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PETEGTINN AND ANALYSTS OF RLACK SPOTS WITH EVEN SMALL ACCTDENT FIGURES

S. Oppe

Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV

1. Accident black-spot techniques

Accident black spots are usually defined as road locations with
(relatively) high accident potentials.

In order to detect such a hazardous location, we have to know the
probability of an accident for a traffic situation of some kind fe.g. the
crossing of a pedestrian or the encounter between two cars), or the mean
number of accidents for some unit of time.

The comparison of the probability or the mean with some norm (absolute
black spots) or with the probability or mean of other locations (relative
black spots) may result in the detection of a black spot.

There are a lot of problems related to this definition. In order to
define our sample space, we have to know what is and what is not an
accident. Furthermore there are weighting problems if one is interested
in loss resulting from accidents instead of accidents themselves (e.q.
weighting with respect to severity). Although these problems are in
general underestimated, we will not go into detail on this subject and
concentrate on the general structure of black spot analysis.

In almost all known procedures, road locations are treated as isolated
spots.

One tries to detect the black.spots by estimating the expected number of
future accidents at a specific location from the number of accidents that
already have occurred at that location. For many locations, especially in
built~up areas, the number of observed accidents is too small to gmive an
accurate estimation of the accident potential. This leaves us with a very
inaccurate ordering of locations with repard to accident risk. We know
that the black spots on the averape are placed higher on the list, but we

cannot distinguish them sufficiently from the grey, or even white spots.

If one still uses this detection method, then the next problem is to find

the causes of the supposed danger. Little information is given in the

gsmall accident numbers and one is almost completely dependent on an
ad-hoc analvsis of the location, hased on rather general theories only.
This approach, in which locations are investigated as isolated svots,
does not seem promising to us, especially not if the accident numbers are
small.

An alternative procedure starts from the comparison between the road
locations. The central question is: "what do accident black spots have in
common and in which respects do they differ from safe locations?"

If we cannot relate accident figures to characteristics of the locations
then treatment of black spots from general theories does not seem
possible at all. Therefore we think that the analysis of black spots
should start with the investigation of the relations between the
characteristics of road locations and accidents for a group of locations
that can be compared with each other.

Multiple linear regression analysis and canonical correlation analysis
are often used to detect such relations.

In this case, however, there are a numher of problems to be solved before
these techniques can be applied. Several characteristics (such as the
kind of road surface etc.) do not scem metric and some of the metric
characteristics do not need to be linearly rclated to the probability ~f
an accident. Tt seems not unreasonable to expect e.g. a curvilimegr
relation hetween the probability of an accident and the width of a road.
Furthermore, reflection on the combined effect of characteristics
suggests to use multiplicative models instead of models that are additive
in the independent variables the probability of an accident at a
location with characteristic A and B will be equal to the product of the
probabilities for A and for B if both are independent. Experimental
evidence supports these multiplicative models fsee: Rasch, 1973; Oppe,
1979).

However, new techniques are developed that account for all these
problems. The solution of the problem is related to the canonical
analysis of contingency tables approach as described e.g. by Kendall &
Stuart, 1969 Vol II, pp 568 vv.

Recently Goodman (1981) compares this model with the log-linear models.

The difference between both methods is that in the canonical analysis

approach, one is interested in the scaling of variables in order to

maximize the correlation or dependency, where as in log-lineair analysis
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one rescales the variables under the assumption of independency. Tnter-—
action, or association as Goodman calls it, can be investiated within the
loglinear model if one adds further restrictions on the residuals with
regard to the row and column position of these residuals. Under special
restrictions of this kind, both models result in identical solutions.

The fundamental idea behind the canonical-analysis approach is, that the
computation of the correlation coéfficient between the "non-linear" row
and column variable makes sense after the proper rescaling of these
variables. The analysis results in that scaling of hoth variables that
maximizes this correlation coéfficient.

If we generalize this procedure to multiway tables, then we arrive at
some kind of non-linear principal-components analysis: variables are
rescaled in such a way that they are as "homogeneous" as possible (which
means that there mean intercorrelation is maximal).

A second generalization is found if we add new rows from different row
variables to the table and eventually new columns from other new column
variables. We then have some kind of super canonical-analysis problem,
that reduces, after rescaling, to multiple linear regression (if there is
only one column variible) or to the classical canonical correlation
analysis (if there are more than one column variables).

These analysis techniques and the related computer programmes (Homals for
the generalized homogeneity analysis and Canals for the generalized
Canonical analysis) are developed at the Department of Data theory of the

Leyden State University. A full description is given in Gifi (1981).

We will describe how we used these techniques for the description of the
relations between accident figures and the characteristics of road

locations.

2. Blackspot data

SWOV started an extensive research project in one of the Dutch
provencies, called Noord-Brabant. This research was financed by the
Ministry of Transport and the Noord-Brabant Provincial Council. One of
the investigations within the project was concerned with a description of
the relations between many accident~, road- and traffic characteristics
of almost all public roads outside built-up areas in that province. Bata

collection is done by the Provincial Public Works Department and the
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regional department of "Rijkswaterstaat'. The engineering office D.HLV,
took care of all data handling necessary before starting the analyses of

this data.
The roads were classified in single-lane and dual-lane roads and each

class consisted of three sub-categories. Each road was divided in parts
of 100 meters. Intersections were deleted in the first analysis. New
studies, concerning the intersections and larger units (routes) take
place at the moment. A full report of this study is found in SWOV (1981).
We use only some of the results, in order to demonstrate the usefulness
of the relational techniques for black-spot analysis.

In Table ! one will find the marginals, with regard to the total number
of injury accidents for each group of road locations. Black-spot
detection and analysis based on the accident figures of these locations

as such do not seem practical at all.

We see that motorways have on the average the lowest number of accidents,
The highest mean number of accidents (M) is found with dual-lane roads
closed for slow traffic. If we correct for traffic flow then the single-
lane roads will most likely turn out to be more dangerous.

As to the variance (V) we see that this measure exceeds the mean, except
for the dual-~lane roads closed for slow traffic. The z-values, standard
normal values derived from the Poisson index of dispersion which is

defined as
T
2 2
= - MY /M
X = B (X =0T

are significant, except for the one road category mentioned. This
suggests that all other sets of roads are heterogeneous and an
investigation with regard to differences in accident potential does make
sense.

In a mixed Poisson distribution, an estimate of the variance in Poisson
parameters is given by the difference between the variance and the mean
of X (see last column in Table 1).

If we delete the locations without accidents and fit a truncated Poisson
distribution to this data, then we find that not only the number of
locations without accidents, but also the number of locations with 1, 4

and 5 accidents are systematicly underestimated, while the numbers for 2
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and 3 accidents are overestimated. Therefore it is .-% - . the
difference between locations with and without accidents that accounts for
the variance in the Polsson parameters. Estimates with corresponding
?Lz’values and df (ignoring the zero class) are given in Table 2.
The estimates for the negative binomial distribution and the
corresponding 7( 2—values are also given in Table 2. Here the zeroclass
has been included. These values show a reasonable fit. The X 2-value is
significant only for the category of roads with mixed traffic. This
suggests that the distribution of X is indeed a mixed Poisson distri-
bution of a type as found by Greenwood & Yule (1920). The distribution of
Poisson parameters for the category of roads with mixed traffic is

perhaps more complicated then that of the other road types.

3. Application of relational techniques for the analysis of road

sections with mixed traffic

The major aim of the analyses that we have done first was to find
relations between 26 road and traffic characteristics of the 3833 single~
lane roads with mixed traffic and their observed number of accidents.

A list of these characteristics is found in the legenda of Figure 2. As
can be seen from table 1, most of the locations do not have injury
accidents within the 5~year period. We have accomplished a second
analysis using only the 685 accident locations. Roth Canals analyses are

in fact "non-linear" multiple-regression analyses, because there was only

one dependent variable: the total number of injury accidents. From Figure
1 we can see that both in the first and in the second analysis the
scaling of the dependent variable is logarithmic. This is in agreement
with the assumption of a multiplicative (log-linear) model: the model is
linear in the independent variables with regard to the log-value of the
accident numbers. Also the conclusion, drawn from the fit of the
truncated Poisson distribution, that the difference in Poisson parameters
is more complicated than between locations with and without accidents, is
confirmed with this scaling. If there had been a clear distinction, then
we should have found a dichotomous scale. The scale found here suggests a
more continuous distribution of accident probabilities.

Here we will not discuss the solutions with respect to the independent

variables. The main difference in both solutions was due to the influence

A

18

€d

a

1d
Y
°z

°1
speoa auey 9fduils
't

°z

sAemaojouw *|

2°16t ¢S

2°90¢

9°0v

0°%8

9°6t

6°90¢
speol suel [enp

6°66¢
£ 10t
9y
8°lY
S hel

uossiod peiedunay

€87l
£°92
0°01
1°¢C

9°6C
S3T2JYyaA Iojow 10J SPEOI

2133813 pOxXjw YyIim Speoa

9°L9 €£°00T

9°8Y
0°01
£°8

LA
§910TYdA J030W J03J prOl I9Y3lo

0133813 MO[S 103 PISO[d speol
D73jell moTS X03 pasold speod

| A
8¢
(44

(323
L0t
£L8

v 7 0°Cl
89

[

9°

ce
iy 8yit
62t L981

0s
oy
6y
6¢€l

w/L1°0¢
£/66 €1
/8L’
g/s9 61
7/80°9
L91
17 it
€T
St
%4

e 9§
(44
1

(X) siluapyooe jo iaquny

6°911¢ %/98°9C

g 1681
L°6LE
7°L9

6°%02

greLs
*G/61 HBnoayy [/l woay poraed-ieak sATJ Syl JI2A0 Paida[[od

LoE8Y
8 Est
L°6S
L1y
£°0S
1°9¢1
81
8

£est
08¢€e
ey
¥4}
k2:14
Zy01

%61
g0l
S Ll
g8°6¢

At
Tefwouty aailedoN

6€Le”
ee”
yes”
29y°
ioc

°] 2Tqe3 jO EBIEpP 9yl I0J UOFINQIAISIpP [ETWOUT 3ATIEEBU By pur UOTINQTAISTP
v8¢C°

[ARAS
£°6E 6°011
€L
[
9°9
°s
9¢9°
Séy "
9LL”
86Z”

8°61

Loyl

6°C

9°z

vl
£6°0t 0TS”
68°2Z 009°

SLt-
618
L9

8T 11

9ae B3BQ °*JUBQEBAG-PIOON U SeEalew dn-31Ing |SPISIN0 speox Axepundes pue SLizuwiad Jjo (papnioxa

1°¢l
$°6
0°¢
L1
SUOT3D88123UT) SUOTIDAS 1932w Q] P2IDNAISUCIAI.uOU [TE IsOwWle 10j sainBYJ UapIdY *[ 2TqEL
9¢e*
09z
e’
FA% %
LS0°
W-A

UosSsIod pajedunay ay3lz 103 s5,3p pue sanIe/\_z’X SUIPUOdSBJJOD 3yl pur sanjea pajewilsy °g {)[qﬂ‘i

y/vs el
v/%8°¢
£/62"L
z/on°

€/10%Y
z/e8°1




8L

-7 -
EGIK~
10 7
9-.
g Ve
7- d EG1~
g

4 yd

accidents ———Jm—
\?
\
®\
N
\
\

-
L
o
-h
N
[
E-3
n

number of
1
K

plus

scaling

Fig 1. scale value versus number of accidents ( on a log-scale ) -

For the total set of locations with mixed traffic (kG 1) and

for the set of accident locations with mixed traffic (LG 1a).

of traffic volume on accident numbers. Traffic volume is an important
variable in the analysis of all locations but not in the analysis of
accident locations only.

Succeeding analyses were concerned with more than one dependent variable.
In these analyses various types of accidents were investigated together
with the total number of accidents. The total number of accidents was
included in each analysis in order to find an explanation for the
specific accident types in addition to the explanation of the total
number of accidents. For these analyses we used only the 685 locations
with accidents. Some analyses had more than two dependent variahles. We
will describe one of these non-linear canonical analyses here in order to
explain the black spot method. We choose the analysis with the total
number of accidents and the number of fatal accidents as dependent

variables. This analysis has been done in order to investigate to what

-8 -

extend the explanation of the most severe accidents differs from that of
less severe accidents.

The first canonical axis corresponds almost completely to the total
number of accidents. The canonical correlation after rescaling is

= b1,

The second canonical axis corresponds primarily to the number of fatal

accidents. The canonical correlation for this axis is Fo = +27. In order

to visualize relations between variables, we may represent variables

graphicly by vectors in a space spanned by the locations (a space with
685 dimensions). The correlation between two variables is then rep-
resented by the cosine of the ancle between the corresponding vectors. A
correlation of 1 means a cosine of 1 and an angle of 0 degrees. A
correlation of O means an angle of 90 degrees.

In figure 2 the projection of the independent variables on the plane
through the dependent variables (in the space spanned by the locations)
is given for the scaled variables.

Figure 3 shows us the scaling of the dependent variables and the most
important independent variables for the explanation i.e. the variables
with the largest projections, If we look at the canonical correlations,
then at first glance these values seem to be low. Especially for a
situation where 26 independent variables are used which are rescaled such
that the canonical correlation is maximal. We did a bootstrap analysis to
investigate the stability of the solution. This bootstrap analysis was
done by taking samples (with replacement) from the 685 locations. In
order to make comparisons with the original analysis, each sample existed
again of 685 locations. We concluded that the results were more stable
than expected. A plot of the mean hootstrap-analysis is given in figure
4, From this bootstrap study we estimated the canonical correlations for
the population to be L .35 and r = ,20 for the first and second

1 e?
dimension.

Reflection on these figures learned that the the correlations may be that
low primarily due to the low accident figures for each location and not
because of the non—-existence of relations between the accident
probabilities and the characteristics of the locations. We cannot predict
such small accident figures for locations accurately even if we know the

real accident probabilities. This was in fact our initial problem. In
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order to investigate to what extend this effect might influence our
results, we did a Monte-Carlo study as follows.

The canonical scores fér the locations that resulted from the analysis
may be regarded as proportional to the logarithm of the probability of an
accident at that location, because of the fact that the first canonical
axis almost completely coincides with rescaled number of accidents.

Therefore we transformed these values into real accident probabhilities

for the 685 locations and regmarded these values as real population
values. We then used these values as multinomial probabilities in an
experiment in which we distributed 404 accidents over the 635 locations,
according to the multinomial probabilities. We have chosen this number of
accidents, because there are 1089 - 685 = 404 accidents that are freely
distributed over the total set of accident locations.

Then we computed the correlation between the accident probabilities and
the number of allocated accidents that resulted from the multinomial
experiment. The mean correlation for 100 of these Monte-Carlo runs was r
= .45, Using samples of 10 times as much accidents (4040 accidents), we
found r = .84, this to give an indication of the increase of r with
sample size. From the Monte-Carlo study we conclude that the maximum
value to be expected for the canonical correlation of the first dimension
is .45. The estimated population-value of L .35, resulting from the
bootstrap study, seems rather high if we compare this value with the
maximum of .45.

Therefore our conclusion is that, because we used the information of all
locations together in our canonical analysis, we were able to predict the
accident probability for each location a lot better from the road and
traffic characteristics of the locations than it should have been
possible using their individual accident number only.

Furthermore, this analysis gives us the relation between the danger and
the road and traffic characteristics. This information can be used in

order to take countermeasures.

4. Black-spot investigation based on non-metric canonical analysis

In the previous paragraphs, we found that the accident probabilites of
locations differ especially for roads with mixed traffic. Furthermore we

found that relational techniques for categorical data seem to be useful
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techniques to predict accident potential. We will give here a more

explicite description of how these techniques can be used for black spot

analysis.

In order to accomplish an analysis as described, we have to collect the

relevant data for the investigation. The ohject of investigation may be




08

_]'_

an intersection, a road section of some specific length as we used in the
example, a pedestrian crossing in a small residential area, although the
detailed comparison of complete areas will become increasingly difficult.
For each object we have to measure the criterion value(s), e.g. the total
number of injury accidents, accidents at daytime and nighttime, accidents
with pedestrians involved etc.

Furthermore we must select the relevant characteristics of the units with
regard to the explanation of our criterion. For black spot analysis, this
will be primarily variables that are related to road characteristics or
road conditions and controlling variables such as traffic volume,
percentage of freight vehicles etc. This results in a "data matrix"
consisting of n rows, corresponding to the n objects and m columns
corresponding to the m characteristics. After the Canals analysis we get
a new data matrix of rescaled variables. This rescaling is part of the
solution that describes the relation hetween the criterion and the road
and traffic characteristics. In addition, the solution results in an
ordering of the characteristics with regard to the contribution of the
independent variables to the explanation of safety. Finally we get an
ordering of the locations with regard to unsafetv.

In the example that has been described, we find a rescaling for each
characteristic, and an ordering of objects and variables for each
dimension. Table 3 shows this ordering for the first dimension. Only the
five most important explaining variables are represented for the 25 most
dangerous and 25 least dangerous locations. Table 4 shows us the same
data for the second dimension. Figure 3 gave us the scaling of the five
major independent variables for each dimension and the scaling of the
dependent variables.

If we look e.g. at location 3 and 4 of Table 3, we see that these are two
adjacent locations that are curved and have two and three minor crossings
respectively. Furthermore the road is rather small at these points (< b
m) and has orientation lighting. One location has one accident, the other
has three accidents, including ome fatal accident. Figure 5 gives us an
idea of these locations.

A plot of the most dangerous locations on a map may suggest structural
countermeasures. An analysis of and comparison with the least dangerous
spots may also suggest countermeasures.

From Table 4 we see that if we want to concentrate on fatal accidents,

countermeasures with regard to a high percentage of freight vehicles,

2
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10318446 3:93% 4:Rd3 3
10208437 3.052 -0.756 2 1
102CE436 2.945 1.810 q 2
10205126 2.859 0.920 3 2
10205117 2.720 0.845 3 1
10201623 2.590 -0.756 2 1
10208404 2.572 1.735 4 1
10210418 2.493 1.81C 5 2
10205672 2.420 0.845 2 1
10210854 2.414 1.735 4 1
10200817 2.206 1.735 4 1
10210415 2.250 0.845 3 1
10204427 2.236 0.845 3 1
10205664  2.188 -0.756 2 1
10204420 2.185 0.920 3 2
10210402 2.181 0.845 3 1
10201868 2.174 0,845 3 1
140202556 2.132¢9 0.845 3 1
10201019 2.090 0.920 3 2
102004139 2.097 C.845 3 1
10206277 2.041 2.922 6 3
10210428 2.032 0.¢20 3 2
10202C10 2.0%Y1  -0.756 2 1
10211227 2.008 1.735% 4 1

25 locations with highest canonical scores

10202430 -1.689 -0.756
10202418 -1.691 -0.756
10206117 -1.770 -0.756
10202428 -1.791 -~0.756
10210388 -1.804 -0.756
10210692 -1.816 -0.756
10130352 ~1.827 -0.756
10210335  -1.858 -0.681
10209612 -1.876 -0.756
10208991 -1.927 -0.756
10209650 -1.955 0.845
10204492 -1.957 «0.756
10202411 -2.116 -0.756
10202395 -2.124 -0.756
10211478 -2.223 -0.756
10130379 -2.227 -0.756
10208990 -2.230 -0.756
10208963 ~2.230 -0.756
10208966 -2.230 -0.756
10209610 =-2.264 -0.756
10206253 ~2.299 ~0.756
10202406 -2.334 -0.756
10209641  -2.437 -0.756
10209646 -2.606 -0.756

1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10202126 -2.667 ~0.756 1
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order of the locations with regard to thc
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1.92¢ 1.062 -0.806 0.517 3.uB6
1.929 1.062 -0.806 0.517 4,203
1.92¢ 1.062 0.146 =0.223 -0.28C
1.929 1.062 ~0.806 =0.223 -0.280
1.929 1.062 0.146 5.336 2,486
1.929 1.062 ~0.806 0.517 -0.280
1,929 1.062 -0.806 0.517 -D.280
1.929 1.062 ~-0.806 =~0.223 -0.280
1.929 1.062 1.563 0.517 -0.280
-0.547 1.062 0.146 11.180 -~0.280
1.629 1.062 -0.806 0.517 -0.280
1.629 1.062 -0.806 =0.223 -0.280
1.929 1.062 -0.806 -0.223 -0.280
1.929 1.062 -0.806 «0.223 3.486
1.929 1.062 -0.806 0.517 ~0.280
1.929 -0.942 0.146 <-0.223 ~0.280
1.929 1.062 ~0.806 0.517 -~0.280C
~0.547 1.062 -0.806 5.336 0,280
1.929 1.062 1.563 5.236 ~0.280
1.929 =0.942 1.563 0.517 -0.280
1.929 1.062 -0.806 0.517 ~0.280
1.929 1.062 ~0.806 ~0.223 -0.280
1.429 1.062 «0.806 0.517 -0.232

on first dimemsion

1.929 1.062 1.563 -0.223 -0.280
~0.547 =0.942 1.563 ~0.223 -0.280
~0.547 -0.942 1.563 -0.223 -0.280

1.005 -0.942 1.563 -0.223 -0.280C
-0.547 -0.942 1.563 =0.223 -0.280
~0,547 =0.942 1.563 -0.223 -0.280
~0.547 ~0.942 1.563 -0.223 -0.280
~0.547 1.062 1.563 0.517 =~0.280
-0.547 1.062 1.563 0.517 -0.280
-0.547 1.062 «~0.806 -0.223 -0.280
-0.547 ~0.942 0.146 -0.223 -0.280
-0.547 -0.942 «0.806 <~0.223 -0.280
-0.547 -0.942 1.563 -~0.223 -0.280
-0.547 ~0.942 1.563 =-0.223 -0.280
-0.547 1.062 1.563 0.517 -0.280
-0.547 -0.G42 1.563 -0.223 -0.280
~-0.547 1.062 ~0.806 -0.223 -0.280
-0.547 1.062 =-0.806 -0.223 -0.280C
-0.547 1.062 -0.806 ~0.223 -0.280
-0.547 1.062 1.563 =-0.223 -0.280
~0.547 -0.942 1.563 -0.223 -0.280
-0.547 ~0.942 1.563 =0.223 -0.2&0
-0.547 =0.942 0.146 0.517 -0.230
-0.547 -0.942 0.146 -0.223 -0.2¢0
-0.547 1.062 1.563 ~0.223 -0.230

on first dimension

prodicted accident potential
information about the most relevant characteristics
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location

10204987
10204985
10204G8Y
10208951
10208762
10201603
1020478E
102047982
10206365
10210925
1021093¢C
10201606
10210921
10210620
10211647
10206402
10204942
10206387
10205934
10208004
10204482
10206380
10206385

25 locations with highest canonical scores

10202097
10202556
10201651
10208399
10206174
102C0417
10203438
10202476
10202363
10201626
10206167
10206172
1020209€
10211055
10206081
igap32re
10201583
10202353
10205111
10202401
10203441
10206554
10205106
10201622
10250221
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-1.623
-1.690
-1.601
-1.692
~1.694
~1.715
~1.731
-1.760
-1.787
-1,805
-1.806
~1.806
-1.813
-1.843
-1. 808
-1.887
-1.921
-1.924
-1.930
-2.009
-2.21¢C
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together with high bicycle volumes seem to be urgent. The first five
locations are almost adjacent. Two of the locations have two fatal
accidents. Figure 6 gives us an idea of these locations. Structural
measures instead of measures on the locations itself seem to be indicated

here.

Fig. 5. Bazardous location of first dimension

This is just an example to show that this technique works and how it
works.

Finally we will mention the advantage of this procedure for the evaluation
of safety measures. A general problem in the evaluation of safety
measures is the effect of the "regression-to-the-mean". This effect is
due to the fact that if we divide the locations into two groups, one with
high numbers of accidents in the past and the other with low accident
numbers, then there will be a tendency for the mean accident number of
the first group to decrease in time and for the mean accident number of
the second group to increase, even if we do not change any location. This
results from the fact that several locations in the first group have high

accident numbers and several locations in the second group low accident

numbers by chance. These
accident reductions that
We may want to solve the
locations (including the

evaluation study or even

effects can be very substantial and suggest
are far too optimistic.

problem by incorporating the accidents of all
locations that have not been treated) in the

estimate the regression-to-the-mean effect using




Fig. 6. Hazardous location of second dimension

the non—treated locations only. Here we do not have to deal with this
problem, because we can estimate the expected number of accidents for a
given location if there will be no treatment. Furthermore we can compute
the accident reduction as a result of the countermeasures that have been
taken, without referring directly to the number of accidents that

occurred in the past on that location.
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