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Introduction 
In subsection 1.1 this introductory chapter first highlights one of the main 
objectives of work package 7 (WP7) of SafetyNet, i.e. to develop a best practice 
for the analysis of linked databases, consisting of a combination of accident 
data with risk exposure data and/or safety performance indicators. By touching 
upon this main objective this section reveals the rationale behind the structure 
of the deliverable. It is shown that this deliverable comprises a theoretical part 
and a manual.  
 
Then, in subsection 1.2 special attention is given to the added value of two 
families of sophisticated analysis techniques in the field of traffic safety. Based 
on several empirical traffic safety examples it is illustrated that both techniques 
– multilevel modeling and time series analysis – are very valuable to traffic 
safety research. The use of those techniques in the field of traffic safety is 
advocated. 
 
Throughout this text, the reader is only expected to master ordinary regression 
analysis as a basis for time series analysis and ordinary regression analysis and 
the corresponding level 1 models (e.g. binomial model, Poisson model, etc.) as 
a basis for multilevel modeling. Foreknowledge regarding multilevel modeling or 
time series analysis is not a prerequisite when reading this deliverable. 

1.1 Best practice for the analysis of linked data 
One of the main objectives of WP7 of SafetyNet is “to develop a best practice 
for analysis of linked data”, more precisely for the analysis of the combination of 
accident data (cf. WP1 and WP5 of SafetyNet) with exposure data (cf. WP2 of 
SafetyNet) and/or safety performance indicators (cf. WP3 of SafetyNet). 
Analysis of such complex datasets is not always as straightforward as one 
might think it is. Several issues related to complex data structures in time and 
space come into play. 
 
To develop such a best practice and to pass it on to the reader as clearly as 
possible it was decided that the structure of this deliverable will comprise two 
main chapters: a theoretical part and a manual. Both chapters contain 
subparagraphs about multilevel modeling and time series analysis and are 
closely related to one another. 
 
The theoretical chapter is model driven. Several models, relevant to traffic 
safety, are discussed. A standardized discussion format was adhered to when 
scrutinizing each model to maintain a certain consistency throughout this 
deliverable. Furthermore, theory is always explained by applying theoretical 
considerations to a real dataset. Therefore, in the theoretical part special 
attention is given to each of the following aspects of a particular model: 
 

• Research problem 
• Dataset 
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• Model definition 
• Objectives of the technique 
• Model assumptions 
• Model fit and diagnostics 
• Model interpretation 

 
This standardized format should enable the reader to comprehend all the 
aspects relevant to statistical modelling, ranging from the intuitive understanding 
of a research problem at the outset to drawing socially relevant conclusions 
based on the model interpretation at the end. 
 
The manual is developed in parallel with the theoretical part. It contains 
instructions to fit each model described in the theoretical part using a dedicated 
software package. Each model is gradually built, starting from the most basic 
form (1 level model for multilevel analysis and a deterministic level model for 
time series analysis) to more advanced forms of the model. 

1.2 The added value of Multilevel and Time Series 
Analysis 

1.2.1 Multilevel models1 (W. Vanlaar, IBSR) 

1.2.1.1. Definition and conceptual issues 
Multilevel models have come of age, especially in educational research. In their 
introduction to multilevel modeling Kreft and de Leeuw (2002) give a brief 
history of this family of techniques, emphasising that developments similar to 
those going on in educational statistics are going on elsewhere, or have been 
going on. More precisely, the authors show that multilevel models are a 
conglomerate of known models, commonly used in different disciplines including 
bio-medical sciences where the terms mixed-effects models and random-effects 
models are used (e.g. growth curve analysis in Lindsey, 1993), economics (e.g. 
panel data research in Swamy, 1971) and econometrics (e.g. Longford, 1993) 
where the models are referred to as random-coefficient regression models, 
criminology (e.g. drug prevention research in high schools in Kreft, 1994) and 
geography (e.g. spatial analysis to study farms in counties in McMillan and 
Berliner, 1994). Nevertheless, multilevel modeling is relatively new to the field of 
traffic safety. In this paragraph the advantages of multilevel modeling compared 
to statistical techniques that ignore hierarchies are illustrated, based on two 
empirical traffic safety examples. 
 
Today several introductory books are available on the market (e.g., Goldstein, 
2003; Heck and Thomas, 2000; Hox, 2002; Kreft and de Leeuw, 2002; Snijders 
and Bosker, 1999) and each of those defines multilevel models in a specific 
way. However, these definitions share one concept in particular, namely the 

 
1 This paragraph on multilevel modeling is a summary of a commentary published in Traffic 
Injury Prevention (Vanlaar, 2005). 
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concept of hierarchies or nested data structures: “We have variables describing 
individuals, but the individuals also are grouped into larger units, each unit 
consisting of a number of individuals. We also have variables describing these 
higher order units.” (Raudenbush and Bryk, 2002: p. xix). The individuals are 
also referred to as micro-units, while the larger units are called macro-units 
(Tacq, 1986). 
 
Hierarchies are very common in the social and the behavioural sciences and 
often occur naturally: e.g., pupils in classes, classes in schools; employees in 
departments, departments in firms; suspects in courts; offspring within families. 
Less obvious examples of hierarchies are observations nested within subjects 
(repeated measurements) or observations nested in studies (meta-analysis). 
Leyland and Goldstein (2001) give a rather extensive overview of more 
advanced applications of multilevel models including repeated measurements, 
binomial regression, Poisson regression, multivariate models, non-hierarchical 
structures, spatial analysis, meta-analysis and survival data modeling. 
 
In the field of traffic safety nested data structures can be seen in data on 
roadside surveys (drivers nested within police checks or locations, police 
checks or locations nested within regions; e.g., Vanlaar, 2005); on accidents 
(drivers and passengers in vehicles, vehicles in accidents, accidents in regions; 
e.g., Jones and Jørgensen, 2003); on repeated measurements (e.g., Burns et 
al., 1999); meta-analysis (e.g., Delhomme et al., 1999; van Driel et al., 2004); 
etc. 
 
A straightforward definition of multilevel modeling is given by Heck and Thomas 
(2000). According to their definition multilevel modeling refers to a variety of 
statistical methods that may be used to handle these hierarchical, or nested 
data structures. 
 
When analysing nested data structures some conceptual issues calling for a 
proper approach have to be borne in mind. In this paragraph of the introduction, 
using multilevel modeling techniques as opposed to less sophisticated 
techniques is justified by means of two empirical traffic safety examples. 
According to Rasbash et al. (2004: p. 6) “the point of multilevel modeling is that 
a statistical model explicitly should recognize a hierarchical structure where one 
is present: if this is not done then we need to be aware of the consequences of 
failing to do this.”  
 
Broadly speaking there are two important consequences of ignoring a 
hierarchical structure: underestimation of standard errors leading to an 
increased level of committing type I errors (Rasbash et al., 2004) and problems 
related to an impoverished conceptualisation (Raudenbush and Bryk, 2002). 
The first problem is related to the dependence of nested observations while the 
second problem stems from the existence of variables on different levels of 
aggregation, describing the micro-units and macro-units and from possible 
interactions between those different kinds of units. Variables related to macro-
units are also referred to as contextual information or context of the micro-units. 
 



Deliverable 7.2. : Introducing multilevel and time series analyses in traffic safety 
 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  8  

The issue of dependence of nested observations has also been recognized in 
sample survey research and is referred to as clustering effects. Complex 
sampling designs are developed to model the hierarchical population structure 
as truthfully as possible in terms of geography or administrative structures. 
Elaborate procedures are available to analyse data gathered within such 
sampling designs (Cochran, 1963; Kish, 1965; Levy and Lemeshow, 1999). 
According to Goldstein (2003: p. 5), however, such procedures usually have 
been regarded as necessary while they have not generally merited serious 
substantive interest. “In other words, the population structure, insofar as it is 
mirrored in the sampling design, is seen as a ‘nuisance factor’. By contrast, the 
multilevel modeling approach views the population structure as of potential 
interest in itself, so that a sample designed to reflect that structure is not merely 
a matter of saving costs as in traditional survey design, but can be used to 
collect and analyse data about the higher level units in the population.” 
 
In the following paragraphs both conceptual issues will be briefly discussed and 
illustrated with an empirical traffic safety example. First consequences of 
ignoring dependence of nested observations are investigated and data from an 
observational study on seatbelt use are used as an illustration. Then 
consequences of impoverished conceptualisation of contextual information are 
discussed. This issue is illustrated with data from an observational study on 
drink driving. Finally conclusions regarding multilevel modeling in traffic safety 
are drawn. 

1.2.1.2. Consequences of ignoring dependence of nested observations 
Dependence of observations plays an important role in nested data structures. 
An assumption made by most statistical analysis techniques that ignore 
hierarchies is the independence of observations: one observation is supposed 
to be sampled independently of another. However, observations that are close 
in time or space are likely to be more similar than observations that are not 
close in time or space (Kreft and de Leeuw, 2002). 
 
Nested data structures are close in time or space by definition, which makes it 
reasonable to assume that observations within a hierarchical data structure will 
not be sampled independently from one another. Pupils nested in the same 
class will be influenced by the same teacher and hence be more alike than 
pupils from another class. Drivers nested within a certain speed zone are more 
alike than drivers in another speed zone in that their speed behaviour will be 
influenced – within certain limits – by the speed limit in that zone. Although 
speed limits are frequently violated, they do lead to similar behaviour to a 
certain degree and hence, to dependent observations. 
 
Ignoring the dependence of observations generally causes standard errors of 
regression coefficients to be underestimated (Rasbash et al., 2004). The 
mechanism leading to this underestimation is easily explained as follows 
(Snijders and Bosker, 1999). Imagine an extreme case of 10 groups of 100 
identical observations each. Applying an ordinary regression analysis to the 
data leads to the calculation of standard errors based on 1000 observations. 
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However, since each group contains 100 totally dependent observations, the 
useful information in the sample really is limited to only 10 observations. 
Obviously the standard errors will be much greater based on 10 observations, 
indicating less precision than in the case of 1000 observations. In reality 
observations are more likely to be similar to a certain degree instead of being 
identical. How similar they are exactly is measured by the intra-class correlation.  
 
Multilevel modeling is capable of dealing with the issue of dependence of 
observations as opposed to statistical techniques that ignore hierarchies and 
thus the former calculates correct standard errors, taking account of the degree 
of dependence of the observations in the sample under study.  
 
Table 1.1 contains the analysis results of observational data regarding seatbelt 
use in Belgium in 2004.2 The data are analyzed according to a single-level 
model and according to a two-level model. 
 

Single-level logistic model Two-level logistic model Parameter 
Logit 

coefficients
s.e. Logit 

coefficients 
s.e.

Fixed parameters  
  
 Intercept 0.883 0.169 0.776 0.184
 Passenger -0.260 0.130 -0.205 0.132
 Male -0.663 0.121 -0.670 0.114
 Wallonia -0.454 0.158 -0.510 0.182
 Brussels -0.583 0.137 -0.365 0.140
 50km/h 0.648 0.137 0.649 0.171
 70km/h 0.921 0.171 0.665 0.155
 90km/h 0.461 0.159 0.433 0.191
 120km/h 0.795 0.173 0.811 0.188
 Weekday night -0.092 0.214 0.037 0.156
 Weekend day -0.091 0.142 0.151 0.139
 Weekend night 0.312 0.156 0.197 0.166
  
Random parameters  
  
 Level 2 variance: uΩ  not applicable not applicable 0.197 0.039
 Level 1 variance: eΩ  1.000 0.000 1.000 0.000

Table 1.1: Comparison of logit coefficients and s.e. of a single-level and a two-level 
model regarding seatbelt use 

 
Even though the significance levels of most variables in both the single-level 
and the two-level model remain unchanged, there are two variables in particular 
that are interesting when comparing the single-level model – which ignores the 
hierarchical structure in the data – with the two-level model – which 
                                            
2 A more detailed description and discussion of these data is available in Vanlaar (2005).  
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acknowledges this structure. Those two variables are Passenger (a dummy 
variable indicating whether the observed subject was a front seat passenger or 
a driver with the latter being the reference category) and Weekend night (a 
categorical variable consisting of 3 dummy variables indicating in what time 
span the observation took place: Weekday as reference category (week peak 
hours and week off-peak hours are merged into weekday), Weekday night, 
Weekend day or Weekend night). Both variables are significant at the 5%-level 
in the single-level model, which can be derived from the logit coefficients since 
they are a twofold of the standard error. However, these effects are no longer 
significant according to the two-level model. The p-value of the variable 
Passenger in Table 1.2 shifts from a significant p-value of 0.046 in the single-
level model to a non-significant p-value of 0.121 in the two-level model, while 
the p-value of the variable Weekend night increases from the significant value of 
0.045 to a non-significant value of 0.233. Note that since we are testing the 
significance of single parameters, a t-test would also suffice in our case. The 
Wald test and the t-test are equivalent, more precisely, the t-statistic is equal to 
the square root of the chi-square statistic. 
 
Variable Single-level logistic model Two-level logistic model 
 Wald test Wald test 
     
Passenger Joint chi square test 3.989 Joint chi square test 2.402 
 Degrees of freedom 1 Degrees of freedom 1 
 p-value 0.046 p-value 0.121 
     
Weekend night Joint chi square test 4.015 Joint chi square test 1.424 
 Degrees of freedom 1 Degrees of freedom 1 
 p-value 0.045 p-value 0.233 

Table 1.2: Results of the Wald test for the variables Passenger and Weekend night in 
the single-level and the two-level model 

 
This example clearly illustrates the consequences of ignoring dependence of 
observations: the significance levels of both variables in the single-level model 
falsely lead us to believe that these two variables are significant while in reality 
they are not. The single-level model is therefore bound to lead to erroneous 
conclusions regarding variables that could have an impact on seatbelt use and 
ultimately, on increasing the level of traffic safety. Based on the significant 
negative coefficient of front-seat passengers compared to drivers in the single-
level model (meaning that the odds of front-seat passengers of seatbelt use are 
lower than those of drivers) it could for example be decided to make front-seat 
passengers a special target group in a mass media campaign. However, in 
reality – as demonstrated in the two-level model – there is no significant 
difference in seatbelt use between those two groups. 
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1.2.1.3. Consequences of impoverished conceptualisation of contextual 
information 
Contextual analysis is a development in the social sciences, which has 
focussed on the effects of the social context on individual behaviour (Snijders 
and Bosker, 1999). The second consequence of ignoring a multilevel structure, 
related to contextual information, is illustrated with the frog pond theory, (Hox, 
2002: p. 6), “which refers to the idea that a specific individual frog may either be 
a small frog in a pond otherwise filled with large frogs, or a large frog in a pond 
otherwise filled with small frogs.” These interactions between variables 
measured at different levels in hierarchically structured data are called cross-
level interactions (Kreft and de Leeuw, 2002). Applied to traffic safety, this 
metaphor points out that the effect of an explanatory variable like willingness to 
take risks on the dependent variable speed choice may depend on the average 
speed of other drivers at a certain location. A moderate risk taker in a speeding 
environment may thus become a dangerous speeder, while the same driver in a 
more abiding context may respect the speed limit rigorously.   
 
The metaphor clearly illustrates that relationships between variables are not 
always easily modelled in a simplified way. Failing to acknowledge the 
complexity of certain problems, for example because of statistical limitations, 
might induce impoverished conceptualisations of the research problem. A 
landmark in this regard according to Snijders and Bosker (1999) is the paper by 
Robinson (1950) about the ecological fallacy, meaning that a correlation 
between macro-level variables cannot be used to make assertions about micro-
level relations. This means for example that one cannot draw conclusions about 
the relation between individual age and individual odds for having a traffic 
accident based on a statistical model relating the proportion of young drivers in 
a geographical region with proportion of accidents in a region. 
 
Research problems in social and behavioural science often involve relationships 
between micro-level and macro-level variables and cross level interactions 
between those different variables. Those complex problems simply cannot be 
solved with aggregated or disaggregated analyses, which are bound to lead to 
erroneous conclusions. Multilevel analysis, however, overcomes these 
obstacles in an elegant and productive way. This technique allows researchers 
to translate a research problem into a design reproducing a lot of the nuances at 
stake and without giving in too drastically towards simplifying the nature of the 
issue under evaluation.  
 
Table 1.3 contains an illustration of this asset of multilevel modeling using 
empirical data regarding drink driving. More information is available in Vanlaar 
(2005).  
 
The outcome variable is a binary variable based on the blood alcohol 
concentration (BAC) of each driver. For the purpose of the multilevel analysis it 
has been recoded with 0 representing those drivers with a BAC below the legal 
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limit and 1 representing those drivers with a BAC at or above the legal limit. 
Drivers at or above the legal limit are referred to as drink drivers. 
 
The individual explanatory variables (level 1 explanatory variables) are Gender, 
Age (a categorical variable consisting of the following age groups: 16-25, 26-39, 
40-54, 55+), Previously (a binary variable distinguishing between drivers who 
previously have been stopped and tested at a road site at least once and drivers 
who have never been stopped and tested at a road site before) and Probability 
(a categorical variable representing the driver’s perception of the probability of 
being tested for drink driving; drivers could answer: very low, low, medium, high, 
very high). 
 

Binomial model Parameter 
Logit coefficients (s.e.) Exponential coefficients

Fixed parameters 
 
  Intercept -4.757 (0.285)
  Traffic count -0.002 (0.000) 0.998
  Intensity 0.896 (0.383) 2.450
  Female -1.375 (0.207) 0.253
  Previously 0.409 (0.141) 1.505
  Probability low 0.537 (0.167) 1.711
  Probability medium 0.744 (0.169) 2.104
  Probability high 0.312 (0.278) 1.366
  Probability very high 1.432 (0.290) 4.187
  Age26-39 0.710 (0.242) 2.034
  Age40-54 1.314 (0.234) 3.721
  Age55+ 0.863 (0.272) 2.370
 
Random parameters 
 
  Level 2 variance: 

 uΩ
0.991 (0.197)

  Level 1 variance: 
 eΩ

1.000 (0.000)

Table 1.3: Logit and Exponential coefficients for the fixed and random effects of the 
binomial 2 level logistic model 

 
The aggregated explanatory variables (level 2 explanatory variables) are Traffic 
count (a continuous variable indicating the total number of vehicles driving by 
the road site during the police check) and Intensity (a continuous variable 
calculated by dividing the number of policemen per road site by traffic count for 
that road site). 
 
Data were analysed by means of the software package MLwiN (Rasbash et al., 
2000). A two-level binomial model was fit with drivers at level 1 (n=11,186) and 
road sites (the PSU’s) at level 2 (m=413). To model the relationship between 
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the binary response and the set of explanatory variables, the logit function was 
used, meaning a multilevel logistic regression was performed (Rice, 2001). To 
interpret the relationship between the binary response and an explanatory 
variable, logit coefficients were transformed into odds ratios using the 
exponential transformation (see Rasbash et al. 2000 and Rasbash et al. 2004 
for a detailed explanation). These odds ratios compare the odds for drink driving 
of a certain category of a variable to the reference category of that variable.  
 
Of particular interest is the influence of the variables Gender and Traffic count 
on the outcome variable. The former relationship between Gender and the 
outcome variable is a nice illustration of the frog pond theory. A cross-level 
interaction would exist if the influence of Gender on Odds for drink driving would 
change according to different values of Traffic count. However, this cross-level 
interaction effect was found not to be significant according to a Wald test (joint 
chi square test=1.706, degrees of freedom=1, p-value=0.192). 
 
The latter relationship between Traffic count and the outcome variable is also 
relevant. According to the binomial two-level model there is a negative 
relationship between Traffic count and the odds of drink driving when controlling 
for intensity of stopping drivers and for the other independent variables. This 
relationship is significant according to a Wald test (Goldstein, 2003; joint chi 
square test=10.464, degrees of freedom=1, p-value=0.001). For each additional 
car at a road site the odds of drink driving are multiplied by a factor of 0.998. 
This means that the odds of drink driving decrease by 0.2%, or, per 100 extra 
cars on a site, the odds are multiplied by a factor of 0.819 (exp(-0.002x100)), 
meaning that the odds of drink driving decrease by 18.1%. In practice this 
means that police officers should not restrict their enforcement activities to sites 
where the frequency of vehicle traffic is high.  
 
Strictly speaking the latter example is not an illustration of a cross-level 
interaction. Nevertheless, this relationship between an aggregated explanatory 
variable and an individual dependent variable does illustrate the relevance of 
statistical models enabling the examination of the relationships between 
variables on different levels of aggregation.  
 
Without a technique capable of simultaneously modeling variables at micro-level 
and macro-level such a relevant research question about the influence of traffic 
count on drink driving behaviour would remain unanswered or it would be 
answered incorrectly, due to a wrong or impoverished conceptualisation of the 
problem. 

1.2.1.4. Conclusion 
Although multilevel models have come of age, they are relatively new to the 
field of traffic safety. The advantages of multilevel modeling compared to 
statistical techniques that ignore hierarchies were illustrated based on two 
empirical traffic safety examples. 
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Broadly speaking there are two important consequences of ignoring a 
hierarchical structure in the data. The first consequence, underestimation of 
standard errors, is related to the dependence of nested observations. Data from 
an observational study on seatbelt behaviour were analysed according to a 
single-level model and a two-level model to illustrate this. Two effects that were 
significant at the 5%-level in the former model were found not to be significant 
any longer in the latter. Obviously the single-level model is therefore bound to 
lead to erroneous conclusions regarding variables that could have an impact on 
seatbelt use and ultimately, on increasing the level of traffic safety. 
 
The second consequence, related to the nature of contextual information and 
potentially leading to impoverished conceptualisation of the research problem, 
stems from the existence of variables on different levels of aggregation and 
from possible interactions between those different kinds of units. Data from a 
roadside survey on drink driving were analysed according to a two-level model. 
Of particular interest was the relationship between traffic count, an aggregated 
level 2 explanatory variable and odds of drink driving, an individual level 1 
dependent variable. This relationship, while having relevance towards the drink 
driving enforcement policy, could not have been studied properly without a 
technique capable of dealing with variables at different levels and cross-level 
interactions between them. 
 
Like every statistical technique, multilevel models should be used with caution 
and reservation. Kreft and de Leeuw (2002) point out that this technique is only 
of value if several conditions are fulfilled. Multilevel models might be more 
sophisticated than more conventional models, but they can only give answers if 
the data collection design and the data collected allow such answers. There are 
still several assumptions regarding distribution of the data for example that need 
to be found true. Parsimonious models are still preferred over complex models. 
However, given these limitations, multilevel modeling is very useful and valuable 
to traffic safety research. 

1.2.2 Time series models (J. Commandeur, SWOV) 
In the SafetyNet project, many road traffic data are collected that consist of 
repeated measurements over time. Examples are the annual or monthly number 
of road traffic accidents in a country, its annual or monthly number of road traffic 
fatalities, its annual or monthly number of vehicle kilometres driven, its annual or 
monthly values on safety performance indicators, etc., all repeatedly measured 
over a certain period of time. 
 
Whenever one is interested in studying and analysing such developments of 
one and the same phenomenon over time, special issues arise not encountered 
in cross-sectional data analysis. In this section we will illustrate with a simple 
example what these special issues are, and how they can be dealt with by using 
a special family of analysis techniques collectively known as time series models. 
 
The example consists of the log of the annual number of road traffic fatalities as 
observed in Norway for the period 1970-2003. It may be noted that the annual 
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number of road traffic fatalities are count data, which are non-negative. If count 
data were analysed as they are, one could obtain predicted counts that are 
negative. By analysing them in their logarithm, however, and then taking the 
exponent of the predicted values, it is guaranteed that non-negative predicted 
counts are obtained. 
Since the period spans 34 years, there are n = 34 observations. Because the 
observations consist of repeated measurements in time of one and the same 
phenomenon (i.e., the number of fatalities), this variable is called a time series. 
We will first analyse this time series with classical linear regression. 
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Figure 1.1: Scatter plot of log of fatalities in Norway against time (in years), including 
regression line. 

 
Typically, in classical linear regression a linear relationship is assumed between 
a criterion or dependent or endogenous variable y, and a predictor or 
independent or exogenous variable x such that 
 

iii bxay ε++= ,      (1.1) ),0(~ 2
εσε NIDi

 
where i = 1,..., n, and n is the number of observations. The expression 
 

),0(~ 2
εσε NIDi  
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in (1.1) is a shorthand notation for: the residuals εi are assumed to be Normally 
and Independently Distributed (NID) with mean equal to zero and variance 
equal to .  2

εσ
 
Now suppose that the dependent variable y in (1.1) is the just mentioned series 
of the log of Norwegian road traffic fatalities. Also, suppose that the independent 
variable x in (1.1) consists of the numbered consecutive time points in the series 
(thus, x = 1, 2, ..., 34). The usual scatter plot of these two variables -including 
the best fitting line according to classical linear regression- is shown in Figure 
1.1. 
 
The equation of the regression line in Figure 1.1 is 
 
 ,019837.02794.6 ii xy −=  
 
with residual variance . Graphically, the intercept a = 6.2794 
in model (1.1) is the point where the regression line intersects with the y-axis.  
Therefore, the intercept determines the ‘height’ or level of the regression line on 
the y-axis. The value of the regression coefficient or weight b = -0.019837 
determines the slope of the regression line (i.e., the tangent of its angle with the 
x-axis). 

0.00985827 2 =εσ

 
The standard t-test for establishing whether the regression coefficient b = 
-0.019837 deviates from zero yields 
 

 .43.11

5.3272
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Since the value of this t-test is associated with a p-value of 1E-12, the linear 
relationship between the criterion variable y and the predictor variable x is 
extremely significant. 
 
When the assumptions for classical linear regression are valid, time is a highly 
significant predictor of the log of the number of Norwegian road traffic fatalities, 
and there is a negative relation between these two variables: as time proceeds 
the log of the number of fatalities decreases. 
 
 
However, one crucial issue has completely been overlooked in this analysis. 
The just mentioned t-test was based on the fundamental assumption that the 34 
observations in the time series are independent of one another. That the 
observations are not independent becomes more obvious by connecting the 
consecutive observations in Figure 1.1 with lines, as has been done in the top 
graph of Figure 1.2. Inspection of the latter graph shows that the observations in 
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a certain year tend to be more similar to the observation of the previous year 
than to any other earlier observation. 
 
The dependencies between the observations are also reflected in the fact that 
the residuals of classical linear regression model (1.1) shown at the bottom of 
Figure 1.2 are not independent of one another. Positive values of the residuals 
in Figure 1.2 tend to be followed by further positive values, while negative 
values tend to be followed by further negative values. 
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Figure 1.2: Log of fatalities in Norway plotted as a time series including regression line 
(top), and residuals of classical linear regression analysis (bottom). 

 
A useful diagnostic tool for investigating whether the residuals are independent 
is called the correlogram. As will be explained in more detail in Section 2.2.3.1, 
the correlogram is a graph depicting the correlations between the residuals and 
the same residuals shifted k time points into the future. These correlations are 
therefore called autocorrelations.  
 
The correlogram containing the first eight autocorrelations of the classical linear 
regression residuals in Figure 1.2 takes on the form shown in Figure 1.3. The 
two horizontal lines in the correlogram are the 95% confidence limits 

343.034/2/2 ±=±=± n . If residuals are independently distributed then all 
autocorrelations in the correlogram are close to zero, and do not exceed the 
confidence limits. The dependence in the classical linear regression residuals is 
therefore confirmed by the fact that three of the eight autocorrelations in the 
correlogram in Figure 1.3 significantly deviate from zero. 
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Generally, when the first order residual autocorrelation is positive and 
significantly deviates from zero, a positive residual tends to be followed by one 
or more further positive residuals, and a negative residual tends to be followed 
by one or more further negative residuals. As pointed out in the literature (e.g., 
Ostrom, 1990; van Belle, 2002), the error variance for standard statistical tests 
is seriously underestimated in this case. This in turn leads to a large 
overestimation of the F- or t-ratio, and therefore to overly optimistic conclusions 
about the linear relation between the dependent variable and time. 
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Figure 1.3: Correlogram of residuals of classical linear regression of the log of the 
Norwegian fatalities on time. 

 
Note that this is exactly what is found to be the case in the classical linear 
regression analysis of the log of the Norwegian fatalities series discussed 
above: the first autocorrelation in the correlogram of the residuals is positive and 
significantly deviates from zero (see Figure 1.3), and positive residuals tend to 
be followed by one or more further positive residuals, while negative residuals 
tend to be followed by one or more further negative residuals (see Figure 1.2). 
All this implies that the value of -11.43 for the t-test is seriously flawed, and 
probably much too large. 
 
The problem of dependencies between the residuals in the classical linear 
regression analysis of time series data can be solved in a number of different 
ways: 
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1. additional predictor variables can be added to the regression of the 
dependent variable on time such that the dependencies are removed from 
the residuals; 

2. the relation between the dependent variable and time can be analysed with 
generalised linear models and/or non-linear models; 

3. the dependent variable can be analysed with (dedicated) time series 
analysis techniques like ARIMA, DRAG and state space models. 

 
In Chapter 2 containing the theoretical part of this deliverable, the first option is 
the topic of Section 2.2.3.1. In Sections 2.2.3.2 the analysis of time series data 
with generalised and non-linear models is presented. The ARIMA and DRAG 
approaches to time series analysis are discussed in Sections 2.2.4 and 2.2.5, 
while the state space methods are presented in Section 2.2.6. 
  
In this introductory chapter, we illustrate how the time dependencies between 
the observations are dealt with in state space methods (Harvey, 1989; Durbin 
and Koopman, 2001). In state space methods it is assumed that the 
development over time of the system under study is determined by an 
unobserved number of components which are collectively called the state, and 
with which are associated a series of observations y1, …, yn. The relation 
between the state and the observations is specified by the state space model. 
The purpose of time series analysis by state space methods is to infer the 
relevant properties of the state given a series of observations y1, …, yn. 
State space methods handle the dependencies between the observations 
constituting a time series by absorbing them directly into the model. This again 
is achieved by allowing the intercept and/or the regression coefficient -that are 
constants in classical linear regression- to vary over time. 
 
The dependencies in the log of the Norwegian fatalities series, for example, can 
be handled by allowing the intercept in model (1.1) to vary over time, as follows: 
 

tttt bxay ε++= ,      (1.2a) ),0(~ 2
εσε NIDt

 

ttt aa ξ+=+1 ,      (1.2b) ),0(~ 2
ξσξ NIDt

 
where t = 1, …, n, and n is the number of observations. The second equation in 
(1.2b) allows the intercept (i.e., the level) to change from time point to time 
point. Moreover, in this equation dependencies in the observed time series are 
dealt with by letting the intercept at time t+1 be a direct function of the intercept 
at time t. Therefore, it takes into account that the observed value of the series at 
time point t+1 is usually more similar to the observed value of the time series at 
time point t than to other previous values in the series. 
 

Applying model (1.2) to the log of the Norwegian fatalities series, we find 
 

  ,019860.0- ttt
^

xay =
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for t = 1, …, n, with variances  and . The 

values of are plotted at the top of Figure 1.4, while the values of the residuals 

0.003673572 =εσ 0.00359082 =ξσ

t
^
y

tε  obtained with model (1.2) are graphed at the bottom of Figure 1.4. 
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Figure 1.4: Correlogram of residuals of classical linear regression of the log of the 
Norwegian fatalities on time. 

 
The first eight autocorrelations of the residuals in Figure 1.4 are shown in the 
correlogram in Figure 1.5 (see again Section 3.3.1 for the exact definition of the 
correlogram). None of these autocorrelations exceed the 95% limits of ±0.343. 
In contrast with classical linear regression, this indicates that the residuals of the 
state space analysis are independent of one another, and that the value of the t-
test can now therefore be trusted. 
 
In this case, the standard t-test for establishing whether the regression 
coefficient b = -0.019860 deviates from zero yields 
 

.87.1
0.0106358
0.019860-

−==t  

 
Since the value of the latter t-test is associated with a p-value of 0.071, the 
relation between the Norwegian fatalities and time is no longer significant at the 
conventional 5% level. Moreover, since the values of the regression coefficient 
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obtained with classical linear regression and with state space analysis are 
virtually identical, the large difference between the values of the two t-tests can 
be almost completely attributed to the large differences in their standard errors: 
0.0017356 for classical regression versus 0.0106358 for time series analysis. 
See Durbin and Koopman (2001, par 6.2.4) for details on how to calculate the 
denominator of the t-statistic. 
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Figure 1.5: Correlogram of the residuals of state space analysis of the log of the 
Norwegian fatalities. 

 
Generally, time series analysis can serve three purposes. First, time series 
analysis can be used to obtain an adequate description of the time series at 
hand, as we have illustrated for the log of the Norwegian fatalities series. 
Second, explanatory variables other than time can be added to the model in 
order to obtain explanations for the development in the time series at hand. In 
SafetyNet, these explanatory variables are national exposure data (as collected 
in WP2), national safety performance indicators (as collected in WP3), and 
national road traffic safety measures. A third important application of time series 
analysis is the ability to predict or forecast further developments of a series into 
the (unknown) future. In traffic safety research, such forecasts can be used to 
assess whether future national safety targets are likely to be met, for example. 
 
In order to obtain adequate forecasts from a modelled time series it is crucial 
that the chosen model is itself appropriate. We therefore end this section by 
illustrating the differences between forecasts obtained with a misspecified 
model, and with a more appropriately specified model. 
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Figure 1.6: Classical linear regression analysis forecasts for Norwegian fatalities. 

 
Applying the incorrect classical regression model (1.1) to the log of the 
Norwegian fatalities series, the forecasted number of fatalities in Norway for the 
years 2004 through 2010 are those shown in Figure 1.6, together with their 90% 
confidence limits. 
 
For the years 2004 through 2010 the forecasts in Figure 1.6 are 5.5851, 5.5653, 
5.5454, 5.5256, 5.5058, 5.4859, and 5.4661, respectively. Thus, according to 
classical linear regression the number of road traffic fatalities in Norway will 
show a steady decline, resulting in a predicted number of exp(5.4661) = 237 
fatalities in the year 2010. 
 
As will be discussed in more detail in Section 3 of Deliverable 7.3 the most 
appropriate state space model for describing the log of the Norwegian fatalities 
series is actually a so-called local level model (see Section 3.6). The forecasts 
obtained with the local level model for the years 2004 through 2010 are shown 
in Figure 1.7, together with their 90% confidence limits. The values of the 
forecasts in Figure 1.7 are all equal to 5.6627. In contrast with the forecasts 
obtained with classical linear regression, therefore, according to state space 
analysis the future number of road traffic fatalities in Norway will not decline, but 
remain at a constant level of exp(5.6627) = 288 fatalities per year. Moreover, 
the 90% confidence limits of the state space model in Figure 1.7 indicate a 
much larger (and more realistic) uncertainty about these predicted values than 
the confidence limits associated with the forecasts obtained with classical linear 
regression (see Figure 1.6). 
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Figure 1.7: State space analysis forecasts for log of Norwegian fatalities, See Section 3 
for details . 

 
Summarising, when dealing with repeated measurements over time, statistical 
tests based on standard techniques like classical linear regression easily result 
in overoptimistic or even plain incorrect conclusions, due to the fact that the 
residuals obtained with these techniques usually do not satisfy the model 
assumptions. This is true irrespective of whether the interest lies in descriptive 
analysis, in explanatory analysis, or in forecasting. 
 
Dedicated time series analysis techniques, on the other hand, explicitly take the 
time dependencies between the observations into account, thus greatly 
improving the chances of obtaining residuals that do satisfy the model 
assumptions, and allowing to reliably test whether the estimated relationships 
between dependent and independent variables in the analysis are statistically 
meaningful or not. This is not only true for the state space methods illustrated in 
the present section, but also applies to other dedicated time series techniques 
like ARIMA and DRAG models. 
 
Since many data collected in the SafetyNet project consist of repeated 
measurements over time, it is essential that the relations between 
developments in accident data (WP1), exposure data (WP2), and safety 
performance indicators (WP3) in the EU are investigated with dedicated time 
series analysis techniques. 
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