the highway. It might
be noted that the same conditions would be applicable to
delineation devices such as raised reflective pavement mar-
kers which could be located along the right edge line of the
highway. It was further assumed that the reflectorized high-
way warning sign was positioned 12 feet to the right of the
edge line (measured from the edge line to the inside edge of
the sign) as specified by the Manual on Uniform Traffic Con-

trol Devices (1978). Therefore, the center of a 24 x 24
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inches roadside warning sign would be 1.4 feet to the right
of this mark and the distance measured from the edge of the
highway to the center of the sign would be 13.4 feet. In
order to further reduce the number of calculations it was
assumed that: 1) the driver is driving in the center of his
or her lane, 2) the driver is driving in a 12 feet wide lane
and 3) the driver's sagittal plane is located 1.25 feet to
the left of the vehicle's longitudinal center.

Figures 4 and 5 show the peripheral visual detection
angle (ALPHA) as a function of the distance from the
driver's eyes to the reflectorized target (L), the curve
position angle (BEZETA), the radius of the curve (RAD), and
the horizontal distance from the edge of the road to the
target of interest (Dl1) for the tangent-curve conditions for
right and left curves. Figures 4 and 5 show that as a
driver gets closer to the target the peripheral visual
detection angles increase for the tangent-curve sections of
highway. From Figure 4 one can see that for the right
curves when the distance from a driver's eyes to the target
is within a range of 400 to 1000 feet the peripheral visual
detection angles range from about 7 to about 20 degrees for
curves with a radius of 477 feet (12 degrees of curvature)
with a curve position angle of 40 degrees and for curves
with a radius of 1906 feet (3 degrees of curvature) with a
curve position angle of 20 degrees. There is very 1little
difference in the peripheral visual detection angles whether
or not the target is located on the right edge line or 13.4
feet to the right of the right edge line. Within a range of
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1300 to 2200 feet the peripheral visual detection angles
range from about 12 to about 21 degrees for curves with a
radius of 1906 feet (3 degrees of curvature) and a curve
position angle (BETA) of 40 degrees, however, it should be
noted that these distances are rather 1large and therefore
most likely not that relevant for this investigation. All
other investigated conditions for tangent-curve sections of
right curves have peripheral visual detection angles of 1 to
9 degrees at distances in the range of 400 to 1000 feet.
Figure 5 shows absolute peripheral visual detection
angles since the values for a curve radius of 204 feet (28
degrees of curvature) with a curve position angle (BETA) of
20 degrees and a distance from the right edge of the road to
the target of 13.4 is positive while the values for all
other conditions are negative. From Figure 5 one can see
that for the tangent-curve sections for left curves, periph-
eral visual detection angles of about -6 to -17 degrees
exist within a range of 400 and 1000 feet for a radius of
477 feet (12 degrees curvature) with a curve position angle
(BETA) of 40 degrees and for a radius of 1906 feet (3
degrees curvature) with a curve position angle (BETA) of 20
degrees. Again, there is very little difference in the per-
ipheral visual detection angles whether or not the target is
located on the right edge line or 13.4 feet to the right of
the right edge 1line. Within a range of 1300 feet to 2300
feet the peripheral visual detection angles range from about
-11 to about =20 degrees for a curve radius of 1906 feet (3

degrees of curvature) and a curve position angle (BETA) of
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40 degrees, however, it should be noted that these distances
are rather large and therefore most likely not relevant for
this investigation. Further Figure 5 shows that for the dis-
tance range of 400 to 1000 feet the peripheral visual detec-
tion angles for all other conditions range from about -1 to
about -7 degrees.

Figures 6 and 7 show peripheral visual angles as a func-
tion of the distance from the driver's eyes to the target of
interest, the radius of the curve (RAD), the curve comple-
tion angle (GAMMA) and the horizontal distance from the edge
of the highway to the target of interest (Dl), for the cur-
ve-tangent condition for a right and a left curves respec-
tively. From Figure 6 one can see that in general the per-
ipheral visual detection angles decrease as the disfance
from the driver's eyes to the target decreases for the
investigated conditions. The one exception occurs for a
curve radius of 204 feet (28 degrees of curvature) with a
curve completion angle (GAMMA) of 20 degrees when the target
is located 13.4 feet to the right of the right edge of the
highway. For this condition the peripheral visual detection
angle increases as the distance from the driver's eyes to
the target decreases. Looking at Figure 6 one can see that
for a distance range of 400 to 1000 feet peripheral visual
detection angles of about 34 to 38 degrees were observed for
a curve radius of 204 feet (28 degrees of curvature) with a
curve completion angle of 40 degrees (for 0 and 13.4 feet to
the right of edge line target positions). 1In this same dis-

tance range, peripheral visual detection angles of about 24
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to 35 degrees were observed for a curve radius of 477 feet
(12 degrees of curvature) with a curve completion angle of
40 degrees. Peripheral visual detection angles of about 18
to 21 degrees were observed for curve radii of 204 and 477
feet (28 and 12 degrees of curvature respectively) with a
curve completion angle of 20 degrees for the 400 to 1000
feet range.

From Figure 7 one can see that the selected conditions
for the curve-tangent section of a left curve of a highway
all peripheral visual detection angles decrease in magnitude
as the distance from the driver's eyes to the target
decreases. Figure 7 also shows that between 400 and 1000
feet peripheral visual detection angles of -30 to -37
degrees are obtained for a curve radius of 204 feet (28
degrees of curvature) with a curve completion angle (GAMMA)
of 40 degrees. In this same distance range peripheral visual
detection angles of about -20 to -33 degrees were obtained
for a curve radius of 477 feet (12 degrees of curvature)
with a curve completion angle (GAMMA) of 40 degrees. Per-
ipheral visual detection angles of about =13 to -19 degrees
are obtained for curve radii of 204 and 477 feet (12 and 28
degrees of curvature respectively) with a curve completion
angle (GAMMA) of 20 degrees within the 400 to 1000 feet
range. It may also be observed that for distances of
between 1300 and 2300 feet, peripheral visual detection
angles of about -19 to -28 degrees may be observed for a
curve radius of 1906 feet (3 degrees of curvature) with a

curve completion angle (GAMMA) of 20 degrees, however, again
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it should be noted that these distances are too large and
probably not that relevant for this investigation.

From the data presented in Figures 4 through 7 it
would appear that relatively large peripheral visual detec-
tion angles may exist for targets which are located along or
just beyond a curve. However, reviewing the assumptions
which were made in developing the geometric model it should
be noted that it was assumed that a driver's direction of
his or her foveal fixation or line of sight is along a 1line
which is parallel to the longitudinal center axis of the
car. This assumption may not be valid since a driver fixates
upon various targets located ahead of the car in the driving
environment. Therefore, it might be necessary to adjust the
obtained calculated peripheral visual detection angles
according to the experimentally obtained spatial driver eye
fixation densities. It should also be noted that only flat
and level highways with horizontal curves were considered
and vertical curves or combinations of horizontal and verti-
cal curves, which could further increaée the magnitude of
the peripheral visual detection angles, were not considered.

In a prior study Zwahlen (1985) investigated driver eye
scanning behavior as the subjects drove on four unlighted 1
mile long tangent sections of a four-lane interstate highway
(Interstate 70 between Ohio State Routes 37 and 79) with a
lane width of 12 feet and on four unlighted right 240 feet
radius clover leaf type entrance/exit ramps (at the inter-
section of 1Interstate 70 and Ohio State Route 79) with a

lane width of 16 feet at night under dry and light rain con-
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ditions. Eleven young licensed test dr}vers who were in good
health, had about 20/20 uncorrected vision and were paid
participated in this night driving study. The eye scanning
behavior of eight of these test drivers was recorded during
light rain or while the pavement was wet and the eye scan-
ning behavior of four of the test drivers was recorded while
they drove on dry pavement (one of the test drivers was
tested for both conditions).

During the experiment the subjects drove an instrumented
car (VW 412, automatic transmission, type 4000 low beams)
which was equipped with an in car television eye scanning
recording system and other electronic equipment. This
equipment allowed the experimenter to monitor and record a
driver's eye movements and the driving scene ahead with a
maximum visual field of 18 by 18 degrees, as well as, a num-
ber of vehicle measures. For a more detailed description of
the experimental apparatus see Zwahlen (1983). During the
experiment each driver served as his or her own control and
was asked to follow a selected route such that every subject
drove the ramps and tangent sections in the same order two
times. In order for the drivers to complete the loop it was
necessary for them to drive two of the four ramps twice in
each of the two experimental loops.

The results of this study show that there are no statis-
tically significant differences in the eye scanning measures
between the dry and light rain conditions. Therefore the
data for these two conditions were combined to give larger

sample sizes. Figure 8 shows the relative number of eye
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fixations which occur in each one degree by one degree block
within the viewing area for the tangent sections of a four-
lane highway. From Figure 8 one can see that more fixations
are focused in the one degree by one degree block which |is
centered 0.5 degrees to the right of the focus of expansion
and 0.5 degrees below the horizon and focus of expansion
than in any other block. In fact, this block contains 13.5
percent of all the eye fixations (Total N=11780 fixations)
which were made by the test drivers. It should also be
noted that the average of the horizontal eye fixation dis-
tribution for the sample size of 11780 eye fixations is
about 0.84 degrees to the right of the focus of expansion
with a standard deviation of 1.92 degrees.

Figure 9 shows the relative number of eye fixations
which occur in each one degree by one degree block within
the viewing area for the 240 feet radius right curves (16
feet lane width). Comparing Figure 9 with Figure 8 for the
tangent sections one can see that the eye fixations are much
more dispersed in the spatial distribution of the eye fixa-
tions for the curves. In fact, the block centered 5.5
degrees right of the imaginary focus of expansion and 0.5
degrees below the horizon or imaginary focus of expansion,
which contains the most fixations, contains only 3.9 percent
of the fixations made by the drivers as they negotiated the
240 feet radius right curves. Again, it may be noted that
the average of the horizontal eye fixation distribution for
a sample size of 8884 eye fixations is about 3.64 degrees

right of the imaginary focus of expansion with a standard
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deviation of 3.79 degrees.

Using the same experimental apparatus an exploratory
study conducted at Ohio University investigated driver eye
scanning behavior of two subjects on tangent and 1left and
right curved sections (6 to 10 degrees of curvature, 954 to
572 feet radii) of a two-lane rural highway during daytime
conditions and for one subject during nighttime conditions.
The results of this study indicated that for six 800 feet
sections of straight highway during the day the average of
the horizontal eye fixation distribution was 0.81 degrees
right of the focus of expansion with a standard deviation of
3.90 degrees (N=213 fixations) and for seven 800 feet sec-
tions of straight highway at night the average of the hori-
zontal eye fixation distribution was 0.17 degrees 1left of
the focus of expansion with a standard deviation of 2.63
degrees (N=46 fixations). The average of the horizontal eye
fixation distribution was 2.16 degrees left of the imaginary
focus of expansion for four left curves during the day with
a standard deviation of 3.82 degrees (N=114 fixations ). For
right curves during the day the average of the horizontal
eye fixation distribution was 4.59 degrees right of the
imaginary focus of expansion with a standard deviation of
4.39 degrees (N=115 fixations). For seven left curves at
night the average of the horizontal eye fixation distribu-
tion was 2.69 degrees left of the imaginary focus of expan-
sion with a standard deviation of 4 .06 degrees (N=46 fixa-
tions) and for seven right curves at night the average of

the horizontal eye fixation distribution was 1.38 degrees
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right of the imaginary focus of expansion with a standard
dleviation of 3.59 degrees (N=25 fixations).

shinar, McDowell and Rockwell (1977) used five drivers
to investigate driver eye scanning behavior as they negoti-
ated 22 curves with a central curvature of 5 to 19 degrees
on two-lane hilly rural highways during the day. The
results of this study show that the average of the horizon-
tal eye fixation distribution was 1.6 degrees right of the
focus of expansion for straight sections, 3.6 degrees right
of the imaginary focus of expansion for right curves and 0.3
degrees left of the imaginary focus of expansion for left
curves.

Since a driver's eye scanning behavior consists of a
continuous string of discrete eye fixations there is no way
of predicting exactly where a driver will 1look at any
instant in time. There may be a very remote possibility that
a driver will, by chance, 1look difectly at an appearing
target, however, looking at the spatial distribution of eye
fixations it 1is very unlikely that this will occur, espe-
clally for a target that is located some 10 or 20 degrees
away from the focus of expansion. Figure 8 indicates that
on tangent sections more than 80 percent of all eye fixa-
tions are within a relatively small rectangle extending from
-2 degrees left to 3 degrees right of the focus of expansion
and from 2 degrees below to 2 degrees above the focus of
expansion or an area of 20 degrees squared. Although this
would indicate that a large number of a driver's eye fixa~

tions are concentrated fairly close around the focus of
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expansion it is still not reasonable to assume that a driver
will be fixating in the close vicinity of the focus of
expansion every time a target appears in the driving envi-
ronment. In order to get some idea about how much the cal-
culated peripheral visual angles should be adjusted to
account for the observed horizontal eye fixation distribu-
tions the average of the horizontal eye fixation distribu-
tion and the average of the horizontal eye fixation distri-
kution plus and minus one standard deviation were selected
as representative horizontal eye fixation directions for the
instant when a target becomes first visible in a driver's
field of view. Table 1 provides information about periph-
eral visual detection angles calculated for a target dis-
tance of 500 feet and adjusted values based upon the driver
eye scanning results for a few selected curve-tangent and
tangent-curve situations of a two-lane rural highway.

Table 1 was developed for a target distance (the eucli-
dean distance from the driver's eyes to the target of inter-
est) of 500 feet since this distance would roughly corre-
spond to the average peripheral visual detection distance
minus one standard deviation for a 10 degree peripheral
detection angle and near maximum low beam output (-3 degrees
car heading angle) as it was presented by 2Zwahlen (1986).
When adjusting the calculated peripheral angles for all tan-
gent-curve sections an average foveal eye fixation position
of .84 degrees to the right of the focus of expansion and a
standard deviation of 1.92 degrees were used which are equi-

valent to the average and the standard deviation of the hor-



30

Table 1 Calculated and Adjusted Peripheral Visual Angles for Tan-
gent-Curve and Curve-Tangent Sections for Left and Right Curves
for a 500 Feet Target Viewing Distance.

TARG CAL ADJ ADJ ADJ
CAR ON CURVE CURVE BETA/ POS. PER FOR FOR FOR
DIRECT RAD GAMMA (D1) ANG X X-8  X+§

TANGENT RIGHT 12 40 0.0 13.5 12.7 14.6 10.7
TANGENT RIGHT 12 40 13.4 14.7 13.9 15.8 11.9
TANGENT RIGHT 28 40 0.0 6.0 5.2 7.1 3.2
TANGENT RIGHT 28 40 13.4 7.2 6.4 8.3 4.4
CURVE RIGHT 12 20 0.0 17.5 13.9 17.7 10.1
CURVE RIGHT 12 20 13.4 19.1 15.5 19.3 11.7
CURVE RIGHT 28 20 0.0 19.4 15.8 19.6 12.0
CURVE RIGHT 28 20 13.4 21.0 17.4 21.2 13.6
ANGENT LEFT 12 40 0.0 =-12.5 =-13.3 -11.4 -15.3
TANGENT LEFT 12 40 13.4 -11.3 -12.1 -10.2 -14.1
TANGENT LEFT 28 40 0.0 -5.0 -5.8 =3.9 -7.8
TANGENT LEFT 28 40 13.4 -3.8 =-4.6 =-2.7 =6.6
CURVE LEFT 12 20 0.0 =-15.8 -13.1 =9.0 -17.2
CURVE LEFT 12 20 13.4 -14.2 -11.5 =-7.4 -15.6
CURVE LEFT 28 20 0.0 =-17.7 =15.0 -10.9 =-19.1
CURVE LEFT 28 20 13.4 -16.2 -13.5 =-9.4 -17.6

CURVE DIRECT - CURVE DIRECTION

CURVE RAD - CURVE RADIUS (DEGREES)

BETA/GAMMA - CURVE POSITION OR COMPLETION ANGLE (DEGREES)

TARG POS. - TARGET POSITION FROM RIGHT EDGE OF HIGHWAY (FEET)

CAL PER ANG - CALCULATED PERIPHERAL VISUAL DETECTION ANGLE
(DEGREES)

ADJ FOR X - PERIPHERAL VISUAL DETECTION ANGLE ADJUSTED USING THE
AVERAGE OF THE HORIZONTAL EYE FIXATION DISTRIBUTION
(DEGREES)

ADJ FOR X-S - PERIPHERAL VISUAL DETECTION ANGLE ADJUSTED USING
THE AVERAGE MINUS ONE STANDARD DEVIATION OF THE HORI-
ZONTAL EYE FIXATION DISTRIBUTION (DEGREES)

ADJ FOR X+S - PERIPHERAL VISUAL DETECTION ANGLE ADJUSTED USING
THE AVERAGE PLUS ONE STANDARD DEVIATION OF THE HORI-
ZONTAL EYE FIXATION DISTRIBUTION (DEGREES)
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izontal eye fixation distribution pregented earlier in this
paper for tangent sections of highway. The curve-tangent
sections for right curves were adjusted for an average hori-
zontal foveal eye fixation position of 3.64 degrees to the
right of the imaginary focus of expansion and a standard
deviation of 3.79 degrees as was discussed for the 240 feet
radius right curves at night and the curve-tangent sections
for 1a£t curves were adjusted for an average horizontal fov-
eal eye fixation position of 2.7 degrees to the left of the
imaginary focus of expansion and a standard deviation of
4.06 degrees as found for the left curves at night in the
exploratory experimental eye scanning behavior study con-
ducted at Ohio University. Curves with 12 and 28 degrees of
curvature (radii of 204 and 477 feet respectively) were
selected since peripheral visual detection angles were not
available for curves with 3 degrees of curvature (1906 feet
radius) at a distance of 500 feet.

From Table 1, one can see that adjusting the calculated
peripﬁeral visual detection angle based upon the average of
the horizontal eye fixation distribution does decrease the
magnitude of the peripheral visual detection angle somewhat
for the tangent-curve sections for the right curve and for
the curve-tangent sections for the left and right curves,
however, the magnitude of the peripheral visual detection
angles actually increase slightly for the tangent-curve sec-
tion for the left curve. One can also see that adjusting the
calculated peripheral visual detection angles, based upon

the average minus one standard deviation and the average
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plus one standard deviation of the horizontal eye fixation
distribution data, has a fairly small effect upon the magni-
tude of the calculated peripheral visual detection angles.
This 1s especially true for the larger peripheral visual
detection angles since the magnitude of these angles remain

relatively large even after adjustment.

METHODOLOGY TO OBTAIN PERIPHERAL VISUAL

DETECTION CAPABILITIES

The objective of this section is to present an exper-
imental methodology which would allow one to investigate a
typical alerted driver's ability to detect a reflectorized
target which may first appear in his or her peripheral
visual field at a given peripheral angle and under selected
experimental and environmental conditions. The research
methodology which 1is presented in this section was used by
Zwahlen (1986) and was designed to fulfill a number of
requirements including: 1) the data which 1is collected
should be of a form to allow one to directly apply it in the
design of reflectorized targets for the highway environment,
therefore, the dependent variable should be detection dis-
tance, rather than reaction time or accuracy, 2) one should
be able to employ the methodology in the field at night as
opposed to a laboratory setting, so that the effects of
luminaires, advertising signs, pavement reflectance and

other nonessential stimuli, which could produce a certain



33

level of visual background noise from which the driver must
extract the relevant information, are present as they are
under normal driving conditions, 3) a real automobile and
its headlamps should be used such that realistic night beam
illumination conditions would exist, further, the heading
direction of the car and the headlamps should be alterable
such that one may investigate the effect of near maximum
beam output and reduced beam output, 4) one should be able
to keep a subject's information processing load controlled
and close to a minimum, therefore, the subject should be
sitting in a stationary car with a clean windshield in order
to obtain near ideal or maximum performance data, 5)
healthy, young subjects with good vision should be used in
order to obtain near ideal or maximum performance data, 6)
the experiment should be conducted under good weather condi-
tions with clear visibility in order to obtain near ideal or
maximum performance data, and 7) the methodology should be
efficient and not require subjects to sit in the experimen-
tal car for much longer than one hour to perform the exper-
iment.

In order to study the effects of two different beam out-
put conditions (high candlepower values and moderate candle-
power values in the direction of the reflectorized target)
and the relative stability and reliability of the experimen-"
tal results, two separate groups of subjects were used in
this experiment. The first group had 7 subjects (5 males
and 2 females) with an average age of 21.1 years (standard

deviation of .9 years). This group of subjects had an aver-
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age of 5.6 years driving experience during which they drove
an average of 5000 miles per year, with respective standard
deviations of 1.9 years and 3000 miles per year. The second
group had 7 subjects (3 males and 4 females) with an average
age of 23.5 years (standard deviation of 1.7 years). The
second group had an average of 7.1 years driving experience
during which they drove an average of 8700 miles per year,
with respective standard deviations of 2.2 years and 3300
miles per year. All the subjects had normal visual acuity
and volunteered their time as subjects. Each subject served
as his or her own control.

A 1979 Ford Fairmont was used as the experimental car
for the first group of subjects. The headlamps (H4656) were
24 inches above the ground and had a horizontal center to
center distance of 48 inches. The actual established loca-
tion of the hottest spot for the left low beam was 2 degrees
to the right and 2 degrees down and the actual established
location of the hottest spot for the right low beam was 1.5
degrees to the right and 1.7 degrees down. The electrical
system of the car operated at an average of 13.3 volts. The
average distance from the longitudinal vertical center plane
of the car to the subject's sagittal plane while in the
driver position was 14 inches. The average horizontal dis-
tance from the headlamps to the subject's eyes was 89 inches
and the average subject eye height was 45 inches above the
ground.

A 1979 Ford LTD II served as the experimental car for

the second group of subjects. Its headlamps (GE 4562) were



35

29 inches above the ground with a vertical center to center
distance of 46 inches. The actual established location of
the hottest spot for the left low beam was 2 degrees to the
right and 2 degrees down and the actual established location
of the hottest spot for the right low beam was 1.5 degrees
to the right and 1.7 degrees down. Th; electrical system of
the car operated at an average of 14.1 volts. The distance
from the headlamps to the subject's eyes was 97 inches and
the average subject eye height was 43 inches above the
ground.

A black bicycle was used as the target vehicle. A white
license plate was mounted on the front of the bicycle such
that the horizontal center of the license plate was 26.8
inches above the paved surface and its reflecting surface
made an angle of -10 degrees with the transverse axis of the
bicycle to simulate a vehicle parked at a slight angle along
the highway. The license plate (size: 6 inches x 12 inches)
had a reflectivity of 24 CIL (measured 23.5 cd./fc. at .2
degrees observation angle and -4 degrees entrance angle).

A 75 feet wide, 2000 feet long section of an abandoned
concrete runway, which is located at the edge of the city of
Athens, Ohio, was used as the experimental site. A two-lane
state highway with moderate traffic was located parallel
(about 200 feet away) to the runway. A number of lumi-
nalres, a few advertising signs, and other 1light sources
were in the subject's field of view (mainly in the left per-
ipheral field).

There were three approach paths parallel to the runway
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axis as shown in Figure 10. The front centers of the exper-
imental cars were placed at the zero distance 1line, verti-
cally above the center line of the runway. Looking forward
from the car, path 1 was 12.5 feet to the left of the runway
center line, path 2 was 6.25 feet to the right of the runway
center line and path 3 was 25 feet to the right of the run-
way center line. The inclusion of three paths in the exper-
iment was intended to introduce some uncertainty to the sub-
ject about the lateral location of the approaching target.
The car was then positioned on the runway such that it was
heading 3 degrees to the left of the center of the runway
(-3 degree car heading angle) for group 1 or 10 degrees to
the right of the center of the runway (10 degree car heading
angle) for group 2. The -3 degree car heading angle pro-
duced close to maximum low beam candlepower values in the
direction of the reflectorized target, whereas the 10 degree
car heading angle produced considerably lower low beam
candlepower values in the direction of the reflectorized
target. Stakes were placed radially 500 feet away from the
car at angles of -30, -20, -10, 0, 10, 20 and 30 degrees to
indicate where one movable red dim light, (3 feet above the
ground) which was to be used as a fixation point by the sub-
jects, should be positioned.

During the experiment, a group of dark clothed experi-
menters positioned themselves at varioﬁs locations along the
side of the runway and signaled to the experimenter, who was
sitting in the passenger seat of the stationary experimen-

tal car, the beginning of each trial by way of a flashlight.
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Another experimenter sitting in the car recorded the time
of each trial, car voltage, weather conditions and the sub-
Ject's responses. The stationary experimental car engine was
kept idling throughout the experiment. When the experimenter
in the car received the signal that the bicycle rider was
ready for an approach and the measurement crew was off the
runway the subject was asked to fixate on the dim red 1light
which was positioned 500 feet ahead of the car at one of the
seven selected detection angles. The subject was then
instructed to turn on the 1low beams and be prepared to
detect the approaching license plate while continuously fix-
ating his or her eyes on the dim red light. The bicycle
rider would approach the stationary car along one of the
three approach paths at a constant speed of about 10 mph.
As soon as the subject had the initial sensation of detec-
tion of the target he or she would immediately switch from
low to high beams and keep them on for a few seconds. When
the bicycle rider perceived the high beams, he or she would
drop a small sandbag on the runway to indicate the detection
distance. The measurement crew would then measure the
detection distance, pick up the sandbag and return it to the
bicycle rider.

After everyone had cleared the runway, the bicycle rider
had moved back to the end of the runwa§ and the bicycle was
positioned perpendicular to the runway center line on the
correct approach path for the next trial, the measurement
crew would signal the experimenter in the car indicating the

beginning of the next trial. The correct approach path of
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the bicycle with the target and fixation point position were
checked by the experimenter in the car. Six practice trials
were carried out for each subject to be sure they understood
the procedure. This was then followed by the 63 actual
trials (7 detection angles x 3 paths x 3 approaches). The
experiment required about 1 hour and 20 minutes to complete
for each subject.

The independent variables for this experiment were the
seven detection angles (-30, -20, =10, O, 10, 20 and 30
degrees with respect to the runway center line) and two car
heading angles (-3 degrees to the left and 10 degrees to the
right). The dependent variable was the detection distance
measured in feet. The order of presentation of the periph-
eral detection angles was according to a latin square
design (7 angles, 7 subjects) the 9 observations for each
angle (3 paths x 3 replications) was blocked (3 blocks, each
path assigned in random order within each block).

The detection distances obtained for each of the three
approach paths were combined since paired t-tests indicated
that almost all differences between the three paths were
statistically not significant at the .05 level. The com-
bined results are shown in Figure 11, which shows averages
and standard deviations for the detection distances as a
function of the peripheral visual detection angle. From the
average detection distances shown in Figure 11, one can see
that the average detection distances decrease considerably
as the peripheral visual detection angle increases. At a

peripheral visual detection angle of 10 degrees the average
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detection distance was between 54.2 and 59.2 percent of the
average foveal detection distance for the -3 degree car
heading angle and between 47.3 and 55.6 percent of the aver-
age foveal detection distance for the 10 degree car heading
angle. At a peripheral visual detection angle of 20 degrees
the average peripheral detection distances were 35.7 and
36.0 percent of the average foveal detection distance for
the -3 degree car heading angle and between 35.6 and 37.9
percent of the average foveal detection distance for the 10
degree car heading angle. At a peripheral angle of 30
degrees the average peripheral detection distances were 25.1
and 27.0 percent of the average foveal detection distance
for the -3 degree car heading angle and 28.2 and 32.6 per-
cent of the average foveal detection distance for the 10
degree car heading angle. As expected, one can also see in
Figure 11 that the average detection distances obtained for
the 10 degree car heading angle or the much lower candle-
power values of the lowbeams are considerably shorter than
the average detection distances obtained for the -3 degree
car heading angle.

The average detection distances which were obtained in
this study and are shown in Figure 11 can be further evalu-
ated from a safety point of view. Comparing the peripheral
detection distances obtained in this study with a recom-
mended stopping sight distance of 563 feet for a speed of 55
miles per hour, one can see that for the -3 degree car head~-
ing angle only the average detection distances for the fov-

eal and the 10 degree peripheral detection angles exceed the
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recommended stopping sight distance. If one compares the
recommended stopping sight distance of 563 feet for a speed
of 55 miles per hour to the average detection distance for
the 10 degree car heading angle, one can see that the recom-
mended stopping sight distance is larger than all of the
average detection distances except the average detection
distance for the 0 degree (foveal) detection angle. If one
reduces the idealized average detection distances obtained
in this study by 50 percent to adjust for driver alertness
and expectancy, older drivers, information acquisition and
information processing load while driving, somewhat degraded
environmental visual conditions, dirty windshield, dirty
headlamps, etc. then only the 50 percent reduced average
detection distance for the 0 degree peripheral angle (foveal
detection) for the -3 degree car heading angle exceeds the
stopping sight distance for a speed of 55 mph. Comparing the
average detection distances acquired for the -3 degree car
heading angle after they are reduced by 50 percent with a
stopping sight distance of 263 feet for a speed of 35 mph
one can see that reduced average detection distances are
larger than the stopping sight distance for only the foveal
detection and the 10 degree peripheral visual detec-
tion angles. Further, comparing the average detection dis-
tances acquired for the 10 degree car heading angle one can
see that only the reduced average detection distances for
the 0 degree peripheral visual detection angle are larger
than the stopping sight distance. In fact, once the average

detection distances are reduced by 50 percent they are so
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small that for the 10 degree car heading angle the reduced
average detection distances for the 30 degree peripheral
angles are approximately equal to or slightly smaller than
the stopping sight distance of 137 feet for a speed of 25
miles per hour.

McGee et al. (1978) recommended decision sight dis-
tances, the distances a driver needs to perceive a poten-
tially hazardous situation and react to the impending danger
efficiently, of 375 to 525 feet for a speed of 25 mph, 525
to 725 feet for a speed of 35 mph and 875 to 1150 feet for a
speed of 55 mph. Comparing the smaller of each of these
distances with the detection distances obtained in this
study, one can see that the average detection distances
obtained in this study are greater than the minimum decision
sight distance for a design speed of 55 mph for only the
foveal detection angle with the -3 degree car heading angle
(near optimal low beam candlepower conditions). As the per-
ipheral visual detection angle 1is 1increased the average
detection distances decline so rapidly that for the rela-
tively small peripheral detection angle of 10 degrees the
average detection distances for 10 degree car heading angle
are less than the decision sight distance for a speed of 35
mph and the average detection distances for a peripheral
detection angle of 30 degrees are as much as 130 feet less
than the decision sight distance for a speed of 25 mph. If
the decision sight distances are compared to the detection
distances reduced by 50 percent then the decision sight dis-

tance for a speed of 55 mph 1is larger than all of the
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50 percent reduced average detection distances for both the
-3 and 10 degree car heading angles. Comparing the decision
sight distances for a speed of 25 mph to the average detec-
tion distances reduced by 50 percent, only the detection
distance for the 0 degree car heading angle for the 10
degree car heading angle is larger than the decision sight
distance for a speed of 25 mph. Similarly only the average
detection distances obtained for a 0 degree and 10 degree
peripheral visual detection angles for the -3 degree car
heading angle are equal to or larger than the minimum deci-
sion sight distance for a speed of 25 mph. It should be
noted that the much shorter 10 degree car heading detection
distance results might be more applicable to the peripheral
visual detection of a reflectorized target in the highway
environment than the -3 degree car heading detection dis-
tance results, since the longitudinal direction of the car
and its beams 1is such that the candlepower values of the
beams in the direction of the reflectorized target are most
likely considerably reduced in a situation where a reflec-
torized target first appears in a driver's peripheral visual
field.

Zwahlen (1981) has shown that the multiples of threshold
that a driver needs to detect a reflectorized target, such
as a bicycle pedal, increases very rapidly as the peripheral
visual detection angle 1is increased. The multiples of
threshold are proportional to the specific intensity of a
reflectorized target. Therefore, if for a given peripheral

visual detection angle an average detection distance which
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is equal to the average foveal detection distance is desired
one would have to appropriately increase the specific inten-
sity or the reflectivity of the retroreflective target,
assuming the environmental and beam conditions would remain
the same.

Paired t-tests were performed to determine whether or
not the average peripheral detection distances for the left
side (peripheral visual detection angles of =30, -20 and -10
degrees) could be assumed to be equal to the corresponding
average peripheral detection distances for the right side
(peripheral visual detection angles of 10, 20 and 30
degrees). For both the -3 degree and the 10 degree car
heading angles the average peripheral detection distances
for the 10 degree peripheral visual detection angle for the
left side were about 9.2 to 17.6 percent shorter (statisti-
cally significant at the 0.05 level) than the average per-
ipheral detection distances for the right side. This might
be partially explained by noting that there was a highway
with moderate traffic 1located on the left parallel (about
200 feet away) to the airport runway and therefore there
were more light sources (luminaires, advertising signs,
etc.) in the left peripheral field of view (less uniform
dark background). The average peripheral detection distances
for the 20 and 30 degree peripheral visual detection angles
were of about equal magnitude and were not statistically

different.
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CONCLUSIONS

The methodology to calculate peripheral visual detection
angles for curve-tangent and tangent-curve sections of two-
lane highways using a spreadsheet and graphics package pro-
vided magnitude ranges for peripheral visual detection
angles in an efficient manner. These angles were further
adjusted according to driver eye fixation density data which
was collected for certain geometric, environmental and driv-
ing conditions (not related to this study). However, the
magnitudes of these adjustments, when compared to the magni-
tude of the calculated peripheral visual detection angles,
were for the most part rather small. Using the state of
Ohio as an example, it has been shown that curve-tangent or
tangent-curve sections occur fairly frequently along two-
lane rural highways, especially in hilly regions, and there-
fore, one may conclude that relatively large peripheral
visual detection angles (in the range of 10 to 20 degrees
and in some cases up to 40 degrees) for reflectorized tar-
gets which will become visible for the first time in the
periphery of a driver's visual field could be quite common.

The methodology to assess the peripheral visual detec-
tion capability of drivers for reflectorized targets at
night has proved to be fairly efficient and reliable and has
produced visual detection distances which were collected in
the field, with nearly ideal subjects under fairly ideal and
well controlled conditions. The results show that the per-

ipheral visual detection ability or the detection distances
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for the detection of reflectorized targets decreases consid-
erably as the peripheral visual detection angle increases.
The decrease of the visual detection distances in the per-
iphery can, however, be offset by increasing the reflecti-
vity or specific intensity of the retroreflective target.
It is, therefore, recommended that in cases where a target,
such as a reflectorized warning sign, will become visible
for the first time, most 1likely in the periphery of a
driver's visual fiedd, appropriate increases in the reflec-
tivity of the target should be made to assure early detec-
tion in order for timely recognition, information process-

ing, decision making and appropriate control actions.
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