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Abstract 

 

We present an easy to implement method to estimate safety impacts of the introduction of automated vehicles 

(AVs) on crashes between cars and vulnerable road users (VRUs). Our approach is based on utilizing the power 

model of the relation between driven speeds and injury crashes, as well as a formula tying reaction times and 

deceleration capacity to braking distances. Braking distances are used to transform improvements in reaction time 

into an equivalent speed and quantitative impacts are then derived from the power model. Additionally, the share 

of injury crash causes assumed to be eliminated by AVs is removed from injury crash estimates. This results in a 

dose-response curve of the impact of market penetration of AVs on VRU injury crashes. This approach to safety 

impact estimation can serve to augment simulation results, such as would be produced by microsimulation software 

like AIMSUN, by the safety impacts on VRUs. 
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1. Introduction 

We combine well known models of safety impacts of driven speeds (see [1],[2]) to gauge the impacts of 

introducing automated vehicles (AVs) on vulnerable road users (VRUs). We utilize data on accident causes and 

the at-fault share of VRUs (see [3-8]) to predict that share of VRU injury crashes that should be eliminated, under 

the assumption of safe AV operation (see [9-11]). For this work, vehicles are assumed to be at SAE level 5 (see 

[12]). 

This work thus augments microsimulation efforts on estimating AV impacts, by providing VRU related impacts 

based on the model assumptions made on AVs. The described method was derived within the project LEVITATE 

(“Societal Level Impacts of Connected and Automated Vehicles”, see [13]) for this very purpose. 

Considerable work on microsimulation-based safety impacts of AV market penetration exists in the literature [14-

22]), yet interactions between VRUs and AVs are not typically included in these approaches quantitatively. 

We derive a consistent estimate of AV-VRU interaction safety, by finding the types of present day accidents that 

would be assumed to no longer occur given a model of AV capabilities. Assuming a proportional reduction of 

number of crashes as AVs are introduced, we are then faced with accidents remaining i.e. those that AV systems 

are unlikely to prevent. At a minimum this includes those accidents in which VRUs were assumed to be primarily 

“at-fault”, according to official reports. We provide an estimation of further reduction in even those accidents, 

based on the reaction times and braking capabilities of AVs, which are assumed to be better-than-human at the 

time of broad introduction of AVs on our roads. Translating reaction time and better braking capabilities into a 

speed equivalent (i.e. a vehicle braking faster and decelerating more strongly can brake at least as good as a human 

driving at a lower speed), we employ the power model (see [1],[2]) of the effects of driven speed changes on injury 

crash numbers, to estimate how accident numbers would be reduced further. Basing estimates on reaction times 

and deceleration is convenient, since microsimulation models, using surrogate safety measures like conflicts (see 

[22-26]), are likely to make an assumption on these quantities already and thus these quantities are likely to be 

available for use in the approach presented here as well. 

The outcome of this approach is a dose-response curve for impact of AV market penetration on VRU injury crash 

numbers. 

2. Methodology and Results 

Firstly, we utilize available accident data and form an assumption on what the share of “AV-avoidable” accidents 

is, under a given AV model (See also [27], for similar considerations). We then assume a proportional reduction 

of the number of accidents given the market penetration of AVs. This concerns, in particular, accident causes like 

distraction, intoxication, fatigue or ignoring traffic rules, which AVs’ driving systems and policies would avoid. 

Secondly, it is assumed that accidents in which VRUs were assumed primarily at fault will not be prevented fully 

by AVs. Yet, given assumptions on the braking capabilities (reaction time and deceleration) of AVs, it is possible 

to argue for further reductions in injury crashes. 

Following up on the second assumption, we outline how improvements in reaction time and braking capabilities 

should lead to a reduction in injury crashes: Below in Equation (1) we show how the braking distance 𝑑 (in meters) 

is derived from the vehicle speed 𝑣 (meters per second), the reaction time in seconds 𝑅𝑇 and the (maximum) 

deceleration 𝑎. The distance driven until a reaction can be initiated is assumed to be (𝑣 ∗ 𝑅𝑇) and the following 

deceleration stretch is (𝑣2/(2 ∗ 𝑎)): 
 
 𝑑 = 𝑣 ∗ 𝑅𝑇 + 𝑣2/(2 ∗ 𝑎)     (1) 

 

If we now have reaction time parameters for an assumed human 𝑅𝑇𝐻𝑢𝑚𝑎𝑛, as well as for an AV 𝑅𝑇𝐴𝑉  and the same 

holds for deceleration capacity for humans 𝑎𝐻𝑢𝑚𝑎𝑛 and AVs 𝑎𝐴𝑉 respectively , then Equation (1) can be used to 

calculate a speed equivalency between both vehicles, if they were to have the same braking distance. Equation (2) 

expresses this idea i.e. 𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡  is the speed a human would have to drive to brake as capably as an AV driving 

at speed 𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙: 

 

𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 ∗ 𝑅𝑇𝐴𝑉 + 𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
2/(2 ∗ 𝑎𝐴𝑉) = 𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 ∗ 𝑅𝑇𝐻𝑢𝑚𝑎𝑛 + 𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

2/(2 ∗ 𝑎𝐻𝑢𝑚𝑎𝑛)  (2) 

 

Having derived 𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 , the “power model” (see [1],[2]) of injury crash numbers offers a means to estimate 

expected reductions in crash numbers, compared to human drivers, despite both humans and AVs driving at 

𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 .The power model for 2 speeds 𝑣𝑜𝑙𝑑  and 𝑣𝑛𝑒𝑤  is shown in Equation (3): 
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 𝑁𝑛𝑒𝑤 = 𝑁𝑜𝑙𝑑 ∗ (𝑣𝑛𝑒𝑤/𝑣𝑜𝑙𝑑)𝑚𝑜𝑑𝑒𝑙_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡      (3) 

 

The element 𝑁𝑛𝑒𝑤 stands for the (expected) number of injury crashes at speed 𝑣𝑛𝑒𝑤 . It is derived from 𝑁𝑜𝑙𝑑 , which 

is the expected number of crashes found at speed 𝑣𝑜𝑙𝑑 . The 𝑚𝑜𝑑𝑒𝑙_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 determines the shape of the resulting 

relation and depends on several properties (urban, rural, crash severity, road user types). See [1] and [2] for details. 

Given a known share of 𝑓 percent of not-fully-AV-mitigated injury crashes (for instance if VRUs were assumed 

primarily at fault) then, if vehicles on the road are driving at speed 𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙  and AVs are capable of braking as 

well as a human driving at speed 𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 , an estimate of VRU-injury crash numbers based on the market 

penetration of AVs can be derived. Using a 𝑚𝑜𝑑𝑒𝑙_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 of 2 in Equation (3) (suggested in [2] for general 

injury crashes), results in the estimate in Equation (4): 

 

 𝜋𝑛𝑒𝑤 =
1−𝑓

100
𝜋𝐻𝑢𝑚𝑎𝑛 +

𝑓

100
∗ (𝜋𝐻𝑢𝑚𝑎𝑛 + 𝜋𝐴𝑉 ∗ (

𝑣𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝑣𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
) 2)     (4) 

 

Here 𝜋𝑛𝑒𝑤  is the share (as a fraction of 1) of accidents remaining following a hypothetical AV market penetration 

of 𝜋𝐴𝑉 (as a fraction of 1). Similarly, 𝜋𝐻𝑢𝑚𝑎𝑛 stands for the share (as a fraction of 1) of human vehicles in traffic. 

By design we have Equation (5): 

 

     𝜋𝐻𝑢𝑚𝑎𝑛 + 𝜋𝐴𝑉 = 1     (5) 
 

Using any starting value of injury crashes 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙, then the estimate 𝑁𝑒𝑠𝑡  of the number of injury crashes given a 

market penetration of AVs can be calculated as in Equation (6): 

 

     𝑁𝑒𝑠𝑡 =  𝜋𝑛𝑒𝑤 ∗ 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙      (6) 
 

This approach was used in the project LEVITATE, in combination with 2 models of automated vehicles, defined 

for microsimulations in the AIMSUN microsimulation software. 1st generation AVs were assumed to have a 

reaction time of 1 seconds and a deceleration capability of 7 m/s^2. 2nd generation AVs were assumed to have a 

reaction time of 0.5 seconds and a deceleration capability of 9 m/s^2. Human drivers were assumed to have a 

reaction time of 1.5 seconds and a deceleration capability of 5 m/s^2. 

Additionally, following a study of [3-8], as well as Austrian injury crash data, the irreducible share of car-VRU 

accidents (VRU at fault) in an urban setting was set at 30% (i.e. 𝑓 = 30 in Equation (4)). 

We show a comparative curve for the introduction of the 2 types of AVs in Figure 1. 

 
Figure 1: Development of 𝝅𝒏𝒆𝒘 against the market penetration of 2 types of AVs: 1st generation (black 

solid line) and 2nd generation (blue dotted line). 
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3. Summary and Discussion 

We combined considerations on accident cause statistics, driven speeds, reaction times and the power model of 

accident numbers to derive an estimate of VRU safety impacts as a function of AV market penetration. We 

achieved this by determining the types of accidents preventable by AV systems and their share of all accidents, as 

well as by deriving a relationship between reaction times, braking distances and the power model of accident 

numbers (as a function of driven speed, see [1] and [2]). The approach was designed to provide a means to enrich 

microsimulation estimates of AV market penetration safety impacts in a fast and consistent (with the model 

assumptions made for microsimulation) way.  

The results were framed as a proportional reduction in injury crashes, which could be applied to different measures, 

such as crashes per vehicle kilometers driven or absolute numbers of crashes in a city or traffic volume. The 

presented method can be adapted to several needs, for instance having separate estimates for separate VRU types 

or having multiple types of AVs or including limitations of AV operability (day times, weather) into the estimates. 

In the latter situation, the share of non-AV-mitigable accidents/crashes might be increased accordingly for 

instance. 

Limitations include the uncertainty of accident cause attribution (needed to quantify the preventable share of 

accidents) and the non-included added risks specific to automated driving (system failures, cyberattacks), which 

are highly system specific and thus hard to provide general estimates on, unless very detailed models of the 

employed systems are provided. 
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