Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta, Georgia, I-75 corridor.

Author(s)
Wu, H. Lee, J. Hunter, M. Fujimoto, R. Guensler, R.L. & Ko, J.
Year
Abstract

Exploitation of in-vehicle information technology (e.g., mobile computing and wireless communications) in surface transportation systems is a clearly emerging trend. Equipping vehicles with computing, communication, and sensing capabilities presents significant opportunities for a vast array of transportation services. Vehicle-to-vehicle (V2V) communication may be considered for applications such as incident detection, crash reporting, traveler information dissemination, and network operations. In-vehicle computing systems facilitate the customization of information services to the needs and characteristics of individual travelers. In addition, these systems allow coverage to extend beyond areas where roadside equipment has been placed. This study provides the initial investigation needed to test the feasibility of these advanced communication networks. Several observations may be drawn from the study. First, V2V communication is a feasible way to propagate information along the I-75 freeway in the Atlanta, Georgia, area during peak or high-density traffic periods. With sufficient fleet penetration ratio and traffic density, information can quickly propagate through the system. Second, the simulation methodology described in this study allows researchers to estimate the required fleet penetration ratio for effective communication given the traffic density and application requirements. Third, delay in message propagation is highly variable until instrumented-vehicle density reaches a critical mass. For applications requiring highly reliable, minimal message propagation delay, it may be necessary to design networks that provide extra support to avoid such variation. Research is required to examine additional traffic conditions (e.g., congestion due to an incident) and study the effectiveness of this approach for particular applications.

Request publication

19 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
C 50535 (In: C 50528 S [electronic version only]) /73 /90 / ITRD E847043
Source

In: Intelligent Transportation Systems and vehicle - highway automation 2005, Transportation Research Record No. TRR 1910, 2005, p. 82-89, 26 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.