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Theory: Literature review, 
methodology and data 
As indicated in paragraph 1.1 this chapter is model driven, both for the 
subchapter about multilevel models as for the subchapter on time series 
analysis. Furthermore, a standardized discussion format was adhered to, to 
discuss each model (research problem, dataset, model definition, objectives of 
the technique, model assumptions, model fit and diagnostics, model 
interpretation). 

2. Multilevel models 

2.1. Introduction to multilevel models (W. Vanlaar, IBSR) 

2.1.1. An intuitive approach to multilevel models1 
To appreciate the basic concepts of the multilevel approach, we first work with a 
two-level model with drivers at level 1 nested in road sites at level 2 and two 
variables measured on a continuous scale. The example in this section is an 
artificial example as an illustration for teaching purposes. Each driver’s speed is 
measured along with some other variables when passing by the road site. The 
dependent variable in this artificial example is speed, measured in km/h and the 
independent variable is length of the car, measured in metres and centred about 
its mean. The underlying hypothesis is that longer vehicles will correlate with 
higher speeds as a longer vehicle has a more powerful engine. Note that this 
hypothesis is rather naively formulated for the sake of clarity in this artificial 
example and that it does not necessarily bear real social relevance. 
 
Figures 2.1, 2.2, and 2.3 (after Jones, 1993) give a range of possible models 
and the higher-level distributions for the corresponding slope and intercept. 
These higher-level distributions are the result of the existence of several 
intercepts and slopes at level 2, corresponding to road sites. Put another way, 
instead of one regression line with one intercept and slope, there are several 
regression lines, one per road site, each with their corresponding intercept and 
slope. The slopes measure the increase in speed associated with a unit 
increase in length for each road site. Since the vertical axis in these graphs is 
centred at the mean of length, the intercepts correspond to the speed of a car of 
average length per road site. In figure 1a the speed/length relation is shown as 
a straight line with a positive slope; longer cars drive faster. In this graph no 
account is taken of context; place – i.e. road site – does not matter for the 
speed of drivers and the relationship is conceived only in terms of individual 
characteristics. This is remedied in 1b with each of the different road sites 
(seven in this figure) having its own speed/length relation represented by a 

                                            
1 This chapter is mainly based on Jones (1993). Dr. Jones kindly granted us permission to use 
his manuscript as a basis for this section and to insert several of his graphs as an illustration. 
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separate line. These parallel lines imply that, while the speed/length relation on 
each road site is the same, some road sites have uniformly higher speeds than 
others, which is easily explained by the existence of different speed limits. The 
lowest line could for example represent a road site with a speed limit of 30km/h, 
while the upper line could represent a road site with a speed limit of 120km/h. 
 
 

 

 

Figures 2.1 to 2.3: Higher level distributions for road sites’ intercepts and slopes – 
regression of speed against car length depending on road sites (graphs on left hand 
side); dot plot for the distribution of the slopes and intercepts separately, with the 
variable length centred about its mean (centre); scatter plot of the joint intercepts and 
slopes distributions, with the variable length centred about its mean (right hand side).   

 

The situation becomes more complicated in 2.1c to 2.1f as the steepness of the 
lines varies from road site to road site, i.e. each line, representing a road site, 
has a different slope, while in 2.1b only the intercepts of the lines differed. In 
2.1c the pattern is such that road site makes very little difference for small cars, 
but road sites have very different speeds for longer cars. An explanation could 
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be that the maximum speed of small cars is so low that they can only reach the 
lowest speed limit of 30km/h, e.g. if the car fleet of a town would be composed 
exclusively of small electronic cars, while long powerful cars can easily reach 
higher speeds leading to a more diverse speed pattern depending on the 
different existing speed limits at road sites. In contrast, figure 2.1d shows 
relatively large road site-specific differentials for small cars. A possible 
explanation could perhaps be found in the attitude of drivers of powerful cars: 
those drivers tend to speed regardless of the speed limit and therefore their 
speed distribution over different locations has a very small range, while drivers 
of smaller cars are more conscientious and tend to respect the speed limits 
resulting in a broad range of speeds. Note again that these possible 
explanations are only given for didactical reasons; they don’t necessarily reflect 
a relevant or true idea. 
 
The next graph, 2.1e, with its criss-crossing, represents a complex interaction 
between length and road site. Steep lines, indicating strong relationships 
between the dependent and independent variable, can both be seen at road 
sites with a high speed limit and with a low speed limit. At some road sites small 
cars have relatively high speeds, in others long cars have. An explanation could 
probably be found in other road site-specific characteristics besides the speed 
limit. Finally, plot 2.1f shows that small cars drive with the same speed, 
regardless of the road site, while the speed of powerful long cars differs 
according to the road site. This pattern is similar to 1c, but this time this 
difference is achieved by some road sites having a high speed for long cars, 
while at other road sites long cars drive at a lower speed than small cars. An 
explanation could be the architecture of the roads in combination with the 
attitude of car owners. Car owners of long powerful – and thus exclusive and 
expensive cars – will treat their car with a lot of care. Such drivers will take 
speed bumps in a low speed regime very prudently and therefore perhaps even 
drive slower than the maximum limit. Car owners of small cars could be less 
considerate about their car and thus take speed bumps at a more appropriate 
speed. 
 
The different forms of Figures 1c to 1f are a result of how the intercepts and 
slopes are associated” (Jones, 1993: p. 252). In Figure 1c the speed/length 
relation is strongest at road sites where the average speed is high (as indicated 
by a greater intercept); a steep slope is therefore associated with a high 
intercept, meaning there is positive association between the intercepts and 
slopes, as shown on the right hand side of the figure. In contrast, in Figure 1d 
road sites where the average speed is high have a weak speed/length 
relationship: a high intercept is associated with a shallow slope. Consequently, 
there is a negative association between the slopes and the intercepts. “The 
complex criss-crossing of Figure 1e is the result of the lack of pattern between 
the intercepts and slopes” (Jones, 1993: p. 252) shown in the graph at the right 
hand side of Figure 1e. The average speed at a particular road site contains no 
information about the marginal increase in speed with length of cars at that road 
site. The distinctive feature of the final plot in Figure 1f, results from the slopes 
varying about zero so that at the “typical” road site there is no relation between 
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speed and length; at some road sites the slope is positive and at others it is 
negative. 
 
The different forms of 2.1c to 2.1f are a result of how the intercepts and slopes 
are associated. In 2.1c the speed/length relation is strongest at road sites where 
the average speed is high (as indicated by a greater intercept); a steep slope is 
therefore associated with a high intercept. Put another way, there is positive 
association between the intercepts and slopes, as shown in Figure 2.3c. In 
contrast, in Figure 2.1d road sites where the average speed is high have a weak 
speed/length relationship: a high intercept is associated with a shallow slope. 
Consequently, Figure 2.3d shows negative association between the slopes and 
the intercepts. The complex criss-crossing of 2.1e is the result of the lack of 
pattern between the intercepts and slopes shown in Figure 2.3e. The average 
speed at a particular road site tells us nothing about the marginal increase in 
speed with length of cars at that road site. The distinctive feature of the final plot 
1f, results from the slopes varying about zero so that at the “typical” road site 
there is no relation between speed and length; at some road sites the slope is 
positive and at others it is negative. 

2.2. Basic two level random intercept and random slope models 
(W. Vanlaar, IBSR) 
In this paragraph we will turn the graphs into equations shifting from an intuitive 
approach to a more formal, mathematical approach. 

2.2.1. Research problem 
As explained in the previous section the basic two level model will be explained 
using an artificial example about the influence of length of a car on the speed of 
that car. The underlying hypothesis, formulated for teaching purposes only, is 
that longer vehicles will correlate with higher speed as a longer vehicle has a 
more powerful engine. 

2.2.2. Dataset 
The dataset used consists of a sample of n=4994 drivers (of cars and 
motorbikes) passing by m=131 road sites out of a real dataset, which was 
constructed in Belgium for epidemiological reasons. Each driver’s speed is 
measured as a continuous variable in km/h along with some other variables 
when passing by the road site, the most important being the independent 
continuous variable length of the car, measured in metres and centred about its 
mean. 

2.2.3. Model definition of the random intercept model 
According to Jones (1993, P. 252) all statistical equations have in essence the 
same underlying structure, which can be expressed verbally as: 
 
RESPONSE =  SYSTEMATIC  + FLUCTUATIONS 

COMPONENT 
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Or 
 
RESPONSE  =  FIXED   + RANDOM PARAMETERS 

PARAMETERS 
 
In the case of a single-level bivariate model, i.e. the usual simple regression 
model (cf. figure 2.1a), the general verbal equation becomes: 
 

(2.1) 
 

where 
 
• subscript i signifies an individual respondent; 
• y and x measure the response and predictor variables, namely the speed 

and length of a car; 
• 0β  and 1β  are fixed and unchanging parameters, namely the intercept and 

the slope; the former, when x is centred about its mean, represents the 
speed of a car of average length; the latter is the change in speed for an 
increase in length with one metre; 

• e signifies the random part which allows for fluctuations around the fixed 
part, where the term random simply means “allowed to vary”. 

 
This equation is specified only at the micro-level of the individual. To build a 
multilevel model we have to re-specify the micro-model by distinguishing road 
sites with the subscript j. For the random intercept model (cf. figure 2.1b) this 
yields: 
 

 (2.2a) 
 

There is one macro-model at the road site level: 
 

(2.2b) 
 

This macro-model allows for the differential road site intercept ( ju0 ) to vary from 
road site to road site around the overall intercept ( 0β ). 
 
The micro model is seen as a within-road site equation, while the macro model 
is a between-road site equation in which the parameter of the within model is 
the response (Jones, 1993). Both equations are combined to form the random 
two-level model: 
 

(2.2c) 
 

All the elaborations have come in the random part, because in addition to 
allowing individual cars to vary, we have also allowed road sites to vary in 
having a differential speed for a car of average length. Such models in which 
the intercept is the only term allowed to vary at level two are commonly referred 
to as “variance components models” (Rasbash et al., 2004).  

oijijjij exy ++= 110 ββ

jj u000 += ββ

iii exy ++= 110 ββ

( )ijjijij euxy 00110 +++= ββ



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  1 6  

2.2.4. Model definition of the random intercept/random slope model 
The formulas look as follows if we also allow the slope to vary from road site to 
road site besides a random intercept (cf. figures 2.1c-2.1f). The micro model: 

 
(2.3a) 

 
and the two macro-models at the road site level: 

 
(2.3b) 

 
(2.3c) 

 
These two macro-models allow respectively for the differential road site 
intercept ( ju0 ) to vary from road site to road site around the overall intercept 
( 0β ) and for the differential slope ( ju1 ) to vary around the overall slope ( 1β ) 
(Jones, 1993). 
 
Again, the micro model is seen as a within-road site equation, while the macro 
models are two between-road site equations in which the parameters of the 
within model are the responses. Note that this is easy to see when using the 

notation with ije0  as part of the micro model as opposed to the macro model 
because then only the micro-model contains both subscripts i and j, referring to 
a within situation, while the macro-models then only contain subscript j, referring 
to a between situation. All three equations are combined to form the fully 
random two-level model: 
 

(2.3d) 
 

All the elaborations have come in the random part, for in addition to allowing 
individual cars to vary, we have also allowed road sites to vary in having a 
differential speed for a car of average length, and a differential speed/length 
relationship (Jones, 1993). 
 
As with any other statistical distribution, and making the usual assumptions of 
normality, homogeneity and independence, these higher-level distributions can 
be summarized by measures of the centre, the mean, and spread around the 
centre, the variance. Relations between the slope and intercept distributions can 
be summarized by a measure of covariance. “Thus, the higher-level 
distributions can be summarized in terms of the fixed part (the means 0β  and 

1β ) and the random part (the variances 
2

0uσ and 
2
1uσ , and the covariance 10uuσ )” 

(Jones, 1993: p. 253). 
 
Table 2.1 (after Jones, 1993) summarizes Figure 1 in terms of these 
parameters. Estimates of these terms effectively summarize the extent to which 
places differ. The various combinations of substantial and close-to-zero 
estimates for the variance/covariance tell us in a quantitative manner the way in 

ijijjjij exy 0110 ++= ββ

jj u000 += ββ

jj u111 += ββ

( )ijjijjijij euxuxy 0011110 ++++= ββ
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which context matters. The case of Figure 1f is interesting in this regard, 
because it suggests that the usual single-level model would find that across the 
sample there is no relation between speed and length, but the multilevel model 
would reveal differing relationships at different road sites. If all the variance 
terms of the higher-level distributions are effectively zero, there is no 
contextuality and thus there is no need for macro models. These variations in 
speed are adequately described in terms of a micro model based solely on 
individual attributes (cf. Figure 2.1a). 
 
 Intercepts Slope Intercept/slope
 Mean Variance Mean Variance Covariance
Graph 0β  2

0uσ 1β 2
1uσ  10UUσ

a + 0 + 0 /
b + + + 0 /
c + + + + +
d + + + + -
e + + + + 0
f + + 0 + +
   

Table 2.1: Figure 2.1 represented as parameters for two higher-level distributions 
(where + is positive, different from zero and where – is negative, different from zero) 

2.2.5. Objectives of the technique 
The objectives of this technique correspond to the objectives of ordinary 
regression analysis, but in addition to that there is also the objective of taking 
contextual information into account by letting the intercept and slope vary 
across road sites. According to Tacq (1997), the four objectives of classical 
linear regression analysis are: 
 
• To look for a function, which represents the linear association between the 

independent variables and the dependent variable better than any other 
function. This comes down to calculating a regression coefficient for each 
independent variable. 

• To examine the strength of the relationship and to know which share of the 
variance of the dependent variable is explained by the variances of the 
independent variables together. This comes down to the calculation of the 
multiple correlation coefficient R and its square. While the concept of 
explained variance is well-known in classical regression analysis, it is 
problematic in multilevel models according to Snijders and Bosker (1999). 

• To investigate whether the associations found in the sample can be 
generalized to the population. This corresponds to performing significance 
tests. 

• To examine which independent variable is most important in the explanation 
of the dependent variable, corresponding to calculation of the beta weights. 
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2.2.6. Model assumptions 
“As all statistical models, the hierarchical linear model is based on a number of 
assumptions. If these assumptions are not satisfied, the procedures for 
estimating and testing coefficients can be invalid. […] It is advisable, when 
analysing multilevel data, to devote some energy to checks of the assumptions. 
(Snijders & Bosker, 1999: p. 120)” Before investigating checks of the 
assumptions in the next section, the assumptions themselves are listed below 
(Snijders & Bosker, 1999; Rasbash et al., 2001): 
 

ije0 ~ ( )2,0
OeN σ , the level-one residuals are assumed to be Normally distributed, 

with mean zero and constant variance 2
0eσ ; 

 
ju0 ~ ( )2

0
,0 uN σ  and ju1 ~ ( )2

1
,0 uN σ , the level-two random coefficients are assumed 

to follow a multivariate Normal distribution with mean zero and constant 
variance respectively 2

0uσ and 2
1uσ ; 

 
Random coefficients at level 1 ( oije ) and at level 2 ( 2

0uσ , 2
1uσ  ) are assumed to be 

uncorrelated; 
 

( )Ω= ,XBNyij , the response variable is assumed to be Normally distributed, 
where XB is the fixed part of the model and Ω  represents the variances and 
covariances of the random terms over all the levels of the data. 
 
The homoscedasticity assumption, i.e. the assumption that the variances and 
covariances estimated at the different levels of the data are constant thus holds 
for multilevel models, just as for many other statistical analysis techniques. 
However, in multilevel modeling, this assumption can be relaxed. We will see 
how and why in a next section. 

2.2.7. Model fit and diagnostics 

2.2..7.1. The variance partition coefficient (VPC) 

The VPC is the proportion of the total residual variation that is due to differences 
between groups (Goldstein, 2003), more precisely between road sites in our 
example. It is also referred to as the intra-class correlation (Snijders & Bosker, 
1999), which measures the extent to which the y-values of individuals in the 
same group resemble each other as compared to those from individuals in 
different groups. However, the former interpretation is the more usual one 
(Rasbash, 2004). The VPC is denoted by: 

 

 (2.4) 
22

2
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In our example the VPC for the variance components model with length as 
predictor is 0.749, meaning that almost 75% of the variation is due to 
differences between road sites. This is a strong indication that clustering effects 
are not to be disregarded in this dataset and that a multilevel approach is 
preferable. 

2.2.7.2. Deviance test 

“The deviance test, or likelihood ratio test, is a quite general principle for 
statistical testing. […] The general principle is as follows. When parameters of a 
statistical model are estimated by the maximum likelihood (ML) method the 
estimation also provides the likelihood, which can be transformed into the 
deviance defined as minus twice the natural logarithm of the likelihood. This 
deviance can be regarded as a measure of lack of fit between model and data, 
but (in most statistical models) one cannot interpret the values of deviance 
directly, but only differences in deviance values for several models fitted to the 
same data.” (Snijders & Bosker: p. 88). 
 
The deviance can thus be used to make an overall comparison of a more 
complex model with a less complex one, e.g. for the comparison of the model 
containing only the constant term with the model with length as a predictor. The 
difference between minus twice the natural logarithm of the likelihood (-
2xloglikelihood) of both models follows a chi-square distribution with the number 
of degrees of freedom equal to the difference in the number of parameters 
being estimated in both models. This chi-square value can be tested against the 
null hypothesis that the extra parameters have population values of zero 
(Rasbash et al., 2001). 
 
First, the simplest model of all is fitted, i.e. the model in which the intercept is 
specified as random at level 2, and in which no explanatory variables are 
included. For obvious reasons, such a model is referred to as the “null” or 
“empty” model. The value of the deviance for this null model is 45262.130 (cf. 
table 5). Then, this empty model is extended by adding a fixed slope, 
representing the effect of car length on speed. The deviance obtained in this 
case corresponds to 45192.320. Both models can now be compared by 
performing the deviance test. Subtracting the deviance value of the variance 
component model with a fixed slope for car length (the “more complex model”) 
from the deviance model of the empty model (the “less complex model) yields a 
value of 69.81. One extra parameter is estimated in the more complex model. 
Therefore the associated degree of freedom is 1. Testing this value as a chi-
square value of 69.81 with 1 degree of freedom against the null hypothesis 
shows that this decrease is highly significant (p=0.000), indicating that the more 
complex model is the better model. Put another way, the deviance decreased 
after having elaborated the model, meaning the model fit improved.  
 
The same conclusion can be drawn when shifting from the variance 
components model to the full random model. The decrease corresponds now to 
290.82 (45192.32 minus 44901.50) with 2 degrees of freedom (two additional 
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parameters have been estimated, namely, 2
1 juσ and 

10uuσ ) . This yields a p-value of 
0.000 and is thus highly significant. 

2.2.7.2.1. Residuals 

Estimated residuals at any level can be used to check model assumptions 
(Rasbash et al., 2004). The residuals at each level are assumed to follow 
Normal distributions (see section on model assumptions). At level 2, these 
residuals are interpreted as group effects, i.e. road site effects, while at level 1, 
residuals are in general interpreted as the individual error terms. 
 
 

 
 

 

 
 

Figure 2.4: Normal probability plot of residuals for the variance components model with 
speed and length, centered about its mean, at level 1 (left side) and 2 (right side) 

 
 

 
 

 

 
 

Figure 2.5: Normal probability plot of residuals for the variance components model with 
the natural logarithm of speed and length, centered about its mean, at level 1 (left 
side) and 2 (right side) 
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Clearly, the residuals in figure 2 do not follow a normal distribution as their 
normal probability plot does not correspond to a straight diagonal, meaning 
those assumptions are violated. Therefore, care is warranted when estimating 
and testing the regression coefficients of the model. A solution could be to 
transform the dependent or independent variables, for example by calculating 
their natural logarithm. Figure 3 contains normal probability plots for the log 
transformed data. The situation at level 2 has improved as the level 2 residuals 
seem to follow the Normal distribution more closely after having transformed the 
data. However, the residuals at level 1 are still problematic. Model fit issues will 
be studied more extensively in the following chapters when elaborating on the 
different models. 

2.2.8. Model interpretation 

2.2.8.1. Variance components model 

The coefficients of the variance components model with a random intercept only 
are interpreted as follows (see Table 2.2). On average over all road sites the 
speed of a car with an average length is 68.88km/h. Obviously, there is a lot of 
variation over road sites, due to the different speed limits at road sites. This was 
revealed by the VPC. 
 
For each increase of one length unit of a car, the speed of that car increases 
with 2.30km/h. Put another way, there is a positive relationship between length 
of a car and speed of that car. 
 

Parameter Null model 
Variance 

components 
model 

Full random 
model 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 
Fixed 
  Intercept 68.69 (3.27) 68.88 (3.24) 68.95 (3.24)
  Length / 2.30 (0.28) 1.69 (0.47)
Random 
  Level 2 
    2

0uσ  (intercept) 1358.94 (173.03) 1333.18 (169.37) 1334.85 (169.70)
   

10 uuσ   
(covariance) 

/ / -15.51 (17.42)

    2
1uσ  (length) / / 12.82 (3.16)

  Level 1 
    2

0eσ  452.70 (9.18) 446.48 (9.05) 412.75 (8.46)
-2xloglikelihood 45262.13 45192.32 44901.50
 

Table 2.2: Estimates for the null, variance components, and full random models, with 
car length as a continuous predictor 
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The question now is whether this positive coefficient is significantly different 
from zero. The answer can be found by comparing the value of the coefficient 
with its standard error. In our case the standard error is 0.28. Clearly the 
coefficient is significant as it is much greater than twice the value of its standard 
error. 

2.2.8.2. Random intercept/random slope model 

The main difference between the variance components model and the full 
random model (i.e. the random intercept/random slope model) is the random 
slope, indicated by 2 extra parameters (

10uuσ , 2
1uσ ) in the random part at level 2.  

 
Different road sites can now have different slopes besides different intercepts. 
The variation between the different slopes is summarized by 2

1uσ . There is a 
significant difference between the slopes of the different road sites since the 
value of the parameter (12.82) is greater than twice the value of its s.e. (3.16).  
 
The average slope over all road sites is 1.69 (s.e.=0.47), meaning that a one 
unit increase of length of a car results in an average increase of speed with 
1.69km/h. 
 
 

 
 

Figure 2.6: Regression lines of speed against car length for the various road sites 

 
Note that the model also contains a value of the covariance between the 
random level 2 parameter for the intercept ( 2

0uσ ) and length ( 2
1uσ ). Its value 

equals -15.51 with a standard error of 17.42. Although this value clearly is not 
significant, its negative sign indicates a fanning in pattern (see figure 2.1d and 
figure 2.6). In other words, a greater intercept corresponds to a smaller slope. 
The pattern is more easily discerned on figure 2.1d than on the graph based on 
our dataset. A possible explanation was given previously. Perhaps the attitude 
of drivers of powerful cars differs from the attitude of drivers of small cars: those 
drivers tend to speed regardless of the speed limit and therefore their speed 
distribution over different locations has a very small range, while drivers of 
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smaller cars are more conscientious and tend to respect the speed limits 
resulting in a broad range of speeds. 

2.2.9. Extending the model 
So far a bivariate two-level model with continuous variables on level 1 has been 
considered. Two important extensions of this model will now be discussed. First 
a model with a categorical predictor variable will be studied. Second, higher 
level predictor variables and contextual effects will be considered 

2.2.9.1. Categorical predictors 

According to Jones (1993) level 1 categorical predictors present no special 
problems and multilevel models can be specified in which some or all of the 
predictors are categories. A random intercept/random slope model with an 
independent variable with two categories is achieved by specifying a micro-
model with two dummy variables (having a value 0 or 1). In our example the 
continuous independent variable length could for example be divided in two 
categories: small cars and long cars. The micro-model looks as follows: 

 
(2.5a) 

 
and additionally two macro-models: 
 

(2.5b) 
 

(2.5c) 
 

 
 

 
 

Figure 2.7: Small (<4.3m) and long cars’ (>=4.3m) speed as a function of road sites 

 

ijijjjij exy 0110 ++= ββ

jj u000 += ββ

jj u111 += ββ
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If the reference category is small cars (<4.3 meters) and the dummy variable x 
represents long cars (>4.3 meters), this model allows cars of different length at 
different road sites to have different speeds (cf. Figure 2.7). The solid lines in 
the figure represent the overall general relationship indicating that smaller cars 
on average have lower speeds than longer cars. However, there at road site 5 a 
pattern is found that differs from the overall general relationship. 

 
Table 2.2 contains the estimates of the null model, the variance components 
model and the full random model. According to the variance components model 
drivers of long cars (>4.3 meters) drive on average 4.97 km per hour faster than 
drivers of small cars (<4.3 meters). This variable is significant, which can be 
derived from its standard error (the value of the coefficient is greater than twice 
the value of the standard error). The variation of the intercept is also significant 
for the same reason (1333.86>2x169.48). Furthermore, there is a significant 
decrease in -2loglikelihood when shifting from the null model to the variance 
components model (deviance: 45262.13-45218.96=43.17; degrees of 
freedom=1; p=0.000). 
 

Parameter Null model 
Variance 

components 
model 

Full random 
model 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 
Fixed 
 
  Intercept 68.69 (3.27) 65.03 (3.28) 65.01 (3.48)
  >4.3 meter 
 / 4.97 (0.76) 5.11 (1.33)

Random 
 
  Level 2 
    2

0uσ  (intercept) 1358.94 (173.03) 1333.86 (169.48) 1472.44 (195.63)
    

10 uuσ  
(covariance) 

/ / -132.28 (55.11)

    2
1uσ  (length) / / 99.286 (24.49)

  Level 1 
    2

0eσ  452.70 (9.18) 448.92 (9.104) 418.31 (8.57)
-2xloglikelihood 45262.13 45218.96 44963.59
 

Table 2.3: Estimates for the null, variance components, and full random models, with 
car length as a categorical predictor 

 
The full random model allows for the difference in speed between small and 
long cars to vary from road site to road site. On average, there is an increase in 
speed of 5.11km/h for long cars compared to small cars. This value is significant 
(s.e.=1.33). The variance of the intercept, of the slope and of the covariance 
between intercept and slope are all three significant. The negative sign of the 
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covariance indicates again that greater intercepts correspond to smaller slopes. 
A possible explanation of this pattern was given in a previous section.  

2.2.9.2. Contextual effects 

Another type of extension is to include higher-level variables in the model. 
Higher-level variables are also referred to as aggregate or ecological variables 
(Snijders & Bosker, 1999). They describe the higher-level structures in the 
dataset. This is achieved by including such variables in the relevant macro-
models (Jones, 1993). For example, if road site average speed is thought to be 
affected by traffic count at that road site C, the random intercept macro model of 
equation (2.2b) can be re-specified to include an extra term, as in: 
 

(2.6a) 
 

This could for example mean that the average speed at a road site would 
decrease with increasing traffic count at that road site. 
 
Similarly, the slope terms can also be related to traffic count at a road site.  

 
(2.6b) 

 
This could for example be explained as follows. At road sites with a low traffic 
count the real relationship between length and speed is revealed and consists 
of a strong association between both variables in that a unit increase in length 
corresponds to a high increase in speed. At road sites with a high traffic count 
the real relationship is hidden because there is no free flow of traffic; cars are 
obstructed by one another and therefore a unit increase in length only 
corresponds to a small increase in speed.  
 
This formulation results in the introduction of an interaction term (the product of 
x and C) in the combined model. This was defined in the introduction as a 
cross-level interaction term: interactions between variables measured at 
different levels in hierarchically structured data (Kreft and de Leeuw, 2002): 

 
(2.6c) 

 
Table 2.4 contains the results of the null model and of two additional models 
with a level-2 variable. This level-2 variable is a dummy variable with the value 0 
representing those road sites where less than 100 cars passed by during 
observation, while the value 1 was given to those road sites where more than 
100 cars passed by during observation. The latter is the reference category.  
 
The first model with the main effect of the dummy variable only calculates the 
influence of traffic count on the average speed at a road site. The second model 
includes an interaction term between traffic count and length of cars. It shows 
how the relationship between length and speed changes according to the value 
of traffic count. 
 

jjj uC 0100 ++= αββ

jjj uC 1211 ++= αββ

( )ijjijjijjjijij euxuxCCxy 0011121110 ++++++= ααββ
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The coefficient of the level-2 variable in the main effect model is 33.17, meaning 
the average speed of cars at a road site with a traffic count of at least 100 cars 
increases with 33.17km/h on average compared to road sites where traffic count 
is below the threshold value of 100. This coefficient is significant (s.e.=6.51). 
Traffic count somehow reflects the speed regime: higher traffic count 
corresponds to higher speed regimes, which makes sense. The random 
parameters show the same pattern as the previous models discussed before: 
there is a fanning in pattern, although the covariance is not significant. Finally 
there is significant reduction in the -2xloglikelihood-value: it drops from 
45262.13 to 44877.82 with a difference of 4 degrees of freedom yielding a p-
value of 0.000. 
 

Parameter Null model 
Context (level 2 

variable) 
Main effect 

Context (level 2 
variable) 

Cross level 
interaction 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 
Fixed 
 
  Intercept 68.69 (3.27) 59.49 (3.50) 59.48 (3.51)
  Length / 1.65 (0.47) 1.68 (0.60)
  >100 / 33.17 (6.51) 33.22 (6.53)
  >100xlength 
 / / -0.08 (0.97)

Random 
 
  Level 2 
    2

0uσ  (intercept) 1358.94 (173.03) 1107.59 (141.57) 1107.33 (141.56)
    

10 uuσ  
(covariance) 

/ -15.65 (15.87) -15.59 (15.86)

    2
1uσ  (length) / 12.85 (3.15) 12.87 (3.15)

  Level 1 
    2

0eσ  452.70 (9.18) 412.75 (8.46) 412.75 (8.46)
-2xloglikelihood 45262.13 44877.82 44877.82
 

Table 2.4: Estimates for the null model and the models including contextual effects 

 
Although the coefficient of the interaction term in the third model clearly is not 
significant, it is interesting from a conceptual point of view to interpret it anyway. 
Actually it shows that the relationship between length and speed differs 
according to different values of traffic count. More precisely, for road sites with a 
traffic count of at least 100 cars, the slope is reduced with 0.08. Put another 
way, on road sites with a low traffic count the speed increases with 1.68km/h for 
each unit increase in length of cars, while the speed only increases with 
1.60km/h per unit increase in length of cars for road sites with high traffic count. 
This confirms the previously formulated hypothesis that the real relationship 
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between length and speed could be hidden because of a high traffic count. 
Indeed free way is a necessary condition for speed behaviour to become visible. 
Of course one should not forget that this coefficient is not significant. Not so 
surprisingly this third model is not a better model compared to the main effect 
model according to the deviance test. 
 

2.3. Three level models and more 
- To be completed-  

2.4. Discrete response models 

2.4.1. Generalized linear models 
- To be completed-  

2.4.2. Binary and general binomial responses2 (W. Vanlaar, IBSR) 

2.4.2.1. Research problem 

In 2003 the Belgian Road Safety Institute organised the third national roadside 
survey to estimate the proportion of drink drivers and their profile. The objective 
of this initiative is to gather epidemiological data as a basis to formulate theory- 
and research-based recommendations to policymakers with the intention of 
decreasing the number of alcohol related accidents and victims on Belgian 
roads. This roadside survey will be repeated every two years to study trends in 
drink driving. 
 
According to the official statistics on police enforcement 6% of all tested drivers 
were at or above the legal limit (BIVV, 2002). This result corresponds to the 
results from the SARTRE survey (2004): 6% of fully licensed, active Belgian car 
drivers report they may have been driving during 1 or more days in the past 
week while over the legal limit for drinking and driving. The first percentage, 
however, is based on a non-representative sample as a result of a selective way 
of sampling drivers. Therefore, it is impossible to generalize this result to the 
Belgian population of car drivers as a whole. The second percentage most 
probably suffers from a bias due to social desirability.  

2.4.2.2. Objectives of the technique 

- To look for an appropriate function to model the relationship between a set of 
explanatory variables (this set can consist of continuous variables, categorical 
variables or a mixture of both types of variables) and the dependent variable 
(this variable is binary so the responses can only take the values of 0 or 1) (see 
model definition and interpretation). 
 
- To investigate whether the model that was found fits the data well (see model 
diagnostics). 
                                            
2 This section is mainly based on Vanlaar, 2005. 
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- To interpret the relationships found and to check whether these relationships 
can be generalized to the population (see model definition and interpretation). 

2.4.2.3.  Dataset 

Data were gathered during a drink driving roadside survey in 2003 according to 
a stratified two stage cluster sample. First stage of the roadside survey 
consisted of randomly selecting road sites (m=413) in each region using a 
Geographical Information System (Arcview). The road sites are also called 
primary sampling units (PSU’s). Once the sampling of road sites was 
completed, each site was randomly linked to one out of four possible time spans 
(weekday; weekday nights; weekend days; weekend nights). Therefore, the 
sampling design is not only stratified in space (per region) but also in time. 
Second stage of the roadside survey consisted of randomly stopping drivers 
(n=11,186). Once stopped, they were asked by the police to perform an alcohol 
breath test. 
 
The outcome variable is a binary variable based on the blood alcohol 
concentration (BAC) of each driver. For the purpose of the multilevel analysis it 
has been recoded with 0 representing those drivers with a BAC below the legal 
limit and 1 representing those drivers with a BAC at or above the legal limit. 
Drivers at or above the legal limit are referred to as drink drivers. 
 
The individual explanatory variables (level 1 explanatory variables) are Gender, 
Age (a categorical variable consisting of the following age groups: 16-25, 26-39, 
40-54, 55+), Previously (a binary variable distinguishing between drivers who 
previously have been stopped and tested at a road site at least once and drivers 
who have never been stopped and tested at a road site before) and Probability 
(a categorical variable representing the driver’s perception of the probability of 
being tested for drink driving; drivers could answer: very low, low, medium, high, 
very high). 
 
The aggregated explanatory variables (level 2 explanatory variables) are Traffic 
count (a continuous variable indicating the total number of vehicles driving by 
the road site during the police check) and Intensity (a continuous variable 
calculated by dividing the number of policemen per road site by traffic count for 
that road site). 

2.4.2.4. Model definition 

A two-level binomial model was fit with drivers at level 1 and road sites (the 
PSU’s) at level 2. To model the relationship between the binary response and 
the set of explanatory variables, the logit function was used as a link function, 
meaning a multilevel logistic regression was performed (Rice, 2001). Our binary 
response (0,1) is ijy , which equals 1 if driver i in district j was drink driving, and 
0 if he/she was not. We denote the probability that ijy =1 by ijπ . Note that other 
link functions could be used as an alternative to the logit function. This choice 
should be guided by “the empirical fit, ease of interpretation, and convenience – 
e.g., availability of computer software” (Snijders and Boskers, 1999: p. 213). 
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A 2 level logistic variance components model for binary response as an 
equation for the probability ijπ is (Rasbash et al., 2004: p. 111): 
 

(2.7a) 
 

(2.7b) 
 

Or as an equation for the outcome ijy  (Rice, 2001: p. 31): 
 

(2.8a) 
 

(2.8b) 
 

As in the random intercept model for a continuous response, the intercept in the 
probability equation consists of two terms: a fixed component 0β  and a road-
site-specific component, the random effect ju0 . 
 
To interpret the relationship between the binary response and an explanatory 
variable, logit coefficients were transformed into odds ratios using the 
exponential transformation (see Rasbash et al. 2000 and Rasbash et al. 2004 
for a detailed explanation). These odds ratios compare the odds for drink driving 
of a certain category of a variable (for example the odds for drink driving for the 
category “female” of the variable “gender”) to the reference category of that 
variable (in this example the reference category is “male”).  
 
Taking the exponentials of each side of 2.7a, we obtain: 
 

 
(2.9a) 

 
 
If we increase x by 1 unit, we obtain: 
 

 
(2.9b) 

 
 

This is the expression in 2.9a, multiplied by 1βe . Therefore 1βe  can be 
interpreted as the multiplicative effect on the odds for a 1-unit increase in x. If x 
is binary (like gender), then 1βe is interpreted as the odds ratio, comparing the 
odds for units with x=1 relative to the odds for units with x=0, i.e. the reference 
category. More generally, if x is categorical, then 1βe  is interpreted as the odds 
ratio, comparing the odds for units with a value for x, different from 0 (1, 2, 3, 
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etc. depending on how many categories the categorical variable consists of) 
with x=0, i.e. the reference category. 

2.4.2.5.  Model assumptions 

The model assumptions for the binomial model are listed below. 
 

ju0 ~ ( )2
0,0 uN σ , the road-site-specific component of the intercept is assumed to be 

normally distributed with mean zero and variance 2
0uσ . 

 
ije0 ~ ( )3,0log 2πistic , the driver-specific error term is assumed to have the logistic 

distribution with mean zero and variance 29.332 =π . 
 

ijy ~ ( )ijBin π,1 , the observed binary responses are assumed to be binomially 
distributed with mean 1 and variance ijπ . 

2.4.2.6.  Model fit and diagnostics 

The final model fits the data well, which can be derived from the level 1 variance 
eΩ =0.712 in the extra binomial model; i.e. a model that does not constrain the 

level 1 variance to be equal to unity as opposed to the binomial model where 
the level 1 variance is equal to 1 by definition. Since this model diagnostic is 
rather close to 1 – which actually means there is little evidence that our model 
exhibits extra binomial variance, more precisely under dispersion3 – the 
binomial distribution holds. Table 2.5 contains the results for the different 
parameters of both the extra binomial and the binomial model. The strength and 
the direction of all relationships remain unchanged between both models. 
 
The intraclass correlation coefficient for the multilevel logistic model – a 
coefficient that indicates “whether a given nesting structure in a data set calls for 
multilevel analysis” (Snijders and Bosker, 1999: p. 22) – is ( )32πρ +ΩΩ= uu . In 
our case the intraclass correlation coefficient, while controlling for the 
explanatory variables, is 0.231. This means 23.1% of the total variance is level 
2 variance, which justifies modelling the data according to a multilevel structure. 

2.4.2.7. Model interpretation 

The influence of the independent variables on the outcome variable is 
interpreted based on the exponential coefficients (i.e. odds ratios) of the 
binomial model in Table 2.5, using the definition explained in the section on 
model definition. 
 
There is a significant (joint chi square test=10.464, df=1, p=0.001) negative 
relationship between Traffic count and the odds of drink driving when controlling 
for intensity of stopping drivers and for the other independent variables. For 
each additional car at a road site the odds of drink driving are multiplied by a 
                                            
3 Underdispersion refers to the situation in which the total variance is less than 1; conversely, 
overdispersion corresponds to a total variance, greater than 1. 
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factor of 0.998. This means that the odds of drink driving decrease by 0.2%, or, 
per 100 extra cars on a site, the odds are multiplied by a factor of 0.819 (exp(-
0.002x100)), meaning that the odds of drink driving decrease by 18.1%.  
 
The odds of drink driving for women in comparison with men (Female) are 
multiplied by a factor of 0.253, meaning that women’s odds for drink driving 
decrease significantly (joint chi square test=44.123, df=1, p=0.000) by 74.7% 
compared to men.  
 
The odds of drink driving for drivers who previously have been stopped and 
tested at a road site at least once in comparison with drivers who have never 
been stopped and tested (Previously) are multiplied by a factor of 1.505. This 
means that the former drivers have a 50.5% higher risk for drink driving than the 
latter drivers. This relationship was also found to be significant (joint chi square 
test=8.476, df=1, p=0.004). 
 

Extra binomial model Binomial model 

Parameter Logit 
coefficients 

(s.e.) 

Exponential 
coefficients 

Logit 
coefficients 

(s.e.) 

Exponential 
coefficients 

Fixed  
  

  Intercept -4.981 (0.265) -4.757 (0.285) 
  Traffic count -0.001 (0.000) 0.999 -0.002 (0.000) 0.998
  Intensity 0.746 (0.407) 2.109 0.896 (0.383) 2.450
  Female -1.395 (0.177) 0.248 -1.375 (0.207) 0.253
  Previously 0.467 (0.126) 1.595 0.409 (0.141) 1.505
  Probability low 0.565 (0.144) 1.759 0.537 (0.167) 1.711
  Probability medium 0.769 (0.146) 2.158 0.744 (0.169) 2.104
  Probability high 0.304 (0.239) 1.355 0.312 (0.278) 1.366
  Probability very high 1.445 (0.254) 4.242 1.432 (0.290) 4.187
  Age26-39 0.749 (0.206) 2.115 0.710 (0.242) 2.034
  Age40-54 1.382 (0.200) 3.983 1.314 (0.234) 3.721
  Age55+ 
 0.948 (0.233) 2.581 0.863 (0.272) 2.370

Random  
  

  Level 2 variance: uΩ  1.569 (0.229) 0.991 (0.197) 
  Level 1 variance: eΩ  0.712 (0.010) 1.000 (0.000) 
  

Table 2.5: Logit and Exponential coefficients for the fixed and random effects of the 
extra binomial and the binomial 2 level multilevel logistic model (significant coefficients 
are printed in italic) 

 

The reference category for the following variable (Probability) is the category of 
drivers who answered that they perceive the probability of being tested to be 
very low. The relationship as a whole is significant (joint chi square test=36.378, 
df=4, p=0.000). The odds of drink driving for drivers who answered they 
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perceive the probability of being tested as low in comparison with the reference 
category are multiplied by a factor of 1.711, meaning the odds of drink driving 
increase by 71.1% compared to the reference category. The odds of those who 
answered they perceive the probability of being tested medium in comparison 
with the reference category are multiplied by a factor of 2.104, so the odds 
increase by 110.4% compared to the reference category. The odds of those 
drivers who answered they perceive the probability of being tested high in 
comparison with the reference category are multiplied by a factor of 1.366 and 
thus are 36.6% higher than the reference category’s odds (but this dummy 
variable is not significant). Finally, the odds of drink driving of those drivers who 
answered they perceive the probability of being tested as very high in 
comparison with the reference category are multiplied by a factor of 4.187; in 
other words, those odds increase by 318.7%. 
 

The reference category for the variable Age is the category of drivers in the age 
group 16-25. The odds of drink driving for drivers with an age in the range 26-39 
in comparison with the reference category are multiplied by 2.034. This means 
that drivers with an age in the range 26-39 have 103.4% more chance to be a 
drink driver than drivers with an age in the range of 16-25. The odds of drink 
driving for drivers with an age in the interval 40-54 in comparison with the 
reference category are multiplied by 3.721 and thus those odds increase by 
272.1%. Finally, the odds of drivers aged 55 or older in comparison with the 
reference category are multiplied by a factor of 2.370; those odds increase by 
137.0%. This relationship between age and the dependent variable is also 
significant (joint chi square test=38.666, df=3, p=0.000). 

2.4.2.8. Conclusion 

Regarding the appropriateness of this technique, note that it was shown in the 
model fit section that the model fits the data well and that the data called for a 
multilevel approach. Furthermore, taking account of the arguments in favour of 
multilevel modeling, elaborated on in the introduction, it is concluded that 
modeling this dataset according to a 2 level binomial model is highly 
recommended and that a 1 level model would perform less well. 
 
The following conclusions related to drink driving are drawn. The results of the 
multilevel models for gender and age are in line with previous findings: women 
are less at risk for drink driving, as are the youngest drivers aged 16-25 
(Vanlaar, 2002).  
 
An interesting relationship was identified between traffic count and odds for 
drink driving indicating that drink drivers tend to avoid places with higher traffic 
counts. In practice this means that police officers should not restrict their 
enforcement activities to sites where the frequency of vehicle traffic is high. One 
could argue that this relationship is of a spurious nature caused by the fact that 
drink driving takes place primarily on weekend nights with low traffic while there 
are less drink drivers during the day when there is much more traffic. Therefore 
another series of analyses per time span was performed to rule out this 
explanation. The result confirmed our findings regarding the negative 
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relationship between traffic count and odds for drink driving. Note that a more 
sophisticated way to investigate this relationship is by extending the two level 
model to a three level model by including the variable time as an extra level. 
Locations would then be at level 3, time at level 2 and drivers at level 1. 
 
We found evidence that drivers who have been tested and provided a breath 
sample in the past at least once are more likely to drink drive than drivers who 
have never been tested before. This result seems to be in contradiction with the 
SORC-model, explained in the GADGET-project, stating that past experiences 
with law enforcement – as one aspect of the objective risk of getting caught – 
lead to obedience (Christ et al., 1999). It can, however, be explained by the 
selective way in which police checks in general are carried out in Belgium. 
Normally police officers focus on drivers who are more likely to be drink driving 
based on observable criteria like gender. This eventually results in a population 
of drivers consisting of drink drivers who, relatively speaking, have been tested 
for drink driving more often than the non-drinking drivers. The evidence we 
found in this roadside survey is based on a random sampling mechanism that 
allocates equal probabilities for selection to drink drivers and non-drinking 
drivers, reflecting the result of the selective way in which police checks are 
carried out in general. This rationale is of course conditional on the assumption 
that drink drivers in general are recidivists who will continue to drink drive even 
if they have been caught and sentenced before. In other words, the explanation 
for the evidence we found could simply be the nature of the group of drink 
drivers which might be composed for the largest part by hard core drink drivers 
(Simpson et al., 2004) for whom this SORC-model does not hold. 
 
Another strange result was identified regarding the perception of drivers of 
being stopped and tested on an average trip – the subjective risk of getting 
caught. The data clearly support a positive relationship, meaning that drivers 
who estimate the likelihood of getting tested as very high, are at the highest risk 
for drink driving. Based on the same model as before, one would expect the 
opposite. A possible explanation is that the perception of drivers who are caught 
on the spot is influenced by this event. An alternative explanation could be 
related to a selective memory bias for alcohol cues (Franken et al., 2003). 

2.4.3. Multiple responses 
- To be completed -  

2.4.4. Counts (E. Papadimitriou & C. Antoniou, NTUA) 

2.4.4.1. Research problem 

In 1998, the Greek Traffic Police started the intensification of road safety 
enforcement, having set as target the gradual increase of road controls for the 
two most important infringements: speeding and drinking-and-driving. Since 
then, all controls and related infringements recorded are systematically 
monitored and the related enforcement and casualty results at local and 
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national level are regularly published, as shown at the following table with basic 
road safety related trends in Greece. 
 
It is important, however, to further quantify the effect of this intensification of 
enforcement on road accidents. Additionally, the examination of regional effects 
might be particularly interesting. For that purpose, a multilevel model is 
developed. As the number of accident represents a random count of events 
occurring within a population, a Poisson distribution is assumed. 
 

 
 1998 1999 2000 2001 2002 5-year 

change
injury road accidents 24.819 24.231 23.127 19.710 16.852 -32%
persons killed 2.182 2.116 2.088 1.895 1.654 -24%
vehicles (x1000) 4.323 4.690 5.061 5.390 5.741 33%
speed infringements 92.122 97.947 175.075 316.451 418.421 354%
drink & drive infringements 13.996 17.665 30.507 49.464 48.947 250%
drink & drive controls 202.161 246.611 365.388 710.998 1.034.502 412%
  
Table 2.6: Road safety trends in Greece – 1998 to 2002 

2.4.4.2. Objectives of the technique 

In this section multilevel models that fit data where the response variable is 
discrete are further analyzed. Following the analysis concerning binary data 
shown in the previous section, count data where the response can take any 
positive integer value are discussed. This count may be the number of times an 
event occurs out of a fixed number of "trials" in which case the resulting 
proportion is usually dealt with as response: an example is the proportion of 
fatalities in a population. It is common practise to use the Binomial distribution to 
fit models to proportional data, as shown in the previous section, and the 
Poisson distribution to fit models to count data.  
 
The present analysis has the following objectives: 
▪ Present the Poisson distributional assumptions and discuss the related 

properties and particularities 
▪ Describe the related multilevel structure 
▪ Use the above techniques to explore the regional effect of police 

enforcement on the number of road accidents in Greece 

2.4.4.3. Dataset 

The dataset that is used in the framework of this analysis concerns regional 
data from 50 counties of Greece (245 observations in total), nested within 12 
regions in the period 1998-2002. The response variable is the number of road 
accidents with casualties, and explanatory variables are the number of alcohol 
controls, the number of speed infringements, as well as socioeconomic 
parameters such as vehicle ownership and road network type. The population of 
each county is used as offset term, to express the expected number of 
accidents. It should be noted that explanatory variables are centred around their 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  3 5  

mean, to avoid numerical problems in the estimation. The dataset variables are 
summarized in the following table: 
 
It should be noted that the Athens and Thessaloniki metropolitan areas, where a 
disproportionally high number of accidents and police controls are observed, 
were not included in the dataset.  
 
Region 1-12 regions of Greece 
County 1-50 counties of Greece 
Accs The number of accidents of each county 
alcontrol (1000) The number of alcohol controls of each county 
speedinf (1000) The number of speed infringements of each county 
logepop (offset) The natural logarithm of the population of each county 
Cons The constant term 
Table 2.7: Variables in the dataset 

2.4.4.4. Model definition 

Generally modelling count data is known as Poisson regression and is not in 
itself a multilevel technique. To translate Poisson regression to multilevel 
Poisson regression is analogous to moving from linear modelling to normal 
response multilevel modelling (Langford et al, 1998). In case of Poisson 
multilevel regression, there is a higher level classification of the data across 
which the probability response is considered to vary. The multi-level model fitted 
to the data is based on iterative generalized least squares estimation. Assuming 
multivariate normality, calculations alternate between estimation of fixed and 
random parameter vectors until convergence is reached. However, in this case, 
a Poisson distributed response vector of observed cases is assumed, and 
hence it is necessary to include an offset of expected numbers of cases in the 
model so that: 
 
O ~ Poisson (μ)       (2.10a) 
 
log (P) = log (E) + X β + Z θ      (2.10b) 
 
where E represents the expected numbers of cases for each level 1 unit. When 
using such fixed offsets, it is recommended to centre them about their mean in 
order to avoid numerical instabilities (Rasbach et al., 2000). 
 
The Poisson distribution is used to model the level 1 variance, with a logarithmic 
link function, and assume random parameters at higher levels (e.g. region and 
nation) as being multivariate normal. An efficient estimation procedure for this 
non-linear model is predictive quasi-likelihood, where estimation of random 
parameters, and associated residuals, is made using a Taylor series expansion 
around the current values of the fixed and random parts of the model. 
 
A basic additive model will have explanatory variables consisting of an intercept, 
and one or more dummy variables. One would normally also wish to include 
interactions between variables. 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  3 6  

 
There are some applications where the response is a count and we do not 
require an offset, or where the offset is effectively constant. For example, if we 
were interested in the number of times individuals visited their general 
practitioner or physician in a year, we could collect data over a one year period 
for all individuals and study the variation in counts across practitioners (level 2) 
according to individual and practitioner characteristics. 
 
There are also variations on the Poisson distribution assumption which we may 
wish to use (for example, the negative binomial distribution). One could add 
further terms or consider even a nonlinear function. 

2.4.4.5. Model assumptions 

Count data have restrictions on the values they take; they must take positive 
integer values (or zero) and so if count responses were to be fitted as normal 
responses, one could obtain predicted counts that were negative. 
Consequently, the Poisson distribution is used instead (Langford et al., 1999). In 
this section, the basic Poisson assumptions for count data are presented.  
 
The Poisson distribution has a parameter λ that represents the rate that events 
occur in the underlying population, according to the following characteristic 
function:  
 

P(x ; λ)=
!x

eλ λx −

    (2.11) 

 
The Poisson distribution is based on four assumptions. The term "interval" 
refers to either a time interval or an area, depending on the context of the 
problem.  
 
• The probability of observing a single event over a small interval Δτ is 

approximately proportional to the size of that interval. 
 P (1 ; Δτ) = λ Δτ   for small Δτ 
 
• The probability of two events occurring in the same narrow interval is 

negligible. 
 P (0 ; Δτ) + P (1 ; Δτ) =1   for small Δτ 
 
• The probability of an event within a certain interval does not change over 

different intervals. 
• The probability of an event in one interval is independent of the probability of 

an event in any other non-overlapping interval. 
 
These assumptions should be examined carefully, especially the last two. If 
either of these last two assumptions is violated, they can lead to extra variation, 
sometimes referred to as overdispersion. 
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2.4.4.6. Model fit and diagnostics 

In the following sections, an application of multilevel Poisson models is 
presented. The analysis aims at examining the regional effect of speed and 
alcohol enforcement on the number of road accidents. It should be noted that 
the demonstration follows a stepwise procedure, both in terms of multilevel 
model building and variables selection. As far as model building is concerned, 
the analysis starts from the simplest (single level) model to the most complex 
(multilevel models). Accordingly, variables are initially examined separately 
(single-effects models), and then jointly (mixed-effects models). 
 
The initial stage of the analysis concerns a single level model (level 1: i-county), 
ignoring the geographical hierarchy in the data. This approach gives the 
following results: 
 
Parameters Single-level model 
constant -6.450 (0.005)
alcontrols -0.015 (0.001)
speedinf -0.010 (0.001)
Table 2.8: Estimates for the single-level model 
 
The coefficients of this initial model, all highly significant, as indicated by the 
respective standard errors in parentheses, indicate a reduction of road 
accidents when speeding and drinking-and-driving controls increase. This result 
is reasonable, however in the following sections it will be demonstrated how this 
effect may vary significantly among regions. 
 
The next stage is adding the hierarchical structure to the data, by including a 
second level (level 2: j-region). We first consider a two-level model with a 
random intercept term only, in order to examine the variation due to the regional 
effects. This model (Model 1) shall be also used as the "null" model for the 
assessment of models fit, through the calculation of deviance. The results 
presented in Table 2.9 below indicate a significant random variance among 
regions: 
The significant regional variation of the intercept is presented in Figure 2.8. The 
first graph concerns the average (fixed) intercept for all regions, whereas the 
second graph concerns the intercepts corresponding to each one of the 12 
regions of Greece. A significant regional effect on the number of accidents is 
illustrated. Additionally, Model 2 presents a significantly improved fit, as the 
related deviance statistic is equal to (7038.97-4624.30)=2414.67, which is 
highly significant compared to a Chi-square distribution with one degree of 
freedom. 
 
It should be noted that likelihood statistics for discrete response models are very 
approximate, as quasilikelihood estimation is use. Therefore, likelihood statistics 
are only examined as a rough assessment of models fit (Rashbach et al., 2000). 
 
The next step in model fitting with this dataset is to add explanatory (predictor) 
variables into the multilevel model. Firstly, the effect of alcohol controls on the 
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number of accidents is examined, allowing it to randomly vary between regions. 
A multilevel model with a random intercept and a random slope is therefore 
fitted (Model 2) and the results are presented in Table 2.6.  
 
 
Parameter 

Model 1 
(Null model) 

Model 2 
(Effect of 
alcohol 

controls) 

Model 3 
(Effect of 

speed 
controls) 

Model 4 
(Effect of 

speed and 
alcohol 

controls) 
Estimate 

(s.e)
Estimate 

(s.e)
Estimate 

(s.e) 
Estimate 

(s.e)
Fixed effects     
constant -6.488 

(0.076)
-6.672 

(0.108)
-6.691 

(0.115) 
-6.654 

(0.101)
alcontrols -0.059 

(0.014)
 -0.036 

(0.010)
speedinf -0.131 

(0.043) 
-0.058 

(0.023)
Random effects  
Level 2  
σu0

2 (constant) 0.070 (0.029) 0.140 (0.057) 0.157 (0.065) 0.119 (0.050)
σu1

2 (alcontrols) 0.002 (0.001)  0.001 (0.000)
σu2

2 (speedinf) 0.022 (0.009) 0.006 (0.002)
σu01

2 
(covariance) 

0.013 (0.006)  0.008 (0.004)

σu02
2 

(covariance) 
0.051 (0.023) 0.013 (0.009)

σu12
2 

(covariance) 
 0.000 (0.000)

  
Variance/mean 1.000 1.000 1.000 1.000
-2*loglikelihood 7038.97 4624.30 4666.03 4360.68
  

Table 2.9: Estimates for the null model, the single-effects models and the mixed-effects 
model (Poisson assumptions) 

 
It is noticed that all fixed and random effects are significant. However, the 
variance of alcohol controls is less significant than the variance of the intercept, 
suggesting that the regional effect itself (in geographical terms) is a stronger 
determinant of the number of accidents than the effect of enforcement. It is also 
interesting to note that there is a significant covariance among intercept and 
slope, indicating that, the higher the number of accidents of a region, the higher 
the effect of alcohol enforcement (reduction of accidents). 
 
The significant regional variation of the slope is presented in Figure 2.9. The 
first graph concerns the average (fixed) slope for all regions, whereas the 
second graph concerns the slopes corresponding to each one of the 12 regions 
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of Greece. A significant effect of alcohol controls on the number of accidents at 
regional level is illustrated. 
 
 

 
 

 

 
 

Figure 2.8: Average intercept (left) and random intercepts (right) for the "null" two-level 
model 

 
In Figure 2.10, the Level 1 and 2 residuals are examined for Model 2. In 
particular, the top graphs concern Level 1 residuals and the four bottom graphs 
concern Level 2 residuals. Moreover, the left-side graphs concern standardized 
residuals against normal scores and the right-side graphs concern standardized 
residuals against fixed part predicted values. 
 
 

 
 

 

 
 

Figure 2.9: Average (left) and random (right) intercepts and slopes of the single-effect 
two-level model (effect of alcohol controls) 

 
It is observed that Level 1 residuals are normally distributed and independent. 
However, Level 2 residuals are less conform to the Normal distribution and 
present more dependency to the predicted values. 
 
Accordingly, the effect of speed enforcement on the number of accidents is 
separately examined, by removing the number of alcohol controls from the 
model and adding the number of speed infringements, also allowing it to 
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randomly vary between regions. Another multilevel model with a random 
intercept and a random slope is therefore fitted (Model 3). 
 
Also in this case, all fixed and random effects are significant. It should be noted, 
however, that the variance of the effect of speed infringements is highly 
significant in this case. There is also a significant covariance among intercept 
and slope, indicating that, the higher the number of accidents of a region, the 
higher the effect of speed enforcement. The resulting deviance from 
incorporating the number of speed infringements in the model is equal to 
2372.94, which is also significant for one degree of freedom, however 
somewhat less improving the model fit compared to the number of alcohol 
controls. 
 

 

 

 

 

 
 
 

 
 

Figure 2.10: Level 1 and 2 residuals of the single-effect model (effect of alcohol) 

 
The last stage of the analysis concerns the incorporation of both speed and 
alcohol enforcement effects in the model, in order to examine the related 
combined effect. A two-level model is therefore fitted (Model 4), allowing both 
explanatory variables to vary among regions. In this case, all fixed effects are 
highly significant. However, the variances and covariances related to the 
number of speed infringements are non significant. This is quite surprising, 
when considering that both effects were significant when examined separately. 
Additionally, the fact that the overall fit of the model was at the same time 
improved indicates some bias in the estimates. 
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In Figure 2.11, the predicted intercepts and slopes of alcohol controls and 
speed infringements are plotted. It is noticed that the various regional effects 
differ significantly from the ones obtained previously, when effects were 
examined separately. Additionally, several slopes present an inversed effect, 
not directly attributable to regional characteristics. These results are discussed 
and interpreted in the following section. 
 
 

 
 

 

 
 

Figure 2.11: Random intercepts (left) and slopes (right) of the mixed-effects two-level 
model (effect of alcohol controls and effect of speed infringements) 

 
 

Parameter 
Model 5 

(Null model) 
Model 6 

(effect of alcohol) 
 Estimate (s.e) Estimate (s.e) 
Fixed effects 
constant -6.486 (0.073) -6.587 (0.092)
alcontrols -0.047 (0.010)
Random effects 
Level 2 
σu0

2 (constant) 0.064 (0.029) 0.094 (0.042)
σu1

2 (alcontrols) 0.001 (0.000)
σu01

2 (covariance) 0.006 (0.004)
 
Variance/mean 22.622 (2.096) 12.892 (1.226)
-2*loglikelihood 2729.07 2621.82

Table 2.10: Estimates for the null model, the single-effects models and the mixed-
effects model (extra-Poisson assumptions) 

 
Another issue that should be examined in case of Poisson multilevel models is 
overdispersion (Dean, Lawless, 1989). In particular, when examining Model 2, it 
is noticed that the dispersion parameter, calculated as the ratio of the residual 
deviance to the degrees of freedom (minus the number of estimated 
parameters) is equal to 2414.67/(245-1)=9,89. The model is proved to be highly 
overdispersed, and the initial assumption of variance-mean equality is violated. 
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Overdispersion generally reflects missing parameters, not included in the 
model, which would account for the extra-variation. 
 
A procedure to account for this overdispersion can be used, by not restricting 
the variance-mean relationship to be equal to one. It should be noted that this 
assumption would not significantly affect parameter estimates; however the 
related significancies may be slightly affected (Dean, 1992). In the framework of 
the present demonstration, the regional effect of alcohol controls on the number 
of accidents was examined assuming extra-Poisson variation. 
 
In particular, in Table 2.10 above, parameter estimates are presented for a 
"null" model (Model 5 - intercept only) and a model examining the effect of 
alcohol (Model 6). It is noticed that parameter estimates are not significantly 
different from the ones obtained with Poisson assumptions. Additionally, a 
significant estimate of the variance/mean ratio is obtained, indicating that the 
variance-mean equality assumed in the previous examples was not adequate. 
 
The dispersion parameter for Model 6 is equal to 107,25/244=0.44. This 
parameter is now lower than one (underdispersion), however the overall result 
is improved from the 9,89/1 overdispersion obtained before. Moreover, taking 
into account that these deviance estimates are very approximate estimates, it 
can be deduced that Model 6 is improved in relation to Model 2. 
 
In Figure 2.12, level 1 and 2 residuals are examined for Model 6. Examining the 
level 1 residuals of the model, it is observed that these are normally distributed 
and independent. When examining level 2 residuals, it can be noticed that their 
distribution is improved in relation to Model 2 above, both in terms of normality 
and independence from predicted values. 
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Figure 2.12: Level 1 and 2 residuals of the single-effect model with extra-Poisson 
variation (effect of alcohol) 

 

2.4.4.7. Model interpretation 

In order to interpret the above results, especially as far as Model 4 is 
concerned, the correlation between speed infringements and alcohol controls 
was examined, resulting to a positive correlation of 0,729. This explains to some 
degree the counter-intuitive slopes a couple of regions in Model 4. In particular, 
when variables are highly correlated (multicollinearity), a redundancy of 
variables is exposed, causing both logical and statistical problems 
(Washinghton et al. 2003). Therefore, it is recommended that variables with a 
bivariate correlation of greater than 0.70 are avoided in the same analysis. 
Redundant variables weaken the analysis, through reduction of degrees of 
freedom error.  
 
It is interesting to note that model's fit is not significantly affected. If the analysis 
simply aims to predict the response variable from a set of explanatory variables, 
then multicollinearity is not a problem. However, if the analysis aims to 
investigate how the various explanatory variables impact the dependent 
variable, then multicollinearity is an important problem. As far as multilevel 
models are concerned, the results of a recent study show that, with 
multicollinearity presented at Level 1 of a two-level mixed-effects linear model, 
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the fixed-effect parameter estimates produce relatively unbiased values; 
however, the variance and covariance estimates produce downwardly biased 
values (Shieh, Fouladi, 2003). According to the above, Model 4 is rejected 
against Models 2 and 3. 
 
Another interesting issue rising from the above results is overdispersion in 
Poisson models. It was demonstrated that, a restricted variance-mean equality 
assumption may lead to overestimation of the parameter significances, as the 
underlying degree of overdispersion affects the estimated standard errors. This 
may not always compromise models fit, it is therefore necessary to examine the 
dispersion parameter though the models deviance. However, in discrete 
response models, the deviance estimates are quite rough and can only provide 
a very general assessment of fit.  
 
In the above examples, the extra-Poisson variation assumption has led from a 
highly overdispersed model (Model 2) to a quite underdispersed model (Model 
6). However, the overall fit and diagnostics of the two models indicate that 
Model 6 is the best Model for the purposes of the present analysis. 

2.4.4.7.1. Conclusions 

In this section, a Poisson multilevel modelling process was demonstrated. The 
dataset used includes the number of road accidents and the related speeding 
and drinking-and-driving violations, as well as some socioeconomic parameters, 
for 50 counties and 12 regions of Greece. The analysis aimed at examining the 
effect of police enforcement intensification on the road safety level. Moreover, 
the regional variation of this effect was quantified. 
 
The MLwin software for multilevel analysis was used to test different Poisson 
model structures, starting from the basic single-level model and adding fixed 
and random intercepts and slopes. The development of separate models for the 
effect of speeding enforcement and the effect of alcohol enforcement produced 
interesting results and revealed statistically significant regional variations in the 
examined effects. The fitting of a model including both effects produced a 
couple of counter-intuitive results on specific regions, which are attributed to the 
fact that the two effects were found to be correlated. 
 
The above analysis reflects the potential and usefulness of using multilevel 
analysis to identify complex relationships within hierarchical data. It also 
demonstrates some limits of the analysis, mainly rising from the limited number 
of higher level units and the existence of correlation between some explanatory 
variables in the particular dataset. 

2.5. Repeated measures data 
- To be completed - 
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2.6. Multivariate models (E. Papadimitriou & C. Antoniou, NTUA) 

2.6.1. Research problem 
In Chapter 2.1.4 a Poisson multilevel model was fitted to the counts of road 
accidents to identify within-county and within-region variability of the effect of 
speeding and drinking-and-driving police controls on road accidents frequency. 
Results had indicated a significant regional variation in road accident 
occurrence, as well as a significant effect of both types of police enforcement 
explaining the accident reduction within the examined period. It was also found 
that separate models for each explanatory variable provided more significant 
and stable results than one model including both variables, as a significant 
correlation of speed and alcohol enforcement was found. 
 
Additionally, models with extra-Poisson variation assumptions (overdispersion) 
were proved to be more flexible in relation to standard Poisson variation 
assumptions, correcting for the overestimation of the significances of parameter 
estimates. 
 
In this Chapter, the effect of alcohol enforcement on both road accidents and 
road accident casualties is examined. The interest of this analysis lies on the 
fact that road accident severity (number of casualties) may or may not be 
related to accident frequency (number of accidents). In particular, an improved 
road environment or an increase in traffic may be the causes of fewer casualties 
within the same number of accidents. Accordingly, the intensification of police 
enforcement may or may not have the same effect on the number of accidents 
as on the number of related casualties. 

2.6.2. Objectives of the technique 
All the models described in the previous sections considered only a single 
response variable. In this section, models where several responses are 
simultaneously modelled as functions of explanatory variables are examined. 
Interest in these data lies on the relationship between the responses at various 
hierarchical levels, on whether there are significant differences in this 
relationship explained by other variables, and whether the variability differs 
among responses. 
 
The analysis has the following objectives: 
▪ Present the assumptions and properties of multivariate multilevel models in 

relation to univariate models 
▪ Describe the respective assumptions and particularities for multivariate 

Poisson models 
▪ Use the above techniques to explore the regional effect of police 

enforcement on the number of road accidents and road accident casualties 
in Greece 
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2.6.3. Dataset 
In the following sections, an application of a Poisson multivariate multilevel 
model is demonstrated. On that purpose, the dataset presented in Chapter 2.1.4 
is used. This dataset includes the number of road traffic accidents and related 
casualties in 50 counties nested within 12 regions of Greece for the period 
1998-2002. As mentioned in the previous section, this period corresponds to a 
considerable intensification of police enforcement for two of the most important 
traffic violations i.e. exceeding speed limits and driving under the influence of 
alcohol. 
 
A bivariate model is therefore developed, with the following variables: 
 
region 1-12 regions of Greece 
county 1-50 counties of Greece 
accidents The number of accidents of each county 
killed The number of persons killed in the road accidents of each 

county 
alcontrol (1000) The number of alcohol controls of each county 
logepop (offset) The natural logarithm of the population of each county 
Cons The constant term 
Table 2.11: Variables in the model 
 
It should be noted that, as in the example of univariate Poisson models, the 
Athens and Thessaloniki metropolitan areas, where a disproportionally high 
number of accidents and police controls are observed, were not included in the 
dataset. Additionally, only the number of alcohol controls is examined as 
explanatory variable, since in the previous example (section 2.1.4) it was proved 
that alcohol and speed enforcement are significantly correlated and therefore 
they should not be examined jointly. 
 
It should be noted that all the assumptions of Poisson multilevel models 
described in Chapter 2.1.4 also apply in the case of multivariate models. 

2.6.4. Model definition 
To define a multivariate model, the individual component should be treated as a 
level 2 unit and the "within-component" measurements (e.g. the different 
responses) as level 1 units. Each level 1 entry has a response, which is one of 
the multiple responses. The basic explanatory variables are a set of dummy 
variables that indicate which response variable is present. Further explanatory 
variables are defined by multiplying these dummy variables by unit level 
explanatory variables.  
 
In particular, in the simplest case of a bivariate model, each level 1 entry would 
be a response indicating one of the two response variables for each unit, the 
basic explanatory variables would be a set of binary variables indicating which 
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of the two responses is present and further explanatory variables would 
correspond to unit level variables. This structure is illustrated in Table 2.12: 
 
Individual Response Intercepts Slopes 

1 Response 1 0 1 0 1 
1 Response 2 1 0 1 0 
2 Response 1 0 1 0 1 
2 Response 2 1 0 1 0 
3 Response 1 0 1 0 1 
3 Response 2 1 0 1 0 

Table 2.12: Data matrix structure for the simple bivariate model 

 
The statistical formula for the two level basic bivariate model, is written as 
follows: 
 
yij = b0zij + b1z21j + b2z1ijxj + b3z2ijxj+ u1jz1ij+ u2jz2ij   (2.12a) 
 

Where z1i = 
⎭
⎬
⎫

⎩
⎨
⎧

2 response if      2
1 response if       1

,  z2i = 1 - z1ij     (2.12b) 

 
There are several interesting features in this model. There is no level 1 variation 
specified, as level 1 exists solely to define the multivariate structure. The level 2 
variances and covariance are the (residual) between-units variances. In the 
case where only the intercept dummy variables are fitted, and in the case where 
every unit has both responses, the model estimates of these parameters 
become the usual between-units estimates of the variances and covariance. 
The multilevel estimates are statistically efficient even where some responses 
are missing. 
 
It should be noted that the estimates obtained are not necessarily the same as 
the estimates that would be obtained by fitting two separate univariate models. 
If there is a tendency, for instance, to report/measure only one of the responses, 
or if the occurrence rate of one response is different from the occurrence rate of 
the other response, the omitted values of the other response are not missing 
completely at random. In the univariate analysis there is no way to correct for 
this bias, as it is considered that any absent values are missing completely at 
random (MCAR). The multivariate model contains the covariance between the 
responses, assuming that the absent values are missing at random (MAR), 
which is a weaker assumption. 
 
Thus, the formulation as a 2-level model allows for the efficient estimation of a 
covariance matrix with missing responses, where the missingness is at random. 
This means, in particular, that studies can be designed in such a way that not 
every unit (individual) has every measurement, with measurements randomly 
allocated to units. Such "rotation" or "matrix" designs are common in many 
areas and may be efficiently modelled in this way.  
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Accordingly, a third level can be incorporated and this is specified by inserting a 
third subscript, k, and two associated random intercept terms: 
 
yij = b0zijk + b1z21jk + b2z1ijkxjk + b3z2ijkxjk+ v0jkz1ikj+ v1jkz2ijk u0jkz1ikj+ u1jkz2ijk (2.13a) 
 

Where z1i = 
⎭
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2 response if      2
1 response if       1

,  z2i = 1 - z1ij   (2.13b) 
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The 2 by 2 covariance matrix between response 1 and response 2 is partitioned 
into a level-2 between-units component Ωu and a level-3 between-units 
component Ωv.  
 
This model could be extended further, by allowing the explanatory variable for 
each response to vary on level 3. Further explanatory variables can be added 
and their coefficients can vary randomly at either level. It should be noted that, 
multiplying each explanatory variable with all the dummy variables, each 
regression coefficient in the model is different for each response. In a 
considerably simplified model, one could impose an equality constraint across 
all response variables, which is equal to adding the explanatory variables 
directly, without multiplying with the available dummies of level 1. This produces 
common coefficients for the two responses, resulting in a model that can be 
considered as "nested" within the above detailed model. 
 
A typical example to illustrate the multilevel multivariate response model is 
given by Rasbach et al (2000) and concerns the scores on two components of a 
science examination taken in 1989 by 1905 students in 73 schools in England. 
The first component is a traditional written question paper, and the second 
consists of coursework. Interest in these data centres on the relationship 
between the component marks at both the school and student level, whether 
there are gender differences in this relationship and whether the variability 
differs for the two components. 
 
Another, interesting example of multilevel multivariate modelling is given in 
Duncan et al (1999); the first response is a binary response indicating whether 
or not an individual smokes, and the second response is only present for those 
individuals who smoke and is the number of cigarettes smoked. This model has 
two interesting features. Firstly, if the number of cigarettes smoked was 
modelled as a continuous univariate response, there would be a large spike at 
zero, which would violate any simple Normal theory. However, in the 
multivariate framework, these individuals are properly included by the first 
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binary response. Secondly, the covariance between the two responses at higher 
levels can be very informative. In Duncan et al the individuals were nested 
within neighbourhoods. A positive covariance at the neighbourhood level means 
that smokers who are in an area where the probability of smoking is high will 
tend to smoke more cigarettes than smokers in an area where the probability of 
smoking is low. In other words if you are a smoker and a lot people around you 
are smoking you will smoke greater numbers of cigarettes than if you are not 
surrounded by smokers. 
 
An example of fitting multivariate Poisson models can also be found in Langford 
et al. (1999). 

2.6.5. Model fit and diagnostics 
The initial stage of the analysis concerns a two-level model, which is specified in 
order to define the bivariate response variable. In particular, level 1 is defined as 
a dummy variable indicating the presence of each response and level 2 is 
defined as the respective value of each response. Therefore, a response 
variable of 100 units (counties) is created; 50 units corresponding to the 1st 
response (number of accidents) and 50 units corresponding to the 2nd response 
(number of persons killed).  
 
The natural logarithm of the population is used as an offset in both responses. It 
should be also noted that extra-Poisson distributional assumptions are 
considered, in order to allow for more flexibility in the estimations. The modeling 
results for the simple examination of variability between responses (two-level 
model with fixed intercept) are presented in Table 2.13. 
 
 Model 1 

 
 Accidents Killed 
Fixed effects   
constant -6.471 (0.025) -8.380 (0.023)
 
Cov (accs/killed) 4.691 (0.042) 
  

Table 2.13: Effects of the basic two-level bivariate model (intercept only) 

 
It is interesting to notice that the intercept terms of the two responses are both 
highly significant. Additionally, a significant between-response covariance 
indicates that the two responses follow similar trends. When proceeding in 
adding a fixed slope for alcohol controls, the results presented below indicate 
that the effect of alcohol enforcement is significant both for the number of 
accidents and for the number of persons killed: 
 
It should be underlined that no random structure can be specified at the lowest 
"real" level (i.e. the county level and not the response level) of a Poisson model 
whether it is univariate or multivariate (bivariate in this case). In particular, there 
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is nothing random to estimate as in the Poisson model the relationship between 
mean and variance is known, so that there is no need to separately estimate the 
latter. However, the opposite is true in the classical linear regression model, 
where the error term is assumed equal to zero but the variance is unknown and 
must therefore be estimated. Consequently, one would be interested in making 
the intercept term vary randomly in a 1-level normal model but not in a 1-level 
Poisson model. 
 
 Model 2 

 Accidents Killed 
Fixed effects -6.455 (0.023) -8.372 (0.023)
constant 
alcontrols -0.019 (0.003) -0.006 (0.002)
   
Cov (accs/killed) 
 

4.139 (0.657) 

Table 2.14: Effects of the two-level bivariate model (intercept and slope) 

 
At the next stage, it is interesting to examine whether the regional effect on the 
responses is significant, by adding a 3rd level to the model (which would 
correspond to the 2nd level of the respective univariate model) and introducing a 
random intercept. 
 
 Model 3 

 
 Accidents Killed 
Fixed effects   
constant -6.453 (0.044) -8.382 (0.028)
alcontrols 
Random effects 
Level 3 
σu0

2 (constant) 0.092 (0.021) 0.016 (0.008)
σu1

2 (alcontrols) 
σu01

2 
(covariance) 

0.025(0.010) 

 
Cov 
(accs/killed) 

2.898 (0.556) 

  

Table 2.15: Effects of the three-level bivariate model (intercept only) 

 
The results presented in Table 2.15 above show a significant regional variation 
of both road accidents and road accident casualties, as well as a significant 
covariance between the two intercepts. Additionally, the regional variability of 
the intercept is higher for the number of accidents, as indicated by the values of 
the related mean variances. However, it is interesting to notice that the 
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covariance between responses and its significance is reduced. It can be 
deduced that the variation of accidents and persons killed does not follow the 
same trend within different regions i.e., an increase in the number of accidents 
does not result in the same increase in the number of persons killed among 
regions.  
 
By adding a random slope to the model, the results shown in Table 2.16 below 
are obtained (Model 4). It is noted that, for practical reasons, only variances 
(diagonal matrix) are presented. It appears that the mean effect of enforcement 
on the number of accidents is higher compared to the related effect on persons 
killed. However, the regional variation of alcohol enforcement effects is very low 
as far as both number of accidents and persons killed are concerned and only 
significant as far as the number of accidents is concerned. 
 
At this stage, there is enough evidence that road accidents and road accident 
casualties present a significant and different regional variation. Additionally, the 
increase of alcohol controls causes a different reduction on accidents and 
persons killed at national level. However, alcohol controls do not appear to 
significantly affect persons killed at regional level.  
 
 Model 4 
 Accidents Killed 
Fixed effects   
Constant  -6.475 (0.038) -8.381 (0.026)
alcontrols -0.025 (0.004) -0.004 (0.002)
Random effects 
Level 3 
σu0

2 (constant) 0.053 (0.014) 0.010 (0.007)
σu1

2 (alcontrols) 0.0004 (0.0002) 0.000 (0.000)
   
Cov 
(accs/killed) 

3.313 (0.556) 

  

Table 2.16: Effects of the three-level bivariate model (random intercept and slope) 

 

2.6.6. Model interpretation 
The above example concerns a typical multivariate modeling process under 
Poisson assumptions. A significant regional variation was observed in both 
responses. However, a significant variation related to the number of alcohol 
controls was observed for accidents only. A less complex univariate model was 
successfully fitted in the accidents data in Chapter 2.1.4, and the results had 
indicated a somewhat higher regional effect of enforcement than the one 
obtained in the present bivariate analysis.  
 
It should be underlined that, for validation purposes, a univariate model for the 
number of persons killed was also fitted to the data and the non-significant 
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regional effect of alcohol enforcement was confirmed. Additionally, the 
magnitude of fixed effects was also slightly different. 
 
Summarizing, the multivariate structure provides slightly different results as far 
as the magnitude of the examined effects is concerned, due to the fact that 
dependencies among the two responses are taken into account. In the present 
example, the number of persons killed in accidents is strongly related to the 
number of accidents; however the effect of alcohol enforcement mainly affects 
the number of accidents. It can therefore be deduced that an increase of alcohol 
controls results to a significant decrease of accidents. The number of persons 
killed decreases because the number of accidents decreases and not because 
of a direct effect of alcohol controls.   

2.6.7. Conclusions 
In this section, a Poisson multilevel modelling process was demonstrated. The 
main interest of the example presented lies on the illustration of the lower-level 
structuring to build a multiple response model. In particular, the basic multilevel 
model structure is exploited to create a multivariate analysis, by shifting the 
hierarchical structure one level higher and substituting the bottom-level with 
dummy variables to account for the multiple responses. This process provides 
several interesting features, mainly concerning the treatment of missing values 
and the consideration of dependencies among responses. 
 
The example presented above concerned the effect of alcohol enforcement on 
the number of road accidents and related casualties. The results showed that 
accidents and casualties present (significant) regional variation; however the 
effect of enforcement on the number of casualties does not vary significantly at 
regional level.  
 
The modelling process described above can be applied accordingly to normal, 
binary or count responses, or mixed responses. Some of the particularities of 
modelling Poisson responses in relation to Normal responses were briefly 
discussed in the framework of the above example. Additionally, multiple 
responses can also be modelled in the same way. However, it is always 
recommended to begin by fitting simple univariate models for each response, in 
order to explore the variability of regional or other effects and the explanatory 
power of variables, before proceeding to a more complex structure. 

2.7. Factor analysis and structural equations models (C. 
Brandstaetter & M. Gatscha, KUSS) 

2.7.1. Research problem 
In this chapter, we will introduce concepts for latent dimensions. Often the most 
important variables are not directly observable. This is true especially for most 
concepts in psychology, e.g. attitudes, motives or personality traits. In these 
cases the underlying construct cannot be measured directly, but nevertheless 
can be assessed indirectly by measuring a number of relevant indicators. 
Furthermore, the interdependency between these latent dimensions should be 
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analysed. Structural equation modelling, and the special case of factor analysis, 
was developed for this purpose.  

2.7.2. Model objectives 
It is important to carry out such analyses where individuals are grouped within 
hierarchies in a multilevel framework. For example, one may be interested in 
attitudes with regard to new technologies relevant for traffic safety correlated 
with driver characteristics. Data on such indicators may be available in different 
countries and one can postulate a model whereby the underlying attitudes and 
characteristics vary from country to country (level 2) and also vary randomly 
over individuals within countries (level 1).  

2.7.3. Model definition 
The theory and application of single level structural equation models, including 
the special cases of observed variable path models and factor analysis models, 
is well known (Joreskog and Sorbom, 1979, McDonald, 1985). In this chapter, 
we look at multilevel generalisations of these models. We will not give details of 
estimation procedures that are set out in Goldstein and McDonald (1987), 
McDonald and Goldstein (1988) with elaborations by Muthen (1989) and 
Longford and Muthen (1992). McDonald (1994) presents an informal overview. 
 
One first considers a basic 2-level factor model where  a set of measurements 
for each person within a sample of countries is available. For the p level 1 
responses, we first write a multivariate model with p responses, where in 
general some may be randomly missing. 
 

    ∑+=
i ijiijij zeXy )( β   (2.14) 

 
One may wish to identify some of these factors as the ‘same’ factors at each 
level, for example by constraining certain loadings to be zero.  
 
A straightforward and consistent procedure for estimating the parameters of this 
factor model is to perform it in two stages. The first stage involves the 
estimation of the separate level 1 and level 2 residual covariance matrices. The 
second stage involves the factor analysis of these separate matrices using any 
standard procedure. 

2.7.4. Model assumptions 
All structural equation models, in short SEM, have important assumptions, 
which have to be known when applying such a concept. Although it utilizes path 
analysis, SEM relaxes many (but not all) of its assumptions pertaining to data 
level, interactions, and uncorrelated error.  

2.7.4.1. Multivariate normal distribution of the indicators:  

Each indicator should be normally distributed for each value of each other 
indicator. Even small departures from multivariate normality can lead to large 
differences in the chi-square test, undermining its utility. In general, violation of 
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this assumption inflates chi-square, but under certain circumstances may 
deflate it. Use of ordinal or dichotomous measurement is a cause of violation of 
multivariate normality. Please note that multivariate normality is required by 
maximum likelihood estimation (MLE), which is the dominant method in SEM for 
estimating structure (path) coefficients. Specifically, MLE requires normally 
distributed endogenous variables. 
 
The Bollen-Stine bootstrap and Satorra-Bentler adjusted chi-square are used for 
inference of exact structural fit when there is reason to think there is lack of 
multivariate normality or another distributional misspecification. Other non-MLE 
methods of estimation exist; some (like ADF) do not require the assumption of 
multivariate normality. 
 
Under conditions of severe non-normality of data, SEM parameter estimates 
(ex., path estimates) are still fairly accurate, but corresponding significance 
coefficients are too high. Chi-square values, for instance, are inflated. Recall for 
the chi-square test of goodness of fit for the model as a whole, the chi-square 
value should not be significant if there is a good model fit; the higher the chi-
square, the more the difference of the model-estimated and actual covariance 
matrices, hence the worse the model fit. Inflated chi-square could lead 
researchers to think that their models were more in need of modification than 
they actually were. Lack of multivariate normality usually inflates the chi-square 
statistic such that the overall chi-square fit statistic for the model as a whole is 
biased toward Type I error (rejecting a model which should not be rejected). The 
same bias also occurs for other indexes of fit besides the chi-square model. 
Violation of multivariate normality also tends to deflate (underestimate) standard 
errors moderately to severely. These smaller-than-they-should-be standard 
errors mean that regression paths and factor/error covariances are found to be 
statistically significant more often than they should be.  

2.7.4.2. Multivariate normal distribution of the latent dependent variables: 

Each dependent latent variable in the model should be normally distributed for 
each value of the other latent variables. Dichotomous latent variables violate 
this assumption. In this case, other classes of models should be used. 

2.7.4.3. Linearity: 

SEM assumes linear relationships between indicator and latent variables, and 
between latent variables themselves. However, as with regression, it is possible 
to add exponential, logarithmic, or other non-linear transformations of the 
original variable to the model. These transformations are added alone to model 
power effects, or along with the original variable to model a quadratic effect with 
an unanalysed correlation (curved double-headed arrow), connecting them in 
the diagrammatic model. It is also possible to model quadratic and non-linear 
effects of latent variables. 
 
One might think SEM's use of MLE estimation means that linearity is not 
assumed, as in logistic regression. However, in SEM, MLE estimates the 
parameters that best reproduce the sample covariance matrix, and the 
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covariance matrix assumes linearity. That is, while the parameters are 
estimated in a non-linear way, they are in turn reflecting a matrix requiring linear 
assumptions. 

2.7.4.4. Indirect measurement: 

Typically, all variables in the model are latent variables. Multiple indicators 
(three or more) should be used to measure each latent variable in the model. 
Regression can be seen as a special case of SEM in which there is only one 
indicator per latent variable. Modelling error in SEM requires there should be 
more than one measure of each latent variable. If there are only two indicators, 
they should be correlated so that the specified correlation can be used, in effect, 
as a third indicator and thus prevent under-identification of the model.  

2.7.4.5. Low measurement error: 

Multiple indicators are part of a strategy to lower measurement error and 
increase data reliability. Measurement error attenuates the correlation and 
covariance on which SEM is based. Measurement error in the exogenous 
variables biases the estimated structure (path) coefficients, but in unpredictable 
ways (up or down) dependent on specific models. Measurement error in the 
endogenous variables is biased towards underestimation of structure 
coefficients if exogenous variables are highly reliable, but otherwise bias is 
unpredictable in direction.  

2.7.4.6. Complete data or appropriate data imputation: 

As a corollary of low measurement error, the researcher must have a complete 
or near-complete dataset, or must use appropriate data imputation methods for 
missing cases.  

2.7.4.7. Not theoretically under-identified or just-identified:  

A model is just identified or saturated if there are as many parameters to be 
estimated as there are elements in the covariance matrix. For instance, 
consider the model in which V1 causes V2 and also causes V3, and V2 also 
causes V3. There are three parameters (arrows) in the model, and there are 
three covariance elements (1,2; 1,3; 2,3). In this just-identified case, one can 
compute the path parameters, but in doing so, uses up all the available degrees 
of freedom. Therefore, one cannot compute goodness of fit tests on the model. 
AMOS and other SEM software will report degrees of freedom as 0, chi-square 
as 0, and then p cannot be computed.  
 
A model is under-identified if there are more parameters to be estimated than 
there are elements in the covariance matrix. The mathematical properties of 
under-identified models prevent a unique solution to the parameter estimates 
and prevent goodness of fit tests on the model.  
 
In most cases, researchers want an over-identified model, which means one 
where the number of knowns (observed variable variances and covariances) is 
greater than the number of unknowns (parameters to be estimated). When one 
has over-identification, the number of degrees of freedom will be positive (recall 
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AMOS has a DF tool icon to check this easily). Thus, in SEM software output, 
the listing for degrees of freedom for the chi-square model is a measure of the 
degree of over-identification of the model.  
 
The researcher is well advised to run SEM on pre-test or fictional data prior to 
data collection, since this will usually reveal under-identification or just-
identification. One good reason to do this is because one solution to under-
identification is adding more exogenous variables, which must be done prior to 
collecting data.  

2.7.4.8. Recursivity:  

Recursive models are never under-identified (that is, they are never models 
which are not solvable because they have more parameters than observations). 
A model is recursive if all arrows flow one way, with no feedback looping, and 
disturbance (residual error) terms for the endogenous variables are 
uncorrelated. That is, recursive models are ones where all arrows are 
unidirectional without feedback loops and the researcher can assume 
covariances of disturbance terms are all zero, meaning that unmeasured 
variables that are determinants of the endogenous variables are uncorrelated 
with each other and therefore do not form feedback loops. Models with 
correlated disturbance terms may be treated as recursive only as long as there 
are no direct effects among the endogenous variables. Note that non-recursive 
models may also be solvable (not under-identified) under certain circumstances.  

2.7.4.9. Not empirically identified due to high multicollinearity:  

A model can be theoretically identified but still not solvable due to such 
empirical problems as high multicollinearity in any model, or path estimates 
close to zero in non-recursive models. There are some signs of high 
multicollinearity: 

o Since all the latent variables in a SEM model have been assigned a 
metric of 1, all the standardized regression weights should be within the 
range of plus or minus 1. When there is a multicollinearity problem, a 
weight close to 1 indicates the two variables are close to being identical. 
When these two nearly identical latent variables are then used as causes 
of a third latent variable, the SEM method will have difficulty computing 
separate regression weights for the two paths from the nearly-equal 
variables and the third variable. As a result it may well come up with one 
standardized regression weight greater than +1 and one weight less than 
-1 for these two paths.  

o Likewise, when there are two nearly identical latent variables, and these 
two are used as causes of a third latent variable, the difficulty in 
computing separate regression weights may well be reflected in much 
larger standard errors for these paths than for other paths in the model, 
reflecting high multicollinearity of the two nearly identical variables.  

o Likewise, the same difficulty in computing separate regression weights 
may well be reflected in high covariances of the parameter estimates for 
these paths - estimates much higher than the covariances of parameter 
estimates for other paths in the model.  
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o Another effect of the same multicollinearity syndrome may be negative 
error variance estimates. In the example above of two nearly identical 
latent variables causing a third latent variable, the variance estimate of 
this third variable may be negative.  

2.7.4.10. Interval data are assumed: 

Unlike traditional path analysis, SEM explicitly models error, including error 
arising from use of ordinal data. Exogenous variables may be dichotomies or 
dummy variables, but unless special approaches are categorical, dummy 
variables may not be used as endogenous variables. Use of ordinal or 
dichotomous measurement to represent an underlying continuous variable is, of 
course, truncation of range and leads to attenuation of the coefficients in the 
correlation matrix used by SEM.  

2.7.4.11. High precision:  

Whether data are interval or ordinal, they should have a large number of values. 
If variables have a very small number of values, methodological problems arise 
in comparing variances and covariances, which is central to SEM.  

2.7.4.12. Small, random residuals:  

The mean of the residuals (observed minus estimated covariances) should be 
zero, as in regression. A well-fitting model will have small residuals. Large 
residuals suggest model misspecification (i.e. paths may need to be added to 
the model). 
 
Uncorrelated error terms are assumed, as in regression, but if present and 
specified explicitly in the model by the researcher, correlated error may be 
estimated and modelled in SEM.  

2.7.4.13. Uncorrelated residual error: 

The covariance of the predicted dependent scores and the residuals should be 
zero.  

2.7.4.14. Multicollinearity:  

Complete multicollinearity is assumed to be absent, but correlation among the 
independents may be modelled explicitly in SEM. Complete multicollinearity will 
result in singular covariance matrices, on which one cannot perform certain 
calculations (e.g. matrix inversion) because division by zero will occur. Hence 
complete multicollinearity prevents a SEM solution. Also, when the correlation 
between indicator variables r>=0.85, multicollinearity is considered high, and 
empirical under-identification may be a problem. Even when a solution is 
possible, high multicollinearity decreases the reliability of SEM estimates. 
Strategies for dealing with covariance matrices that are not positive definitely 
add a ridge constant, which is a weight added to the covariance matrix diagonal 
(the ridge) to make all numbers in the diagonal positive. However, this strategy 
can result in markedly different chi-square fit statistics. Other strategies include 
removing one or more highly correlated items to reduce multicollinearity: using 
different starting values, using different reference items for the metrics, using 
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ULS rather than MLE estimation (ULS does not require a positive definite 
covariance matrix), replacing tetrachoric correlations with Pearsonian 
correlations in the input correlation matrix, and making sure to handle missing 
data list-wise rather than pair-wise.  

2.7.4.15. Non-zero covariances: 

CFI and other measures of fit compare model-implied covariances with 
observed covariances, measuring the improvement in fit compared to the 
difference between a null model with covariances as zero, on the one hand, and 
the observed covariances on the other. As the observed covariances approach 
zero, there is no "lack of fit" to explain it (the null model approaches the 
observed covariance matrix). More generally, "good fit" will be harder to 
demonstrate as the variables in the SEM model have low correlations with each 
other. That is, low observed correlations often will bias model chi-square, CFI, 
NFI, RMSEA, RMR, and other fit measures towards indicating good fit.  

2.7.4.16. Sample size: 

Sample size should not be small as SEM relies on tests that are sensitive to 
sample size, as well as to the magnitude of differences in covariance matrices. 
In the literature, sample sizes commonly run 200-400 for models with 10-15 
indicators. With over ten variables, sample size under 200 generally means 
parameter estimates are unstable and significance tests lack power. 
 
One rule of thumb found in the literature is that sample size should be at least 
50 more than 8 times the number of variables in the model. Another rule of 
thumb is to have at least 15 cases per measured variable or indicator. The 
researcher should go beyond these minimum sample size recommendations, 
particularly when data are non-normal (skewed, kurtotic) or incomplete. Note 
also that to compute the asymptotic covariance matrix, one needs k(k+1)/2 
observations, where k is the number of variables. 

2.7.5. Dataset 
Many expectations are connected with new technical developments, both from 
the safety side and from the consumer side. SARTRE 3 will yield data that tells 
us about the acceptance of various systems and also how realistic the drivers 
will perceive the effects of such systems. This is of great importance as new 
features in road traffic may change the perception of risk and safety; this know-
how is important for designing measures to counteract wrong safety beliefs. We 
will use data from the SARTRE 3 survey to investigate if there are any factors 
that support the acceptance and use of safety relevant systems, which might 
even restrict some freedom of the drivers. Acceptance of new technologies, 
driving experience, nationality, profession and economic status will be relevant 
factors of special interest. A multivariate LISREL analysis was applied to take 
the complex relationship of these factors into account. 
 
The aim of this is to describe how characteristics of the drivers and 
characteristics of specific technologies are related. When considering the 
introduction of new measures in traffic it is important to know if different types of 
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drivers will react in a different way to these changes, or if there will be a 
common effect. This issue also applies to the introduction of new technologies. 
Still, the qualities of new technologies are also quite different from a 
psychological perspective. 
 
Therefore the analysis undertaken distinguishes three different aspects of 
drivers and three different aspects of new technologies: 
  
Driver (User) characteristics 
- Emotional driving 
- Professional car use 
- Socio-economic characteristics 
 
These three aspects have been extracted by principal component analysis from 
the SARTRE 3 questionnaire data and can shortly be described as follows: 
 
Emotional driving covers a mix of driving habits and feelings when driving. 
Professional car use is a description of exposure characteristics. Emotional 
driving and professional car use are dimensions that are related to some extent. 
Socio-economic characteristics bring in another dimension, which is more or 
less independent from the other dimensions. 
 
Technology characteristics (benefits) 
- Assistance and guidance systems 
- Warning and intervention systems 
- Enforcement systems 
 
LISREL was used (software AMOS, v5.0) for data analysis. LISREL stands for 
linear structural relation. By analysing the covariance matrix, the tool allows for 
the estimation of the weights of paths for defined models. Goodness of fit 
characteristics show how well the model represents the data. 
 
The goal of this type of analysis was to aggregate data with confirmatory factor 
analysis from many questions of the survey to a few distinct latent dimensions 
on the driver and on the technology side. This leads to a reduction of effect 
parameters to a manageable size. The relations between the factors – called 
the structural equation model in LISREL terms – can then be interpreted as an 
underlying, inner structure between driver and technology characteristics. 

2.7.6. Model fit and diagnostics 
First, data from all available 23 countries was put together to find a general 
model that fits to all countries. In the next step, various goodness of fit statistics 
for every single country were computed. Due to the large number of missing 
cases in a few countries, an alternative model with extrapolated cases – 
computed by the standard AMOS 5 algorithm for missing cases - was used 
mainly for comparison purposes. 
 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  6 0  

In the end, the general model worked well for 19 countries with acceptable fit 
statistics. No models could be calculated for four countries, and their results are 
not considered in the following analysis. These countries were Belgium, Ireland, 
Portugal and Croatia. For the UK and the Czech Republic, we have chosen the 
alternate model with extrapolated missing cases due to their better goodness of 
fit statistics. 
 
It is proposed that there are clearly defined relations between the six 
characteristics (arrows, whose weights point out the influence between factors) 
– the three driver characteristics and the three technology characteristics – in 
the following graph (Figure 2.13), displayed as ellipsis.  
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Figure 2.13: Proposed relations between driver and technology characteristics and 
questions used for operationalisation of those characteristics (short description of 
abbreviations/questions in the next section). Small circles represent the error terms. 

 
These “true“ dimensions are operationalised - measured by items of the 
SARTRE 3 questionnaire. In the graph, a set of questions is displayed on the 
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left side; each question is presented by a box. These questions were used for 
measuring driver characteristics. The boxes on the right side are those that are 
used for distinguishing technology characteristics. 
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2.7.8. Model interpretation 

2.7.8.1. Measuring driver characteristics 

There were only a few items in the questionnaire that really helped to 
distinguish different characteristics of drivers. We have chosen the following 10 
items to identify the three proposed driver characteristics: 
 

 car usage (Q48: What applies most to you? I drive for my profession; I 
need to drive during my work; I drive to and from work) 

 private situation (Q43: Which of the following applies best to you at the 
moment? Single; Living under common law marriage; Married; Separated 
or divorced; Widowed) 

 How much do you agree with the following statements: 
 annoyed by other drivers (Q29a: I sometimes get very annoyed with 

other drivers) 
 enjoy driving fast (Q29b: I enjoy driving fast) 
 driving without a break (Q54: What is the longest period of time in hours 

you would spend driving without taking a break?) 
 exposure (In total about how many kilometres/miles have you driven in 

the last 12 months? in classes of 5,000 km) 
 engine size (Q50: About the car you usually drive, is it a car with engine 

size of...? in classes of 1,000 CC) 
 income (Q55: total annual income level per family unit) 
 vehicle age (Q53: How old is the vehicle you normally drive?) 

2.7.8.2. Measuring technology characteristics 

For distinguishing technology characteristics, we used the following items from 
the SARTRE 3 questionnaire: 

 manufacturers should modify their vehicles to restrict their maximum 
speed (Q28b) 

 Do you find it useful to have a device like: 
o navigation system (Q30a) 
o congestion warning system (Q30b) 
o system which prevented from exceeding the speed limit (Q30c) 
o alcometer (Q30d) 
o system which detected 'fatigue' (Q30e) 

 Are you in favour of: 
o speed limiting device (Q31a: Speed limiting devices fitted to cars that 

prevented drivers exceeding the speed limit) 
o black box to record...speeding (Q31c) 
o black box to identify...accident causes (Q31b) 
o electronic identification to give access to services (Q31d) 
o electronic identification for police enforcement (Q31e) 
o cameras for red light enforcement (Q34a) 
o speed cameras (Q34b) 
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The results for the measurement model of the driver characteristics (left side of 
Figure 2.13) and technology characteristics (right side of Figure 2.13) are 
collected in Table 2.17: 

 
The dimension assistance and guidance systems represents, with high weights, 
the support for navigation (0.7) and congestion warning with 0.8. But this 
dimension also represents systems that were previously classified in the 
technologies “that impose behaviours” - alcohol meter and fatigue warning (0.3) 
and speed limiting device and electronic services (0.2). 
 
The dimension Support for warning and intervention largely represents the 
previous classification of systems that impose behaviour. It represents the 
questions about the usefulness of speed limiting devices (0.7), alcohol meter 
(0.3), and fatigue warning (0.4). These variables are also considered in the 
dimension assistance and guidance systems. Furthermore, the answers are 
represented in the dimension if speed-limiting devices (0.9) are favoured, and if 
car manufacturers should modify their vehicles to restrict their maximum speed 
(0.5). 
 
Support for enforcement systems, the third dimension, corresponds with the 
previously used classification of enforcement systems. It represents the 
questions about black box to record drivers’ behaviour (0.7) or to identify what 
caused an accident (0.6), electronic identification to give access to services 
(0.4; also in dimension assistance and guidance) and electronic identification for 
enforcement by the police (0.7). Also, the questions about automated cameras 
for red light surveillance (0.4) and speed excess (0.6) have been taken into 
account. 
 
In the central, structural part of the model, all dimensions between the driver 
and the technology part are connected to each other. Due to technical, LISREL-
specific reasons, the driver characteristics relate to each other by covariance. 
While the covariance values between emotional driving and profession (0.1) and 
economic status (0.0) are low, the interrelation between profession and low 
economic status are weighted higher by -0.6. 
 
Compared to the outer parts of the model, which consist of factor weights from 
specific questions, dimensions behave almost stable over different countries. 
There is little variation in driver characteristics and even less variation in 
technology characteristics (see Table 1); much more variation could be found in 
the central part of the model. These findings were taken into consideration in 
the following part of this report, which takes the structure between drivers and 
technology as a starting point. 
 
Overall, the main results in the structural pattern for all technological systems 
are: 

o Low economic status drivers are most supportive, 
o Professional drivers are also supportive, though less so than the above 

group, and 
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o Emotional drivers do not support new technologies (except assistance 
and guidance systems). 

 

Driver Characteristics Mean Standard 
deviation 

Annoyed (q. 29 a) ← Emotional Driving -0,2 0,2
Enjoy fast (q. 29b) ←Emotional Driving -0,5 0,2
Priv. Situation (q. 43) ←Emotional Driving -0,3 0,1
Without break (q. 54) ← Emotional Driving 0,2 0,1
Without break (q. 54) ← Profession 0,3 0,1
Exposure (kilom_cl) ← Profession 0,7 0,1
Enjoy fast (q. 29b) ←Profession -0,2 0,2
Car usage (q. 48) ← Profession -0,6 0,2
Engine Size (q. 50) ← Profession 0,3 0,3
Engine Size (q. 50) ← Low economic status -0,2 0,3
Income (q. 55) ← Low economic status -0,4 0,1
Vehicle age (q. 53_cl) ← Low economic status 0,2 0,1

  

Technology Characteristics Mean Standard 
deviation 

Navigation (q. 30 a) ← Assistance & guidance -0,7 0,1
Traffic Jam Warning (q. 30b) ← Assistance & guidance -0,8 0,0
Speed delimiter (q. 30c) ← Assistance & guidance -0,2 0,1
Alcohol meter (q. 30d) ← Assistance & guidance -0,3 0,1
Fatigue (q. 30e) ← Assistance & guidance -0,3 0,1
Electronic services (q. 31d) ← Assistance & guidance -0,2 0,1
Speed delimiter (q. 30c) ← 
Warning & Intervention -0,7 0,1

Alcohol meter (q. 30d) ← Warning & Intervention -0,3 0,1
Fatigue (q. 30e) ← Warning & Intervention -0,4 0,1
Speed lim. device (q. 31a) ← Warning & Intervention -0,9 0,0
Manufact. Modify (q. 28b) ← Warning & Intervention -0,5 0,2
Black box to record (q. 31c) ← Enforcement -0,7 0,0
Electronic services (q. 31d) ← Enforcement -0,4 0,1
Electronic services for police (q. 31e) ← Enforcement -0,7 0,1
Autom. cams. F. red lights (q. 34a) ← Enforcement -0,4 0,1
Surveill. f. autom. Cams (q 34b) ← Enforcement -0,6 0,1
Black box to identify (q. 31b) ← Enforcement -0,6 0,1

  

Table 2.17: Mean factor loadings and standard deviations for the general model. For 
technology characteristics, high negative values indicate higher support. For driver 
characteristics, high negative values, i.e. q29a,b, indicate more emotional driving, 
higher positive values in exposure more profession. 

 
Driver characteristics derived from various variables by principal component 
analysis are interrelated in the following way: The covariance between low 
economic status and professional driving (mean -0.6 for general) is very high in 
Cyprus (0.8). Emotional driving and profession (mean 0.1) are highly 
interrelated in France, Spain and the UK. Low relations can be found in 
Germany and Slovakia. Low economic status and emotional driving do not show 
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any coherence in the general model (0.0). Above-mean values can be found in 
Greece, the Netherlands and Finland. Poland and the UK have below mean 
values. 
 
If we take a closer look at similarities in driver characteristics between countries, 
emotional drivers show, in general, similar patterns in France and Spain (Table 
2.18). Neither supports any new technology. In contrast, the support of new 
technologies from Polish and Slovakian emotional drivers lies clearly above the 
average, whose support is even at the highest level. 
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enforcement  <---  low economic status – + + – – + + 1,0
warning & intervention  <---  low economic status – + – + – + 1,0
assistance  <---  low economic status – – + + + + 0,8
enforcement  <---  profession – – + + – – – – + + + + 0,7
warning & intervention  <---  profession – – – – + + 0,6
assistance  <---  profession – – + + + + – – 0,6
enforcement  <---  emotional driving – – + + + + – – – – -0,5
warning & intervention  <---  emotional driving + + – – – – + + + + – – -0,6
assistance  <---  emotional driving – – – – + + + + – – + + 0,2
goodness of fit (chi-square/df) 3,19 4,02 3,93 2,63 4,85 3,13 2,60 3,67 3,41 2,15 3,13 3,66 3,06 3,71 3,53 4,14 2,78 3,37 3,96  
Table 2.18: Weight differences in the structural part of the model for 19 countries in 
comparison to the general model. The ‘+’ symbol stands for higher support, ‘-’ for lower 
support, where a difference in standard deviation can be found. If standard deviation is 
higher than 0.5, ‘++’ and ‘- -’ are used instead. The highest values are marked in 
orange; the lowest values are marked in blue. Means of weights for the general model 
can be found in the last column on the right hand side, goodness of fit statistics in the 
bottom row. 

 
Another distinct pattern can be found for drivers characterised by low economic 
status. In Finland and the UK, there is high support for warning and intervention 
systems as well as enforcement systems in this driver group. 
 
Cyprus and Germany often show similar patterns: The low economic status 
group and the professional drivers group do not support new technology 
systems. A possible explanation could be that Cypriot drivers’ scepticism 
concerning new technologies might be affected by the fact that these 
technologies are not easily affordable in their country. In contrast, German 
drivers’ expectations might have been scaled down due to experience. There 
are, however, many differences in driver characteristics in both countries, hence 
these results do not support the “saturation effect” hypothesis. To conclude, 
because the differences regarding driver mentalities between these two 
countries seem to be very decisive, the experience effect cannot easily be 
separated. 
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Nevertheless, there are still some arguments for the “saturation by experience 
effect”. Many traffic experts see Germany as a prime example for the spread of 
traffic-related new technologies. German drivers have similar characteristics to 
the general model and they show the highest saturation effect. Cypriot driver 
characteristics show that prestige plays an important role. Furthermore, the 
strong support from the low economic status group reinforces the saturation 
hypothesis: The less affordable these systems are, the higher expectations are. 

2.7.9. Conclusion 
Structural equation modelling offers one of the most complex data analyses in 
multivariate research methods. It connects confirmatory factor analysis with 
linear regression, creating a latent structure of the analysis. Hypothetical 
constructs are taken as latent variables in this approach. 
 
On one hand, this chapter shows the basic form of such models in the multilevel 
case, dealing mainly with assumptions on data. On the other hand, this chapter 
discusses the necessary theoretical concepts of these models. 
 
Analysis with structural equation models places high requirements on data. The 
requirements depend on the selected method of estimation of the unknown 
parameters. Assumptions can be divided into general conditions and statistical 
conditions. General assumptions consist of: the relationships between the 
variables is linear, the effects of explanations on dependant variables is 
additive, the relationship between the variables is stochastic. The most 
important statistical assumptions are: the variables have to be measured 
continuous and are interval-scaled, and they can be represented by the mean, 
variance and covariance which is known as a multivariate normal distribution. 
 
At first these models seem ideal to use with a large variety of data but in 
practice they turn out to be difficult to model. One is generally successful if data 
collection is carried out with a theoretically-based structural equation model 
already in mind. These models are not appropriate for use with exploratory 
approaches. 
 
In conclusion, a short summary of the application of structural equation models 
is introduced using the relationship of driver characteristics and their 
acceptance of new technologies in traffic. 
 
For this analysis we have used a LISREL model, which led to an acceptable fit 
for 19 countries. With this method, it was possible to carry out a detailed 
analysis about support for different characteristics of new technologies in 
relation to different driver characteristics. 
 
Drivers were characterised by dimensions of “emotional driving”, “professional 
driving” and drivers with “low economic status”. For new technologies, the 
dimensions were distinguished between for “assistance/guidance systems”, 
“warning/intervention systems” and “enforcement systems”. 
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Three main results in driver characteristics can be seen regarding support of 
new technologies: 

• Low economic status drivers are most supportive of all new technologies, 
with their highest support for warning and interventions systems, as well 
as for enforcement systems. 

• Professional drivers are also supportive, although in general they are 
less supportive than the low economic status group. This group shows 
the highest support for enforcement systems and slightly lower support 
for assistance/guidance and warning/intervention systems. 

• Emotional drivers do not support new technologies (except moderate 
support for assistance/guidance systems). 

2.8.  Miscellaneous  
- To be completed – 
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3. Time series models 

3.1.  Introduction to time series models (R. Bergel, INRETS) 
In this section, types of models are addressed : the different types of models 
which are usually distinguished, when one aims to formulate the evolution over 
time of a theoretical stochastic4  process )( tY , for t being 1,2,3…., given a 
sample of observations )..,,( ,21 nyyyY = .  
The models addressed are the models proposed for the theoretical stochastic 
process )( tY .    
 
Two main kinds of models are usually distinguished : the descriptive models 
on the one hand - models for which the only exogenous variable used is time, 
which is then not considered as an explanatory  variable - , and the 
explanatory models on the other hand - models  which do use exogenous, or 
explanatory, variables (see Table 3.1 - Types of models). 

3.1.1. Descriptive models 
Descriptive models take account for the trend/seasonal/irregular decomposition 
of the variable tY . Here again, two main kinds of models are considered :  
decomposition models on the one hand, which adjust for each of the 
components, and AR, ARMA and more generally ARIMA models on the other 
hand, which adjust for the irregular component, after it has been filtered for the 
trend and the seasonal. 

3.1.1.1. Decomposition models 

Descriptive decomposition models can generally be written as  
 

),,(),( ttttt uSTfutfY ==   (3.1) 
 
The process is a function of time t, and of a random disturbance tu . The non-
observed components of the process appear, rather naturally : the long term 
tendency tT  , the seasonal component tS , and a random residual component 

tu .  
 
In the case of an additive decomposition, we shall write : 
 

tttt uSTY ++= ,  (3.2) 
 

                                            
4 The process )( tY  is stochastic, or random, in the sense that the values taken by tY  are under 
measurement errors. 
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with :   tT  the trend of the process tY ,  

tS the seasonal, periodic, component, 
and tu the random, centred, component, assumed to be 
stationary5 and qualified as irregular.  

 
The trend is often thought as a function of certain variables, which determine it, 
although these variables can not  always be quantified easily. But the trend can 
also be considered as a random walk (Harvey, 1989). The same remarks apply 
to the seasonal component. As can be seen, the structural modelling proposed 
by Harvey is another form of the preceding decomposition, in which the trend 
and the seasonal component are both random. 

3.1.1.2. Autoregressive, ARMA and ARIMA models 

The descriptive autoregressive, ARMA and ARIMA models can generally be 
written as 
 
  ..),..,,( ,1,.21 --- ttttt uuYYfY =   (3.3) 
 
In the particular case where tY  is stationary, an autoregressive or AR model is 
used, to express that  tY  is a function of its past values, and of a disrturbance 

tu . The fact of knowing the dynamics of the process enables to extrapolate it, 
assuming that the dynamic’s structure will stay unchanged in the future, at least 
at the forecast’s horizon.  The reference to the near past makes the model 
adaptive. 
  
Different specifications, which are equivalent, can be chosen to model the same 
process tY  . An autoregressive and moving average, or ARMA, specification for 

tY  is often preferred, because of the advantage of it’s smaller number of 
parameters.  In that case, tY  is a function of its past values (this number of past 
values being now smaller), of a disturbance tu and of the past values of the 
disturbance.  
 
In the general case where tY is not stationary, it is convenient to assume that 
another stationary process exists, which is derived from tY  by removing its 
trend and its seasonal component, using a filter of differences. 

3.1.2. Explanatory models 
The explanatory time series models can be written as 
 

),( ttt uZfY =   (3.4) 
 

                                            
5  its mean, variance and covariance structure are constant over time (see a precise definition in 
section ..). 
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where tY , the endogenous variable,  is a function of the exogenous or 
explanatory6 variable Zt , and of the disturbance tu . 
 
Explanatory models can be seen as descriptive models to which exogenous 
variables have been added, and thus can also been classified as either 
decomposition models with explanatory variables, or ARIMA models with 
explanatory variables. 
 
We shall now address these two kinds of models. 

3.1.2.1. Decomposition models with explanatory variables  

The decomposition models with explanatory variables can generally be written 
as  
 

),,()( ttttt uSTfZgY +=   (3.5) 
 

The common example is the regression model, of the dependent variable - or 
endogenous variable - on explanatory variables - or exogenous variables. The 
exogenous variables can be explanatory of the trend, of the seasonal 
component, or of the residual. For instance, in the case of periodic data, the 
regression model will contain dummy variables in order to model the season 
(the day, the month, the quartermonth, ..)  
 
Harvey’s structural model with explanatory  - and intervention - variables is a 
kind of stochastic decomposition model more general than the basic structural 
model, mentioned before.   

3.1.2.2. ARIMA models with explanatory variables  

The ARIMA models with explanatory variables can generally be written as  
 

..),,..,,()( ,121 --- - ttttttt uuYCYCfZgYYC ==   (3.6) 
 
Let’s recall that ARIMA modelling consists of the estimation of the irregular 
component of a process, after the trend and the seasonal component have 
been filtered - this preliminary having thus stationarised the initial process.  
 
ARIMA models with explanatory variables can also be seen as regression 
models with ARIMA residuals, the two formulations being equivalent. But it is 
important to determine whether the exogenous variables do have an effect on Y 
or on the variations of Y, after the trend and the seasonal component have been 
filtered. 

                                            
6 Exogenous or explanatory because used in a model explanatory of the endogenous 
process tY  
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3.1.3. Model classes 
Different classes of models are usually considered. Let’s note that the fact that a 
model belongs to one of these classes, or to one of the categories listed before, 
is not exclusive. 
 
In the Safetynet project, the following classes will be considered : 
 

- The classical regression models - linear and non-linear, 
- The ARMA or ARMA - type models, 
- The state-space models, which are decomposition models with 

stochastic components. 
 

Descriptive models Explanatory models 
Decomposition models Decomposition models with explanatory 

variables 
),,( tttt uSTfY =  ),,()( tttttt uSTfZgYYC == -  

  
Autoregressive models Autoregressive models with explanatory 

variables 
)..,,( ,.21 tttt uYYfY --=  ),..,,()( 21 tttttt uYCYCfZgYYC −== --  

  
Autoregressive and moving average 
models 

Autoregressive and moving average models 
with explanatory variables 

..),..,,( ,1,.21 --- ttttt uuYYfY =  ..),,..,,()( ,121 −−== ttttttt uuYCYCfZgYYC --
  
and, as extensions :  
  
AR(I)MA models AR(I)MAX models 
Table 3.1: Types of models.  
 

3.1.4. Variables and data  
The data which are strictly necessary for estimating a time series model have to 
be periodic, and numerous enough.  
 
We have to distinguish: 
 

- the observations of the endogenous stochastic process, i.e. the 
sample of data )..,,( ,21 nyyyY =  

- the values taken by  k exogenous variables itZ , i=1 à k, assumed to 
be known. 

 
It is natural to distinguish several kinds of exogenous variables, depending on 
whether they affect the trend, the seasonal component, or the irregular 
component of the process tY . 
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Moreover, their effect can be local – over time - , or permanent. It seems quite 
natural, again, to distinguish the dummy variables, which are built (outside the 
model)  as witnesses of a local, isolated or repeated, effect, and the variables of 
measure of a phenomena, assumed to be linked with the process tY , and which 
have a permanent effect.  
 
As an example, climate and calendar variables can be used for modelling the 
seasonal component, or the residual; the variables used to model the trend are 
of a different nature, insofar as one can expect their effect to extend over time. 
 

3.2. Time series analysis in road safety research (R. Bergel, 
INRETS) 

3.2.1. The methodological framework 
In this section, we recall the methodological framework which enables us to 
quantify the influence of the different factors related to the transport system, to 
mobility, and to road safety’s economy on road risk (Lassarre, 1994).  
We address aggregate time series - on an annual, monthly or daily basis.  The 
dependent variables are in all cases aggregated at a territory’s or at a network’s 
level, or aggregated according to a typology of injury accidents or victims.  

3.2.1.1. The diagram of production of the risk 

Risk analysis is based on the exposure/accident/victim triad. 
 
We have to distinguish between : 

- Two types of road risk : the accident’s risk, and the risk of being a 
victim (killed, seriously injured, lightly injured)in an accident,  

- And three levels of risk: risk exposure, accident’s risk, and accident’s 
gravity. 

 
Within that diagram, risk indicators and risk factors are defined at each of these 
three levels.  

3.2.1.2. Risk indicators 

The usual measure of risk exposure is an indicator which measures the traffic 
volume : the mileage, measured in number of vehicle kilometres driven on a 
road network.  
 
The accident rate (number of injury accidents in a billion of vehicle kilometres) 
is usually retained to measure the accident’s risk on a network; but, in order to 
overcome the hypothesis that the number of accidents would be proportional to 
the traffic volume, an absolute number of accidents is also retained, but is 
then considered as depending on a non-linear function of mileage7.  
                                            
7 The same remark applies to the risk of being killed (or fatality rate, i.e. the number of fatalities 
in a billion of vehicle-kilometres).  
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Finally, the indicators that measure accident’s gravity are the fatality rate, i.e. 
the number of victims (fatalities, seriously injured, lightly injured) by accident; 
one may prefer to measure directly the absolute number of victims, but it will 
then be considered as depending on the number of accidents, or directly on the 
traffic. 
  
It may be noted, at that stage, that the absolute numbers of accidents and 
victims are also considered as accident’s risk and accident’s gravity indicators. 

3.2.1.3. Risk factors 

Risk factors are classified in internal (to the transport system) factors on the 
one hand, related to the vehicle, to the driver and to infrastructure; and in 
external factors on the other hand, representing the environment, and related 
to the climatic, economic, demographic and state systems (Gaudry, Lassarre, 
2000). 

3.2.2. Towards an explanatory approach 
Since the beginning of the 1980’s, time series analysis in the road safety field is 
directed at taking into account of all explanatory factors of accidents frequency 
and gravity, and at assessing road safety measures (Hakim and al., 1990). 
Descriptive models have been followed by explanatory models - models with 
explanatory variables - , built on the basis of a rich economic formulation, with 
an elaborate econometric specification. 
  
By examining the numerous models proposed for aggregate accident data of 
European countries, it appears that the approaches differ on the necessity of 
taking account for an important number of explanatory factors, and on the 
nature of the models that should preferably be used.  The examples given now 
illustrate these different approaches. 

3.2.3. Applications 

3.2.3.1. Deterministic versus stochastic  

The purely descriptive models (without any explanatory variable, except for 
time) have mainly been used to model a road safety indicator: the fatality rate.  
The objective of these decomposition models was to adjust the trend as a 
function of time. The trend/residual decomposition retained on an annual basis 
is extended to a trend/seasonal/residual decomposition on a monthly basis. The 
trend, and the seasonal component as well, is deterministic or stochastic.  
 
Thus, on annual data, an example of a deterministic model is provided by Oppe 
(1993), who proposes an exponential decreasing trend for the fatality rate 

tR (the number of fatalities per billion of vehicle-kilometre) : 
 
   )exp( βα += tRt  
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with :  
t

t
t V

F
R = ,  

 tF  the number of fatalities,   (3.7) 
 and tV the traffic volume. 
 
This form proposed for the trend of the fatality rate tR has been enlarged 
afterwards, and a transformation on the traffic variable was retained, to account 
for the non- proportionality of the number of fatalities to the traffic volume, the 
additional parameterη  representing  the elasticity of the number of fatalities with 
respect to  traffic: 
 

  )exp( t
t

t m
V
F

=η   (3.8) 

 
A stochastic form has then been proposed by Lassarre (1997) for the temporal 
function tm  , which becomes locally linear, that is to say by supplementing the 
basic structural model formulation : 
 
 

  

ttt

tttt

tttt

bb
bmm

mLogVLogF

ξ
η

εη

+=

++=

++=

1

11 -   (3.9) 

 
with b  the slope of the trendm , 

ε , η , ζ  white noises of variances 2
εσ  , 2

ησ and 2
ζσ , mutually non-

correlated. 
 
In the case of monthly data, a seasonal component is added, which can also be 
deterministic or stochastic. In fact, due to the larger number of data available on 
a monthly basis , additional parameters can be estimated - i.e. additional 
exogenous variables can be used - we shall discuss this now. 
 
As has just been seen, a model descriptive of the fatality rate may be 
considered as a model explanatory of the absolute number of fatalities, with as 
single explanatory variable the traffic volume. This kind of explanatory model 
with a single exogenous variable has been enriched with additional variables, 
more or less numerous.  In fact, the real explanatory models take account for a 
larger number of risk factors. We shall now give examples of such models. 
 
It may be noted that the same formulation proposed for modelling the number of 
fatalities can also be used for modelling the number of accidents, as a function 
of the traffic volume and of additional variables.  



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  7 5  

 

3.2.3.2.  Regression versus ARIMA  

As an example of a decomposition model with a deterministic trend and with 
explanatory variables, we shall mention Scott (1986) who uses an ARIMA 
structure for modelling the monthly number of accidents in the United Kingdom 
from 1970 to 1978, after having first regressed the data on exogenous variables 
measuring the traffic volume, the petrol price, temperature, rainfall height and 
the number of working days (in fact a regression with an ARIMA residual) ; he 
then demonstrates that the ARIMA structure on the residuals of the regression 
can be omitted, subject taking account for the trend and the seasonal 
component,  in the form of a time variable and of seasonal dummies, in the 
regression equation.: 
 

tttjt
j

jititt uXLogXSbtaACC +++++++= ∑∑ 221log ωλλωββ
 (3.10) 

with:  bta + the trend, 
tS  the seasonal, modelled with 11 dummy variables, 

2,1, =iX i  :  the traffic volume for two kinds of vehicles and the petrol 
price,  

3,2,1, =jX j  : the two climate variables and the number of working days,  

t1ω  and t21ω two dummies indicating the oil crisis of 1974 and the speed 
limitation in rural areas. 

3.2.3.3. State space models    

Harvey’s structural model with explanatory  - and intervention - variables (1986) 
is a type of stochastic decomposition model more general than the basic 
structural model, mentioned before. Used on KSI data in Great Britain, it 
included two explanatory variables itx  (the petrol price and the number of travel 
kilometres) which have an effect on the trend of ty , as well as the dummy 
variable ωt=1t≥τ  which is used to assess the effect tλω  of the seat belt law. 
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  (3.11) 

 
with :  ε , η , ζ  et jtω white noises of variances 2

εσ  , 2
ησ , 2

ζσ and 2
ωσ , mutually 

uncorrelated. 
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In an equivalent way but on annual data, the largest formulation proposed by 
Lassare (2001) for the local linear trend model incorporates intervention dummy 
variables itω , jtω  and ktω  , which may modify the irregular component, the level 
or the slope of  the trend of the number of fatalities : 
 

   

t
k

ktktt

t
j

jtjttt

t
i

itittt

bb

bmm

mLogVLogF

ξωλ

ηωλ

εωλη

∑

∑

∑

++=

+++=

+++=

−

−−

1

11   (3.12) 

 
Applied to aggregate data of several European countries, this formulation 
allowed to asses the effect of the main road safety measures. For France, the 
main measures taken in 1973 - the speed limitation and the seat belt wearing 
obligation - caused a significant drop of 17% from 1973 onwards, in the fatality 
rate. A drop of 9,3% in 1978 is caused by the introduction of random alcohol 
tests on the road.  

3.2.3.4. ARIMA models  

ARIMA models with explanatory variables are very often used on monthly data 
in the road safety field, in order to assess the effect of road safety measures. 
They generally take account for recognised exogenous effects such as the 
effect of risk exposure, the climate influence with the help of one or two 
meteorological variables, and the calendar configuration influence. Transfer 
functions are used in the case the explanatory variables are stochastic, and 
intervention variables for assessing road safety measures. 
 
As examples we shall mention the models proposed for aggregate data in Spain 
and France.  
Two variables of oil sales (gasoline and diesel) in the place of traffic, the 
number of week-end days in the month WEND and another intervention variable 
taking account for a great number of road safety measures gradually enforced 
from june1992 off 92/6LS , are used for modelling the number of injury accidents 
in Spain from January 1982 to December 1996 (Rebollo, Rivelott, Inglada Lopez 
de Sabando, 2004):  
 

  

tt

tttit
i

it

BBN
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+++= ∑
  (3.13) 

 
The same econometric specification was used for modelling the aggregate 
numbers of injury accidents and fatalities in France. The models take account 
for the mileage and the speed, but they mainly allow for assessing the safety 
measures enforced during the period. It’s the case of the fist speed limitation of 
1973, of the oil crisis of 1974, of the legislation of 1978 introducing random 
alcohol tests on the road  (Lassarre, Tan, 1981, 1982, 1989).  
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Other models of the same type were also proposed for modelling the number of 
injury accidents and fatalities on the main network categories in France : A-level 
roads and motorways, secondary roads and urban roads, with the help of 
dummy variables for taking account of the calendar configuration as well 
(Bergel, Vizatelle, 1990). 

3.2.3.5. Non linear models 

As can be seen, non-linear models have often been transformed into linear 
models, by applying a log-transformation to some of the variables, whether 
dependent or independant ; this renders the model estimation easier.  
 
The multiplicative relationship between exposure and casualties, and between 
exposure and fatalities, is generally accepted. It is worth recalling here, as an 
example, that the first agregate model at a country’s level, proposed by 
Smeed(1949), relate the number of road injuries to the number of motorised 
vehicles and to the corresponding population (i.e. D, M and P respectively) in a 
multiplicative manner : 
 

     3
1

2 )(MPcD =   (3.14) 
   
Other transformations may also be chosen, preferably to the Log-
transformation, and applied to the observed data. Let’s mention the three-level 
explanatory model constructed on a monthly basis, the DRAG-model (Demand 
for Road use, Accidents and their Gravity) proposed by Gaudry(1984), which 
relies on a multiple regression structure with autocorrelated and heteroscedastic 
errors, and takes account for a type of non-linearity. The fact that numerous 
explanatory variables are introduced allows the trend and the seasonal 
component to be modelled, which thus do not need to be filtered. The use of the 
Box-Cox transformation allows a more flexible form (linear form, logarithmic 
form or a compromise) of the link between the endogenous variable and each of 
the exogenous variables. 
 
The generic model is written the following way, in which the λ=(λY, λX1, …, λXk) 
Box-Cox parameter is estimated simultaneously with the other parameters : 
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with the Box-Cox transformation defined as a power transformation, of 
parameter λ , on any positive real variable tV  by  : 
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3.2.4. Conclusion 
As we have seen, different kinds and different classes of time series models 
have been selected for modelling aggregate risk indicators, at a country’s level 
in Europe. The main difference between the models is the use of many versus 
few explanatory variables, but an important feature is their nature, whether 
deterministic or stochastic. 

3.3. Classical linear and non-linear regression models 

3.3.1. Classical linear regression models (C. Brandstaetter & M. Gatscha, 
KUSS) 

3.3.1.1. Research problem 

In the field of social science, no other statistical procedure has offered so many 
impulses as the procedures of analysing correlations. The knowledge of a 
correlation between two variables is an essential pre-condition in order to draw 
conclusions by predicting one variable through another. 

3.3.1.2. Model objectives 

Time series data are often used in conjunction with linear regression techniques 
in terms of predicting statistical trends. In time series analysis, the independent 
variable x is given as time. The equation of a straight line is used to calculate 
the trend that the dependent variable y adheres to as time passes: 
 
y = bx + a  (3.17) 

 
where y represents the dependent variable, x is the independent variable, b 
describes the gradient of the straight line and a the altitude in geometrical 
terms. The gradient b of a straight line can be positive or negative. If the 
gradient is positive, the y-values increase with increasing x-values. In the case 
that b is negative, y-values decrease with increasing x-values. 
When time is used as the independent variable, a number of complications that 
are introduced to the regression method are expected. The most important 
complication is caused by the time dependencies between the values of y. But 
there is also an influence affected by the units that are used to measure time. 
For example, if annual data are used, it will be impossible to identify the 
seasonal factors that may well influence the data. So, when looking at data with 
regard to accidents, one would probably want to view quarterly figures rather 
than merely annual data, as one would expect there to be an increase in 
accidents e.g. in the summer quarter when analysing motorcycle accidents. 
However, in order to identify a trend value of the time series data that is 
analysed, a linear regression line can be drawn by using averages over periods 
of time to smooth out fluctuations and, as a result, show the general trend. 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  7 9  

3.3.1.3. Dataset 

The dataset used to demonstrate linear regression is derived from accident data 
from Austria. In this example, the distribution and development of people who 
were killed in accidents based on monthly observations is shown in Figure 3.1. 
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Figure 3.1: Scatterplot of accident statistics (number of fatalities) from 1987 to 2004 

 

3.3.1.4. Model definition 

The most basic relationship between two or more interval-scaled variables is 
explained by the following equation to determine the regression: 
 
    iippii exbxbby ++++= ...110   (3.18) 
 
where  
yi is the i th value of the dependent scale variable 
p is the number of predictors 
bj is the number of the jth coefficient, j=0,…,p 
xi is the value of  the ith case of the j th predictor 
ei is the error in the observed value for the ith case 
 
For visualization reasons in the following text, the equation can be simplified like 
the first mentioned term: 
 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  8 0  

y = bx +a  (3.19) 
 

If one has obtained n pairs of observations xi, yi (i =1, . . ., n), it is possible to 
illustrate these observations by means of a scatterplot (see Figure 3.2). 
Graphically, the principle of a linear regression is to construct a straight line in a 
two-dimensional system of coordinates such that all data points within the 
system of coordinates lie as near as possible to this line, as measured in the 
direction parallel to the y-axis: 
 

 

 
 

Figure 3.2: Scatterplot with regression line 

 

In Figure 3.2, yi is the observed value and ŷi is the predicted value. As a 
consequence, the general term (yi –ŷi) describes the size of the “prediction 
mistake”. One could assume now, that the regression line with the best fit to 
describe the data is characterized through the minimization of the sum of (yi –
ŷi). But it is also possible that this sum is a negative value, therefore it can also 
be assumed that many regression lines exist where the sum of the differences 
(yi –ŷi) is zero. Hence, the best criterion for the fit of a regression line is not the 
sum of the differences, but the sum of squared differences, or in other words the 
minimized sum of squared distances between the individual observation points 
and the regression line measured in the direction parallel to the y-axis: 
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using (bxi + a) instead of ŷi, the equation looks like: 

    min)]²([
1

=+−

=
∑ abxy ii

n

i
  (3.20b) 

 
With that criterion in mind, it is possible to generate n values to draw the 
regression line, but one has to hope that the calculated values are as small as 
possible. It is also possible that another regression line, based on squared 
differences, describes the observed values even better. For this reason, 
variables a and b are defined by a differential equation, f(a,b) partially 
differentiated with respect to a and b. Solving this equation yields to the 
following explicit solution for a and b: 
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In the equations mentioned above, n is the number of data points in the time 
series, i.e. the number of months. That is to say, y-values exist only for the 
natural numbers ( i = 1, …, n) on the x-axis. Thus, the regression line of the time 
series arises through the connection of all points yi (for i = 1, …, n). 
If a and b are calculated through these equations, the result is a regression line 
for which the sum of squared differences is really minimized. This estimation 
procedure is called ordinary least squares, or OLS, and is one of the basic 
concepts of linear regression. The Gauss-Markov Theorem shows that: 

 b is an unbiased estimate of the regression coefficient β, which means 
that on repeated estimates, the distribution of b will be centred around β. 

 The sampling distribution of b will be normal if the samples are large and 
a sufficient number of samples are taken. 

 OLS provides the best linear unbiased estimate of β (BLUE). 
 “Best” means: OLS provides the most unbiased and efficient estimate of 

β. Efficiency refers to the size of the standard error of b (σb));  
 
Most commonly, regression is used to predict the value of one variable from the 
value of another, when the two are related. Therefore, one variable is normally 
defined as a predictor, whereas the other is determined by a criterion. This 
categorization is quite equal with the definition of a dependent and independent 
variable, although the latter relationship characterises a narrower, causal 
relationship. 
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3.3.1.5. Model assumptions 

In order to fit a simple linear regression model to a set of data, one has to find 
estimators for the unknown parameters a and b, which are expected to have a 
linear relationship of the line y = bx + a. Since the sampling distributions of 
these estimators will depend on the probability distribution of the random error 
e, it is necessary to make several specific assumptions about its properties. The 
mean of the probability distribution of the random error is 0. That is, the average 
of the errors over an infinitely long series of experiments is 0 for each setting of 
the independent variable x. This assumption implies that the mean value of y for 
a given value of x is y = bx + a. 
For estimated linear regression following the OLS procedure shown above, we 
have four basic assumptions about the prediction error ε. Corresponding to the 
above-mentioned Gauss-Markov Theorem, they are called Gauss-Markov 
assumptions: 

1. The prediction error ε is uncorrelated with x, the independence 
assumption. 
 

2. The variance of the error term is constant across cases (x) and 
independent of the variables in the model. This is called 
homoscedasticity, or homogeneity of the variance of ε,. An error term 
with non-constant variance is said to be heteroscedastic.  
 

3. The value for the error term associated with any different observations 
is independent. The error associated with one value of y has no effect 
on the errors associated with other values. This means that all 
autocorrelations of the errors are near 0. 
 

4. The random errors are distributed normally. 
 
As mentioned earlier, when it comes to analysing time series with regard to 
accident data, one can suppose that at least one of the listed assumptions is 
often violated in practice, e.g. normal distribution of accidents. 
 
The first assumption was the independence of the prediction errors and x. We 
can find three different possibilities of problems: 

 Spurious relationship: ε and x may be correlated because z is a common 
cause of x and y. In this case b is a biased estimate of the regression 
coefficient β. 

 Collinear Relationship: If x2 is correlated with x1 and y, but is not the 
cause of either, b1 will be a biased estimate of β1. 

 Intervening Relationship: x2 intervenes in the relationship between x1 and 
y. In this case b1 will not be a biased estimate of β, but it will reflect both 
the direct and indirect effects of x1 on y. 

 
The second assumption is the homoscedasticity of the residuals. Here we can 
find 4 different conditions; the lines represent the pattern of the dispersion of the 
residuals. In all three conditions with heteroscedasticity, b will be an unbiased 
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estimate of β, but SEb (SE is standard error) will be inefficient - too large or too 
small. This yields wrong significance tests because t=(b/SEb). 
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Figure 3.3: Distribution of the residuals and violations of the homoscedasticity 
assumption 
 
In the case of Heteroscedasticity (+), SEb is underestimated and a type I error 
may occur. In the case of Heteroscedasticity (-), in contrast, SEb is 
overestimated and a type II error may occur. 
White (White,  1980) has published a direct test for heteroscedasticity: 
χ2 = R2n, 
where n is the number of cases, R2 is the squared multiple correlation 
coefficient for the regression of the squared residuals on x, and df is the number 
of independent variables. The null hypothesis is that the residuals are 
homoscedastic. Another widely used test for homoscedasticity is given by the 
following test statistic: 
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Where h is some time point in the series cutting the series in two parts: one 
before and one after time point h. This statistic can be tested against an F-
distribution with df=h,h. 
 
The third assumption of non-autocorrelated errors is most often violated in time 
series regression. Plotting the residuals of the classical regression analysis 
against time can confirm that the observations are not independent. Since these 
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residuals are assumed to be completely independent, they should be randomly 
distributed.  
A useful diagnostic tool for investigating the randomness of a time series is 
called the correlogram. The correlogram is a graph containing the correlations 
between an observed time series and the same time series shifted t time points 
into the future. Thus, the correlogram of the residuals ei consists of the 
correlation between ei and ei+1, the correlation between ei and ei+2, the 
correlation between ei and ei+3 and so on. Using a more general notation, the 
correlogram contains the correlations between ei and ei+k, for k = 1, 2, 3, etc. 
Since k equals the distance the observations are set apart in time, it is called 
the lag. Moreover, since the correlations are computed between a variable and 
itself (albeit shifted in time), they are called autocorrelations. 
When the first order residual autocorrelation (i.e., the residual autocorrelation for 
lag 1) is positive and significantly deviates from zero, a positive residual tends to 
be followed by one or more further negative residuals. As pointed out in the 
literature (see Ostrom, 1990, and Belle, 2002), the error variance for standard 
statistical tests is seriously underestimated in this case. This in turn leads to a 
large overestimation of the F or r-ratio, and therefore overly optimistic 
conclusions from the analysis. 
On the other hand, when the first order residual autocorrelation is negative and 
significantly deviates from zero, then a positive residual tends to be followed by 
a negative residual, and vice versa. In this case the error variance for the 
standard statistical tests is seriously overestimated, leading to a large 
underestimation of the F or r-ratio, and therefore overly pessimistic conclusions. 
 
The Ljung-Box (G. M. Ljung and G. E. P. Box, 1978) test is based on the 
autocorrelation plot. However, instead of testing randomness at each distinct 
lag, it tests the "overall" randomness based on a number of lags. More formally, 
the Ljung-Box test can be defined as follows. The test statistic is   

    ∑
= −

+=
h

j
LB

jn
jnnQ

1

2 )()2( ρ   (3.22) 

with H0 that the data is random, n is the sample size, ρ(j) is the autocorrelation 
at lag j, and h is the number of lags being tested. The hypothesis of 
randomness is rejected if  
     χ α

2

;1 h
LBQ

−
>   (3.23) 

where χ2 is the percent point function of the chi-square distribution. 
 
For testing the last assumption about normality, most statistical packages 
provide both estimates of skewness and kurtosis and standard errors for those 
estimates.  One can divide the estimate by it’s standard error to obtain a z test 
of the null hypothesis that the parameter is zero (as would be expected in a 
normal distribution). There are other tests which are more powerful, for example 
the Kolmogorov-Smirnov statistic (for larger samples) or the Shapiro-Wilks 
statistic (for smaller samples). These have very high power, especially with 
large sample sizes, in which case the normality assumption may be less critical 
for the test statistic whose normality assumption is being questioned.  
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Table 3.2 shows a summary of the different assumption violations and their 
consequences. 
 
 
Assumption Violation 

 
Consequences 

 
Errors correlated with x 

 

 
Spurious relationship 
 

 
b biased estimate of β 

Collinear relationship 
 

b biased estimate of β 

Intervening relationship b unbiased estimate of β, 
but reflects both direct & indirect effects 

 
Heteroscedasticity 
(RXSe

2 ≠ 0.0) 

b unbiased, but not efficient; SEb too 
small/large; Type I or II error may result 

 
Autocorrelated errors 

b unbiased but not efficient; SEb too 
small/large; Type I or II error may result 

 
Errors non-normally distributed 

b may be unbiased if homescedasticity & 
independence assumptions meet & n is 
large; if n is small, t distribution may be 
biased 

Table 3.2: Assumption violations and their consequences 
 
It has to be mentioned that some assumptions are more important than others. 
In the case of linear regression in time series applications, the most important 
violation concerns the independence assumption. The second most important 
assumption is the homogeneity of the residuals. The least important assumption 
is that the residuals are normally distributed. 

3.3.1.6. Model fit and diagnostics 

The used dataset is based on accident data from Austria in order to show the 
relationship/development of fatal accidents all over the country from 1987 to 
2004 on a monthly observation basis. The model estimation of the example 
dataset was calculated with SPSS (www.spss.com).  
First, the ANOVA table test procedure tests the acceptability of the regression 
model. It shows that the unexplained variation (sum of squares, residual row) is 
higher than the explained variation (sum of squares, regression row). 
 
The significance value of the F statistic is less than 0.05, which means that the 
variation explained by the model is not due to chance. While the ANOVA table 
is a useful test of the model's ability to explain any variation in the dependent 
variable, it does not directly address the strength of this relationship. The next 
Table 3.4 shows the coefficients of the regression:  
 
The gradient of the regression line is negative, whereas the beta-coefficient (i.e. 
the coefficient of correlation) between x and y is –0.520. The gradient of the 
regression line is checked by a t-test, which is equal to the square root of the F-
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test in the ANOVA table mentioned before. The result suggests a highly 
significant decrease in the number of fatalities in Austria since 1987. 
 

Model Sum of 
Squares 

df Mean 
Squares 

F Significance 
test 

Residual 46129,86 1 46129,86 79,23 ,000a 

Regression 124600,50 214 582,25  

Total 170730,30 215  

Table 3.3: ANOVA table of sample dataset with time as predictor and the number of 
fatal accidents in Austria as dependent variable 

a. Predictors: (Constant), Time 

 
Model Non-standardized 

coefficients 
Standardized 
Coefficients 

T Significanc
e test 

 B Standard 
Error 

   

1 Constant 1259,42 130,56 9,65 ,000

 Time -8,91E-08 ,000 -,52 -8,90 ,000

Table 3.4 Coefficients table 

 
Finally, the model summary table reports the strength of the relationship 
between the independent and the dependent variable (Table 3.5):  
 
Model R R-square Adjusted R-

Square 
Standard Error of the 

Estimates 

1 ,52 ,27 ,27 24,13

Table 3.5: Model summary table 

 
R, the multiple correlation coefficient, is the linear correlation between the 
observed and model-predicted values of the dependent variable. Its value (0.52) 
indicates a moderate relationship. The R Square value the coefficient of 
determination is the squared value of the multiple correlation coefficient. It 
shows that 27 percent of the variation in the number of fatalities is explained by 
time.  
These results shown in the point above are only true if the basic conditions 
stated in the Gauss-Markov assumptions hold true. Based on the fact that 
linearity is only assured if the residual value (e=error) varies unsystematically, 
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one can check the validity of the model. All model checks are based on the 
assumption that the error term is independent of the variables (x, y). So, when 
checking the plot, it must not show any systematic relationships. If this is the 
case, the use of the linear regression is not justified due to non-linear 
relationships in the data.  
The histogram of the residuals reveals that the assumption of normality of the 
error term is justified (the standard Kolmogorov-Smirnov test yields a z-value of 
0.594, which indicates no significant deviation from the normal distribution): 
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Figure 3.4: Histogram and P-P Plot of standardized residuals (in other chapters also 
the Q-Q Plot is used) 

 
The shape of the histogram approximately follows the shape of the Gaussian 
curve; the P-P plotted residuals also follow the 45-degree line (Figure 3.4). 
Therefore, it can be concluded that the histogram is acceptably close to the 
normal curve. Again, the assumption of normal distribution of the example data 
is reasonable. 
Additionally, a (shortened) table of residual statistics (Table 3.6) shows the 
following:  
 
One can find the most important indices of the residuals in the row “Studentized 
Deleted Residuals”. In the example dataset, the maximum for this value is 
2.527; as a consequence there is no evidence for extremely high or low 
observation values. Furthermore, the values of “Cook's Distance” and “Centred 
Leverage Value” are also good checks for very influential values (Stevens, 
1996). As both are somewhat around zero, there is also no sign of outliers. 

Regression Standardized Residual

2,752,251,751,25,75,25-,25-,75-1,25-1,75-2,25-2,75-3,25

Dependent Variable: KILLED 

Frequency 

30

20

10

0
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 Minimum Maximum Mean Std. 

Deviation 
N 

Stud. 
Deleted 
Residual 

-3,191 2,527 -,001 1,006 216

Cook's 
Distance 

,000 ,097 ,004 ,008 216

Centred 
Leverage 
Value 

,000 ,046 ,005 ,006 216

Table 3.6: Table of selected residual statistics 

 
For testing the assumption of homoscedasticity, there are some heuristic ways 
by looking at different scatterplots (Figure 3.5). All plots in Figure 3.5 below 
show no indication of the presence of heteroscedasticity except the one in the 
lower left, in which slightly higher squared residuals in the early years are found. 
By using the previously introduced White’s test, we find a χ2 = 11.232 (R-
Square of the regression of the squared standardized residuals on the date 
variable is 0.052, the number of time points in the analysis are 216, df is 1) 
which is highly significant and shows the presence of heteroscedasticity in the 
data. Finally, we will look at the problem of autocorrelated errors, which is the 
most likely violation in time-series regression. This is also true in the data 
example used in this chapter, as shown in Figure 3.6. 
 
The two plots in Figure 3.6 below show very high dependencies of consecutive 
errors. Despite the fact that b will remain an unbiased estimate of β, the 
significance tests shown above in the outlined example are wrong. When the 
first order residual autocorrelation (i.e., the residual autocorrelation for lag 1) is 
positive and significantly deviates from zero, a positive residual tends to be 
followed by one or more further positive residuals, and a negative residual tends 
to be followed by one or more further negative residuals. The error variance for 
standard statistical tests is seriously underestimated in this case. This leads to 
an overestimation of the F or r-ratio, and therefore overly optimistic conclusions 
from the analysis. These results are not an artifact of the seasonal component 
in the data series that is shown on the second plot above and will be outlined a 
bit more by performing the analysis again. Firstly, this is done by expanding the 
regression equation by adding a dummy variable for the month as a second 
predictor in the model. The second approach analyses aggregated yearly data 
as dependent variable. 
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Figure 3.5: Table of selected residual plots for identifying heteroscedasticity 
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Figure 3.6: Table of autocorrelations and seasonal adjusted autocorrelations. Left 
side: Autocorrelations up to order 16 for the original series of Austrian fatalities (the 
lines indicate two standard errors) – Right side: Autocorrelations of the same month 
over the entire series 

 
The model fit statistic (R Square) in Table 3.7 shows a better fit of the linear 
regression model including the dummy predictor month compared to the simple 
model above (0.423 vs. 0.27)   
 

Model R R-Square Adjusted R-
Square 

Standard error 
of the Estimate 

1 ,65 (a) ,42 ,42 21,51

Table 3.7: Model summary table 
a. Predictors: (Constant), month, time 
 
Model   Sum of 

Squares 
df Mean 

Square 
F Sig. 

1 Regression 72178,51 2 36089,26 78,00 ,000(a) 
  Residual 98551,82 213 462,69     
  Total 170730,33 215      

Table 3.8: ANOVA table of sample dataset 
a  Predictors: (Constant), month, time 
b  Dependent Variable: killed 
 
The results in Table 3.8 are very similar compared to the results in tables 3.3 
and 3.4. The inclusion of the second predictor month does not improve whether 
the F-test nor the parameters significantly.  
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Model   Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

    B Std. 
Error 

Beta     

1 (Constant) 1287,126 116,443  11,054 ,000 
  time ,000 ,000 -,541 -10,385 ,000 
  month 3,186 ,425 ,391 7,503 ,000 

Table 3.9: Coefficient table of sample dataset 
a  Dependent Variable: killed 
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Figure 3.7: Plot of Yearly Fatality Data in Austria from 1987 to 2004  

 

Model   Sum of 
Squares 

df Mean 
Square 

F Sig. 

1 Regression 598633,50 1 598633,50 107,07 ,000(a)
  Residual 89459,45 16 5591,22    
  Total 688092,90 17     

 

Model   Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

    B Std. 
Error 

Beta     

1 (Constant) 71312,11 6778,90  10,52 ,000
  Year -35,15 3,40 -,93 -10,35 ,000
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Model R R-Square Adjusted R-
Square 

Standard error 
of the Estimate 

1 ,93 ,87 ,86 74,77

Tables 3.10 to 3.12: Yearly Fatality Data in Austria from 1987 to 2004 - regression 
results 

 

The previous result on monthly data is replicated on yearly data again. The 
number of fatalities in road accidents has been decreasing since 1987. The 
result is more significant than before because there are have no seasonal 
artefacts in the yearly data which introduce high variation not due to the general 
trend in the model. On the other side, we find that the distribution assumptions 
are also met in this case, but not as close as in the monthly model. 
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Figure 3.8: Histogram and P-P Plot of standardized residuals 
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Figure 3.9: Table of selected residual plots for identifying heteroscedascity 

 
All plots show a light trend of smaller residuals in the later years. This cannot be 
proven by White’s test: χ2 = 2,057, df=1, therefore we can assume ascity in the 
yearly fatalities data in Austria. As expected from the previous analysis of the 
monthly data corrected for the season, we find seriously high autocorrelations in 
the yearly data as well.  
 
The last of the four Gauss-Markov assumptions about exogenous independent 
variables has not been covered yet in this paper. This is because this cannot be 
done with the limited dataset used in this section about introducing linear 
regression. But this is also true for most research problems in time-series 
analysis. It is not feasible in practical work to include all possible factors in 
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multivariate models and analyse the problem by co-linearity analysis or factor 
models. So the researcher needs a good theoretical understanding about the 
context of the data on which he wants to fit a model. This is not only true for 
simple linear regression models, but also for more sophisticated extensions 
covered in other sections of this book.   
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Figure 3.10: Table of autocorrelations 

 

3.3.1.7. Model interpretation 

As already mentioned in the introduction to the time-series analysis section, in 
principle there is nothing wrong in fitting a classical regression model with 
Austrian fatality data to obtain a rough idea of the linear trend in the series. The 
results show a negative relation between the number of Austrian fatalities and 
time, suggesting that the number of fatalities have decreased over the last 18 
years. However, as soon as standard statistical tests are applied to ascertain 
whether or not the relationship should be attributed to chance, serious problems 
arise. As noted above, the F-test (or, equivalently, the t-test for the regression 
weight) would lead one to conclude that the negative relationship between the 
number of driver fatalities and time is highly significant. These tests are based on 
the fundamental Gauss-Markov assumptions. In the examples shown, 
especially the most important assumption of randomly distributed errors was 
clearly violated, implying that the results of the statistical tests regarding the 
regression could not be trusted.  

3.3.1.8. Conclusion 

For most studies, the fit of a linear regression model is a good start to examine 
the different properties of the data, and if all conditions hold true, it is the most 
efficient way to estimate a trend in a time series. Not only from a statistical view 
but also for communicating the solution: The parameters in the model are 
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simple and also non-statisticians can have an intuitive understanding of the 
results. This is an important issue in road safety work, where costly decisions 
have to be performed both in terms of money and fatalities. 
In a risk management environment, not only the general trend is important, but 
decisions are most often based on statistical inference. Therefore it is important 
to analyse all the assumptions of these tests. This analysis is also a good start 
to decide the direction of more advanced modelling of the data. In the example 
shown above with time dependent errors, further investigation of the data will 
lead to dedicated time series models, which can handle this problem much 
better than classical regression. Other violations of the assumptions may lead to 
alternate estimation procedures. Weighted least squares or maximum likelihood 
techniques are options in the case of heteroscedasticit data. 
Other chapters in this work will lead to an in depth view of the various options to 
handle the specific properties of accident data in more sophisticated model 
environments. 

3.3.2. Generalized linear models (GLM) (E. Papadimitriou & C. Antoniou, 
NTUA) 

3.3.2.1. Research problem 

While the linear regression model is simple (to run and interpret), elegant and 
efficient, it is subject to the fairly stringent Gauss-Markov assumptions 
(Washington et al., 2003). The Gauss-Markov assumptions require: 

• Linearity (in the parameters; nonlinearity in the variables is acceptable); 
• Homoscedasticity; 
• Exogenous independent variables; 
• Uncorrelated disturbances; and 
• Normally distributed disturbances 

 
If these assumptions hold, it can be shown that the solution obtained by 
minimizing the sum of squared residuals (‘least squares’) is BLUE, i.e. best 
linear unbiased estimator (in other words, it is unbiased and has the lowest total 
variance among all unbiased linear estimators). These assumptions, however, 
are often violated in practice. In this research, two of these violations -that are 
relevant to road safety data- are considered, in particular correlated 
disturbances; and non-normal error structures. 
 
Generalized linear models (GLM), a generalization of the linear regression, can 
be used to overcome these restrictions (McCullagh and Nelder, 1989, Dobson, 
1990, Gill, 2000). The objective of GLM is to allow for more flexible error 
structures (besides the Gaussian which is assumed by –linear and nonlinear– 
regression).  
 
Generalized linear models facilitate the analysis of the effects of explanatory 
variables in a way that closely resembles the analysis of covariates in a 
standard linear model, but with less confining assumptions. This is achieved by 
specifying a link function, which links the systematic component of the linear 
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model with a wider class of outcome variables and residual forms (McCullagh 
and Nelder, 1989, Dobson, 1990, Gill, 2000). 
 
A key point in the development of GLM was the generalization of the normal 
distribution (on which the linear regression model relies) to the exponential 
family of distributions. This idea was developed by Fisher (1934). Consider a 
single random variable y whose probability (mass) distribution (if it is discrete) or 
probability density function (if it is continuous) depends on a single parameter θ. 
Probability (mass) distribution is the set of values x taken by a discrete random 
variable X (the domain of the variable) and their associated probabilities. If X is 
a continuous random variable, the probability associated with any particular 
point is zero; therefore, positive probabilities can only be assigned to intervals in 
the range over which x is defined. In that case, the probability density function is 
defined by the area under the distribution in the range of the interval of interest. 
 
The distribution belongs to the exponential family if it can be written in the form: 
 

(3.24) 
 

where a, b, s, and t are known functions. The symmetry between y and θ 
becomes more evident if we rewrite it as: 
 

(3.25) 
 

where s(y)=exp[d(y)] and t(θ)=exp[c(θ)]. If a(y)=y then the distribution is said to 
be in the canonical form. Furthermore, any additional parameters (besides the 
parameter of interest θ) are regarded as nuisance parameters forming parts of 
the functions a, b, c, and d, and they are treated as though they were known. 
Many well-known distributions belong to the exponential family, including –for 
example– the Poisson, normal, and binomial distributions. On the other hand, 
examples of well-known and widely used distributions that cannot be expressed 
in this form are the student’s t-distribution and the uniform distribution. 
 
The generalized linear model can be defined in terms of a set of N independent 
random variables y1, … , yN, each with a distribution from the exponential family 
with the following properties: 

1. The distribution of each yi is of the canonical form and depends on a 
single parameter θi (not necessarily the same parameter for all 
variables): 

 
(3.26) 

 
2. The distributions of all the yi s are of the same form (e.g. all normal or all 

binomial) so that the subscripts on b, c, and d are not needed. 
 
The joint probability density function of y1, … , yn is then 
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(3.27) 
 
When specifying a model, the N parameters θi are usually not of direct interest 
(the number of parameters θ is N, since there is one for each y). Instead, for a 
GLM, a smaller set of p parameters β1, …, βp is considered (where p < N), such 
that a linear combination of the βs is equal to some function of the expected 
value μi of yi, i.e.  
 
g(μi)=xi

Tβ (3.28) 
 
where,  
g is a monotonic, differentiable function called the link function;  
xi is a (p x 1) vector of explanatory variables (covariates and dummy variables 
for levels of factors); and  
β=[β1, …, βp]T is the (p x 1) vector of parameters.  
 
To recapitulate, in the univariate case, a generalized linear model has three 
components: 

1. A response variable y assumed to follow a distribution from the 
exponential family; 

2. A set of parameters β and explanatory variables X=[x1
T, …, xM

T]T 
3. A monotonic link function g such that  

 
           g(μi)=xi

Tβ (3.29) 
 
           where μi=E(Yi)  

3.3.2.2. Dataset 

The use of generalized linear models for road safety research is demonstrated 
using accident casualties and police enforcement data from Greece (excluding 
the two largest cities, i.e. Athens and Thessaloniki). Monthly data from January 
1998 to December 2001 have been used for this research (Figure 3.11). The 
data of the first three years (36 observations) are used for the model estimation, 
while the data for the last year (12 observations) are used for validation. 

3.3.2.3. Model definition 

The model specification comprises three main effects: trend, seasonal effects, 
and explanatory variables. The trend captures the evolution of the dependent 
variable over time. This is captured in the specification by the addition of the 
"Month" variable, which ranges from 1 (for the first month, i.e. January 1998) to 
36 (for December 2000). Seasonal effects are captured by the addition of 
sinusoid components (used e.g. by Zeger, 1988, and Campbell, 1994). Several 
frequencies have been investigated, but the most useful proved to be the 
annual and its first (six month) harmonic.  
 
Furthermore, besides specifying a trend and a seasonal component, the impact 
of explanatory variables is also tested, with an emphasis on enforcement data 
(number of breath alcohol controls per month). 
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Figure 3.11: Dataset overview 

 

3.3.2.4. Objectives of the technique 

The objective of GLM is to allow for more flexible error structures (besides the 
Gaussian which is assumed by regression – linear or nonlinear). The allowable 
distributions belong in the exponential family. In this section, we investigate the 
suitability of each distribution for road safety data that are temporally correlated. 

3.3.2.5. Model assumptions 

Generalized linear models require uncorrelated observations. Time-series data 
require special consideration, since the observations typically fail to meet this 
assumption, as neighboring observations are likely to be correlated. It is often 
possible to include a large number of explanatory variables in a linear 
regression model, resulting in seemingly serially uncorrelated residuals (and, 
therefore, the linear model theory would apply). There are, however, two 
problems with such a strategy. First, it may not be easy to identify the 
appropriate explanatory variables that would reflect the serial correlation. 
Second, and perhaps more important, the additional variables included in the 
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model to reduce the serial correlation may dilute the effects of the main 
variables of interest, thus potentially affecting the power and the interpretation of 
the model. 
 
In a very different (with respect to road safety) context, Zeger (1988) introduced 
a method for regression when the outcomes are a time series of counts (as is 
often the case in road safety applications). Zeger concludes that "generalized 
linear models with linear and log links can be extended to parameter-driven 
models". The critical point about this model is that the serial correlation in the 
observed data is captured through some unobserved (or latent) process and 
conditional on this unobserved process, the counts are independent. This is a 
reasonable assumption for road safety data, since the occurrence of an 
accident (or a fatality or injury) is usually not directly caused by another.  
 
The data, however, are serially correlated because they are ordered in time, 
and other factors (also ordered in time) are affecting the underlying risk. A 
discussion on these properties, albeit in a totally different context, can be found 
in Campbell (1994), who also presents a practical application of the approach, 
where the only assumption that is made on the distribution of the error structure 
is that it is mean stationary. Davis et al. (2000) developed a practical approach 
to diagnose the existence of a latent stochastic process in the mean of a 
Poisson regression model.  
 
For the Poisson model, the covariance matrix, and hence the standard errors of 
the parameter estimates, are estimated under the assumption that the Poisson 
model is appropriate. Occasionally one may observe more variation in the 
response than what is expected by the Poisson assumption. This is called 
overdispersion and implies that the estimates of the standard errors of the 
parameters will not be correct. Overdispersion typically occurs when the 
observations are correlated, and therefore it is very relevant in the context of 
time-series analysis. Underdispersion (less variation than expected) is also 
possible, although not as common. 
 
The Poisson distribution has been considered suitable to counts of car crashes 
for a long time (Nicholson and Wong, 1993). However, the Poisson model (while 
arguably more appropriate than the Gaussian) is not without weaknesses and 
technical difficulties. For example, the assumption of a pure Poisson error 
structure may prove inadequate in the presence of "overdispersed" data 
(Maycock and Hall, 1984). A straightforward approach to overcome this issue is 
to use a quasi-Poisson model (i.e. estimate a dispersion parameter for the 
Poisson model, thus allowing it to take values other than 1). Maycock and Hall 
(1984) showed that the negative binomial model could also be used as an 
extension to the Poisson. Miaou (1994) and Wood (2002) have also used the 
negative binomial model for road safety applications. Maher and Summersgill 
(1996) mention that, quite often, the two approaches (i.e. quasi-Poisson and 
negative binomial) may give very similar estimation results. One may then be 
tempted to think that the two models are equivalent and that it does not really 
matter which model is selected. Maher and Summersgill further warn that this 
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may not be the case, as the two models may have different prediction 
properties, as measured, e.g. by the prediction error variance.  
 
Furthermore, few processes are adequately modeled by linear models in 
practice. For example, several researchers have shown that conventional linear 
regression models lack the distributional property to adequately describe 
collisions. This inadequacy is due to the random, discrete, non-negative, and 
typically sporadic nature that characterizes the occurrence of a vehicle collision. 
Several researchers (including Hauer et al.1988, Hakim et al., 1991; Cameron 
et al., 1993; Newstead et al., 1995), using road accident statistics, have 
presumed that the explanatory variables have a multiplicative effect on 
accidents (as opposed to e.g. additive).  

3.3.2.6. Model fit and diagnostics 

In this section, different error structures -that are allowable within the GLM 
framework and are also theoretically supported- are applied. Model estimation 
and analysis has been performed using the R Software for Statistical Computing 
(R Development Core Team, 2005). First, the Gaussian (Normal) distribution is 
used. Since the identity link function is used and the model specification is linear 
additive, this is equivalent to the linear regression model. A Poisson model is 
also fitted, along with a quasi-Poisson that relaxes the assumption that the 
dispersion parameter is equal to 1. A negative binomial model is also fitted. A 
log-link function has been used for the Poisson, quasi-Poisson and negative 
binomial models. 
 
Estimation results and model fit for the four models are shown in Table 2.23. 
Variables (such as the linear trend) that were found to be insignificant at the 
10% level were removed from the model specification. A sinusoid term with an 
annual frequency and its (6 month) harmonic capture periodicity. A negative 
coefficient value for the number of breath alcohol controls indicates that the 
number of dead and seriously injured decreases as the intensity of breath 
alcohol controls increases, which is an intuitive result. Other explanatory 
variables (such as the number of speeding violations) were also entered into the 
model. However, explanatory variables relating to enforcement were highly 
correlated (corr=0.97). Therefore, while using either one resulted in intuitive 
results, their combination resulted in multicollinearity. 
 
Due to the different link that is used in these models (identity for the normal, and 
log for the other three), the magnitude of the estimated coefficients is very 
different for the normal. The coefficient signs, however, are consistent for all 
models. The intercept and sinusoid terms are very significant, while the alcohol 
controls are significant at a 5% to 10% level.  
 
An exception to this rule is the Poisson model, which shows very high 
significance of all coefficients. A closer look at the model statistics, however, 
suggests that the data maybe overdispersed. Potential overdispersion can be 
identified by dividing the residual deviance (defined - up to a constant- as twice 
the log-likelihood ratio statistic) by the residual degrees of freedom (i.e. the 
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number of observations minus the number of parameters in the model). The 
resulting measure is an approximately unbiased estimator of the dispersion 
parameter (Venables and Ripley, 2002). If the deviance is equal to the degrees 
of freedom then there is no evidence of overdispersion.  Note that a scale 
parameter not equal to one does not necessarily imply overdispersion.  This can 
also indicate other problems, such as an incorrectly specified model or outliers 
in the data. An incorrectly specified model can be due to an incorrectly specified 
functional form (an additive rather than a multiplicative model may be 
appropriate) or, more likely, that important explanatory variables (or 
interactions) are missing from the model. 
 
The dispersion factor for the data at hand is equal to 270.73/32=8.46, which is 
significantly different than 1. The assumption of a Poisson model (with a 
dispersion parameter equal to 1) is therefore unlikely to be realistic. A quasi-
Poisson model (an extension of the Poisson model, in which the dispersion 
parameter is allowed to vary from 1) has also been estimated. The estimation is 
based on the iterative algorithm proposed by Breslow (1984) for fitting 
overdispersed log-linear Poisson models. The magnitude of the estimated 
coefficient values is similar to that obtained by the Poisson model, and the signs 
are the same. The significance of the coefficients, however, has significantly 
decreased, indicating that in the Poisson model the standard errors were indeed 
underestimated due to the overdispersion. The scale parameter for the quasi-
Poisson model is 31.763/32=0.99, i.e. very close to 1, indicating that 
overdispersion has been effectively handled by the estimated dispersion 
parameter. 
 
Finally, a negative binomial model has been fitted. The estimated coefficients 
are identical (up to two significant digits) with those obtained from the quasi-
Poisson. This confirms the findings of Maher and Summersgill (1996) who state 
that the two approaches may give similar estimation results. Slightly lower 
standard errors for the binomial, however, lead to more significant statistics. 
 
Further model diagnostics are presented in Figures 3.12 through 3.15. Normal 
scores plot (QQ plot) of standardized deviance residuals is presented in the left 
subfigure of each figure. The x-axis represents the standardized deviance 
residuals, while the y-axis represents the quantiles of the standard normal. The 
dotted line in the QQ plot (left) is the expected line if the standardized residuals 
are normally distributed, i.e. it is the line with intercept 0 and slope 1. If the 
deviance residuals are normally distributed, all points on the plot would fall on 
this dotted line. The deviance residuals of the normal model are far from 
normally distributed. The Poisson model is a slight improvement, but still far off. 
The quasi-Poisson and the negative binomial model deviance residuals, on the 
other hand, are practically normally distributed. 
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 Normal 
Coefficient Estimate Std. error t-value
Intercept 303.48 34.44 8.813
sin(pi*Month/6) -89.65 17.00 -5.266
sin(pi*Month/12) 191.27 33.54 5.702
Alcohol controls 
(x100,000) 

-322.82 180.93 -1.784

 
Null deviance: 376861 (35 d.o.f.)
Residual deviance: 128560 (32 d.o.f.)
   
 Poisson 
Coefficient Estimate Std. error z-value
Intercept 5.699 0.029 196.471
sin(pi*Month/6) -0.231 0.013 -17.118
sin(pi*Month/12) 0.532 0.029 18.471
Alcohol controls 
(x100,000) 

-0.876 0.149 -5.854

 
Null deviance: 931.49 (35 d.o.f.)
Residual deviance: 270.73 (32 d.o.f.)
    
 Quasi-Poisson 
Coefficient Estimate Std. error z-value
Intercept 5.718 0.082 70.122
sin(pi*Month/6) -0.227 0.040 -5.665
sin(pi*Month/12) 0.483 0.079 6.071
Alcohol controls 
(x100,000) 

-0.776 0.428 -1.810

 
Null deviance: 103.019 (35 d.o.f.)
Residual deviance: 31.763 (32 d.o.f.)
 
 Negative binomial 
Coefficient Estimate Std. error z-value
Intercept 5.718 0.077 74.630
sin(pi*Month/6) -0.227 0.037 -6.037
sin(pi*Month/12) 0.484 0.075 6.471
Alcohol controls 
(x100,000) 

-0.778 0.402 -1.932

 
Null deviance: 120.575 (35 d.o.f.)
Residual deviance: 36.009 (32 d.o.f.)

Table 3.13: Estimation results 
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On the right subfigure is a plot of the Cook statistics against the standardized 
leverages. The standardized leverage of the i-th observation xi can be 
computed as (Belsley et al., 1980): 

hi =
1
n

+
xi − x i( )
n −1( )sx

2  (3.30) 

 
where n is the number of observations, the overbar indicates the predicted 
value, and sx  is the standard error. There are two dotted lines on each plot. The 
horizontal line is at 8/(n-2p) where n is the number of observations and p is the 
number of parameters estimated. Points above this line may be points with high 
influence on the model. The vertical line is at 2p/(n-2p) and points to the right of 
this line have high leverage compared to the variance of the raw residual at that 
point. If all points are below the horizontal line or to the left of the vertical line 
then the line is not shown.  
 

 

 
 

Figure 3.12: Model fit diagnostic plots (Gaussian distribution) 

 
A large number of points appear to be influential (i.e. above and to the right of 
the two dashed lines) in the Gaussian and the Poisson models, while only one 
point has a high leverage for the quasi-Poisson and negative binomial models. 
 
The estimation results and the model diagnostics suggest that the quasi-
Poisson and the negative binomial assumptions are more valid for the 
considered problem (while this may not be always the case). The output of the 
resulting models is very similar and therefore a clear decision regarding the 
most appropriate model cannot be made. One observation relates to the 
estimated standard errors, which are higher for the quasi-Poisson. Choosing to 
err in the side of caution, one could retain this model. 
 
It should be noted that the usual tests for comparing models, such as the Akaike 
Information Criterion, AIC, (Akaike, 1973) or the Schwarz/Bayesian Information 
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Criterion, BIC, (Schwarz, 1978), are not suitable for comparison across these 
models. (While a detailed discussion is outside of the scope of this document, 
and there is a lot of specialized research on the topic, the AIC is best suited for 
the comparison of nested models and models with similarly computed log-
likelihood measures. In this application, for example, the quasi-Poisson model is 
not estimated using maximum likelihood.) 
 
 

 

 
 

Figure 3.13: Model fit diagnostic plots (Poisson distribution) 

 
 

 
 

Figure 3.14: Model fit diagnostic plots (Quasi-Poisson distribution) 
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Figure 3.15: Model fit diagnostic plots (Negative binomial distribution) 

 
Figure 3.16 shows the values predicted by the quasi-Poisson model. The 
dashed line shows the actual observed number of dead and seriously injured in 
Greece (excluding the two major metropolitan areas of Athens and 
Thessaloniki). The thick solid line represents the model predictions and 95% 
confidence intervals are also shown with thinner solid lines.  
 

 

 
d 

Figure 3.16 Quasi-Poisson model predictions 
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3.3.2.7. Model interpretation 

The above discussion illustrates the impact of the distributional assumptions for 
the dependent variables on the model estimation results. While it is not easy to 
compare the estimated parameters between the Gaussian and the other models 
models (due to the different link function, i.e. identity for the normal and log for 
the Poisson, quasi-Poisson and negative binomial), the signs are consistent. 
The usual tests for comparing models (such as the Akaike Information Criterion, 
AIC, and the Bayes Information Criterion, BIC) are not suitable for comparison 
across these models. (While a detailed discussion is outside of the scope of this 
section, and there is a lot of specialized research on the topic, the AIC-type is 
best suited for the comparison of nested models and models with similarly 
computed log-likelihood measures. 
 
The estimated coefficients between the two Poisson models are very similar (in 
terms of magnitude). The restrictive assumption of setting the dispersion 
parameter equal to one seems to lead to an underestimation of standard errors. 
This would in turn artificially increase the significance of the estimated 
coefficients. For example, the explanatory variable (alcohol controls) that 
appears to be significant at the p=0.01 level when dispersion is set equal to 1, is 
only significant at the p=0.10 level when the dispersion coefficient is estimated 
(quasi-Poisson model) or when the negative binomial model is used. The 
negative sign of the explanatory variable (alcohol controls) confirms the intuitive 
expectation that as the number of alcohol controls increases, the number of 
fatalities should decrease. 

3.3.2.8. Conclusion 

The impact of different distributional assumptions for the dependent variables 
on the model estimation results is demonstrated in this research within the 
unified framework of generalized linear models. Due to the time-series nature of 
the data, a modeling approach to capture serial correlation through the 
introduction of sinusoid latent processes has also been demonstrated. 
 
While it is not easy to compare the estimated parameters between models with 
different link function (i.e. identity for the normal and log for the Poisson, quasi-
Poisson and negative binomial), the signs of the estimated coefficients for all 
models are consistent and intuitive. The estimated coefficients for the Poisson 
model are close to those estimated by the quasi-Poisson and the negative 
binomial, but the standard errors are severely underestimated (due to 
overdispersion), leading to artificially high t-statistic values. Even though these 
values were indeed significant in this application, this issue could have led to 
incorrect retention of insignificant variables in the Poisson model. Furthermore, 
even though the magnitude of the estimated coefficients for the quasi-Poisson 
and negative binomial is very similar, the different models may have different 
predictive properties and therefore may not be used interchangeably. 
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3.3.3. Non-linear models 
- To be completed - 

3.4. AR(I)MA(X) models (R. Bergel, INRETS) 

3.4.1. Research problem 
As it has already been emphasised before, the dependencies over time of a 
stochastic, theoretical process )( tY , for t being 1,2,3…., can be modelled in 
different manners. 
 
In a very special case of dependency over time - where the process  in question 

)( tY  is stationary8- , it is very practical to use the class of ARMA models, which 
enables to describe the dynamics of the process and to extrapolate it in the 
future, without any call to additional variables, and with the only assumption that 
the process dynamics will stay unchanged at the forecast’s horizon (see 2.2.1.). 
 
Nevertheless, the processes with dependencies over time usually are not 
stationary, because of the presence of a cycle, of a trend, or of a seasonal 
component: the sample of observations )..,,( ,21 nyyyY = , at hand, can rarely be 
considered as a sample of realisations of a stationary process.  In that general 
case,  it will be assumed that another stationary process exists, derived from tY  
by means of filtering, or by means of modelling , before correcting for them, the 
non-stationary components of tY  with the help of additional variables.  It is this 
other stationary process, derived from tY , that will be modelled with an ARMA 
representation. In all cases, ARMA-type models will be used, which includes all 
the following cases : ARIMA models in the non-stationary case, ARMAX models 
in the case exogenous variables are used, and ARIMAX models in the non-
stationary case and exogenous variables being used. 
 
In all these cases, a stationary process, derived from tY , will be considered, and 
its dynamics estimated with the sample of observations at hand; as in the 
traditional ARIMA case, the model will constitute a tool for monitoring and for 
forecasting as well, if the exogenous variables used can also be forecasted or if 
scenarios for their development in the future can be established.  
 
The interest in this section is not in forecasting. 
In the road safety field in France, as already mentioned in 2.2.2, ARMA-type 
models were very often used on monthly aggregate data for assessing road 
safety measures (Lassare and al., 1993). We shall now describe an application 
of another ARMA-type model, constructed on a monthly basis and for the last 
25 years - period, for analysing the development of the aggregate number of 
fatalities in France. The purpose is to determine whether a relationship can be 
established between the amnesty of driving faults that traditionally accompanies 
                                            
8 its mean, variance and covariance structure are constant over time (see a precise definition in 
section 2.2.4.3.1.) 
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the presidential election in France and the road safety level.  The analysis 
presented here is limited to the statistics of fatalities, and to the two elections 
of1988 and 1995 – for which the information was carried by the media.   

3.4.2. Dataset 
The data set is the monthly number of fatalities in France, for the period january 
1975-december 2001.  
 
Oil sales (gasoline and diesel) as a proxy for risk exposure (the total number of 
vehicle-kilometres is not measured on a monthly basis, in France), the car fuel 
price, and a small number of weather and calendar variables that take account 
for transitory effects, were used as exogenous variables in an ARIMA model. 
 
Because of the purpose described above, three intervention variables were also 
constructed and the form of their intervention function then determined. This will 
be described precisely in section 2.2.4.3.3. 

3.4.3. Model definition 

3.4.3.1. ARMA and ARIMA models 

We want to model a process ZtX t ∈)( , of second order9, of which we have a 
set of data )..,,( ,21 nxxxX = . 
This process is stationary if its mean, variance and covariance structure do not 
depend on time : 
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=
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  (3.31) 

 
The fist condition define the fist order stationarity, and the two following 
conditions define the second order stationarity.  
 
That constant covariance structure allows separating tX  in two parts : the one 
related to the past at time t , and the part that is new at time t. This latter  part of 

tX  that is not correlated to its past is also called « innovation » white noise. 
 
The canonical ARMA(p,q) representation : 
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j
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θφ            (3.32a) 

 
 is usually written in the following way : 

 

                                            
9 Having a finite mean and a finite variance 
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tt uBYB )()( Θ=Φ ,  (3.32b) 
 
with : )(BΦ and )(BΘ the two polynomials of the delay operator B, of degrees p 

and q,  
 unitary, with no common root,  
 the roots of Φ  are (strictly) outside the unit circle,  
 the roots of Θ  are outside the unit circle 
 and tu  the  « innovation » white noise. 
 
In the general case where tX  is not stationary, it is possible to apply a filter of 
differences to the process, in such a way that the transformed process  tY  
defined by :  
 
  tt XBFY )(= ,  (3.33) 

  and dBIBF )()( −= , with B the delay operator and d a positive 
value, 
 
becomes stationary, and then model tY  with an ARMA(p,q) model.  
 
In such a case, we shall have an ARIMA (p,d,q) representation for the non-
stationary process tX  : 
 
  tt uBXBFB )()()( Θ=Φ   (3.34a) 
 
which can be extended to the more general ARIMA (p,d,q)(P,D,Q)s 
representation, in which the seasonal and non seasonal parts of the dynamics 
can be separated in a multiplicative manner : 
 

t
s

st
s

s uBBXBFBB )()()()()( ΘΘ=ΦΦ ,  (3.34b) 
and Dsd BIBIBF )()()( −−= , with B the delay operator, d and D two 
positive values and s the periodicity of the seasonal. 

 
This last representation will be used in the case of the application. 

3.4.3.2. AR(I)MAX models 

There are different manners of taking account of exogenous (or explanatory) 
variables. The following form can be preferred for commodity reasons, in the 
case the data corrected for the exogenous effects are stationary : 
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with :  Y the endogenous variable to be modelled (eventually filtered with a 

difference filter F(B)), 
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Zi the K exogenous variables (eventually filtered with difference filters Fi 
(B)), 

 W a white noise not correlated with the past Y and of the Zi ,  
and Φ  iΦ Θ  polynomials in B. 

 
In this specification, the endogenous variable and the K exogenous variables 
are if required filtered with difference filters F(B) and Fi (B), but it may as well 
not be necessary, if the exogenous variables help to correct for the trend and 
the seasonality. 

3.4.3.3. The application case 

Intervention analysis is carried out, in order to determine whether the 
perspectives of the presidential amnesty of 1998, and of 1995, eventually had 
an effect on the monthly number of fatalities.  
 
This can be achieved in two stages: 

- First by determining a period during which the perspectives of the 
presidential amnesty eventually had an impact on the drivers and 
policemen behaviour, 

- Second by identifying the form of intensity of that impact with an 
intervention function. 

 
The even nature of the presidential amnesty leads to delimit its impact in time 
(transitory effect). The two first intervention periods are, in a first approach, fixed 
as November 1987 - July 1988 and September 1994 – July 1995 (month of first 
announcement, last month before the amnesty law is voted). The form of the 
intervention function is then determined depending on the values of the monthly 
impacts of the dummy variables defined on the period (Box,Tiao, 1975) 
(Gourieroux and Monfort, 1990).  
 
In addition, specially low values of the number o fatalities were detected, 
between February 1987 and October 1987: the media effect of the Anne Cellier 
case (a young woman died in an accident, whereas the person responsible for 
the accident was drunk driving, and was only lightly condemned) followed by the 
introduction of a new law related to drink driving, certainly contributed to 
diminish accidents’ gravity in France. Because of its proximity to the election of 
1988, the “Cellier effect” was also modelled, and the period April – October 
1987 also retained as a third intervention period, with here again the hypothesis 
of a limited effect in time. 
 
Finally, three intervention variables were constructed, and for three predefined 
periods. In each of the three cases, the form of the intervention function still has 
to be determined.   
 
The form of the three intervention functions has been established using the 
following model: 
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with :  
 
- Y the number of fatalities, 
- àIiiX 1, =  the I variables measuring risk exposure and the economic factors, 

- àJjjX 1, =  the  J variables measuring the transitory factors, 

- kTP ,0 , k=1 to 3, three dummy variables given by )(,0 tP kT =1 in t= kT ,0   et 0 
elsewhere, kT ,0  the first month of the intervention period n° k, 
- nk +1 le number of months of the intervention period n° k,  
- )(BΦ and )(BΘ , two polynomials  of the delay operator B,  
- and ta  a white noise. 

3.4.4. Objective of the technique 
The objective of the technique is to estimate the parameters of the dynamics of 
the stationary process corrected for exogenous effects, and to simultaneously 
estimate the parameters of the exogenous variables. 
 
Tests are then used to validate the model, and criteria to evaluate the model’s 
empirical performance. 

3.4.5. Model assumptions 
The main assumption is the stationary of the data, corrected for the exogenous 
effects.  
In fact, this hypothesis is tested on the residual of the model, which should be a 
white noise in the case that this hypothesis is valid. 

3.4.6. Model fit and diagnostics 
In the case of pure ARIMA models,  the well known following stages10 are 
succeedingly considered  : stabilisation , identification, estimation, and  
validation. 
 
In the general case where exogenous variables are introduced, it is not feasible 
to consider these stages, before the functional form between Y and each 
exogenous variable Zi has been established, and before a preliminary 
estimation of the exogenous effects has been obtained, in such a way that a 
realisation of the stationary process, corrected for the exogenous effects, is at 
hand.  
In practise, the parameters are estimated altogether, whether related to the 
endogenous or exogenous variables; and the diagnostic tests, carried out after 
                                            
10 see Brockwell and Davis(1998) 
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the model has estimated, will help for replacing the two first stages (stabilisation 
and identification) which could not be considered before. 

3.4.6.1. Validation and performance 

Tests are used for validating the model.  
 
We have to be distinguish between the tests used for validating each parameter 
(Student’s test), and the tests related to the residual.  These latter ones consist 
in testing the « randomness » property (up and down test) , the white noise 
property (test based on the Shapiro-Wilk’s statistic), the gaussian property  
(Fisher’s test), non-correlation property (Ljung-Box’s test) - this last property 
being fundamental. Thus, in the case the assumption of normality is not 
validated, the log likelihood computation can be blamed, but the estimators may 
nevertheless have good asymptotic convergence properties. However, the 
assumption of non correlation of the residual is fundamental, because in the 
case it is rejected the model’s specification has necessarily to be changed 
 

Criteria are used for evaluating the model’s empirical performance.  
 
They relate to the model’s adjustment, or forecasting power. Let’s mention in 
the first group the part of explained variance (R211 or adjusted R2 ), as well as 
the different criteria which enable to evaluate the estimation fit : MSE, RMSE, 
and the widely used MAPRE12, and in the second group the BIC or the AIC13, 
and the  SBC14. 
 
Several models proposed for the same sample of data will be compared after 
the test and criteria, just mentioned above, have been performed. Two nested 
models will be compared by using a likelihood ratio test, which can lead to 
reduce the number of parameters of an over-parameterised model.  
 
A practical question finally is, after the model has been validated, the question 
of the model’s stability over time. The parameters’ stability will be discussed by 
comparing estimations obtained from different samples of data covering 

                                            

11 Let’s recall the part of explained variance or R2 :  

( )
( )∑

∑

=

=

−

−

n

t
t

n

t
tt

YY

YY

1

2

1

2ˆ

 
12 The  MAPRE is defined by :  

∑
=

−
=

n

t t

tt

Y
YY

n
RMAPRE

1

ˆ1_ or by ∑
=

−
=

n

t t

tt

Y
YY

n
EMAPRE

1 ˆ
ˆ1_ , depending on whether 

one refers to the estimation’s deviation to the realisation (model’s performance) or to the 
realisation’s deviation to the estimation (realisation’s estimation) 
13 The Akaike Information Criteria (AIC) is given by : ( ) kVm 2ln2 +− , with mV the likelihood at 
the maximum, and k 
14 The bayesian criterium of Schwarz (SBC) is given by : ( ) ( )knVm lnln2 +−  
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different time intervals. The responses to the validation tests and empirical 
performance criteria might also differ with each new sample of data. 

3.4.6.2. The application case 

The forms suggested by the autoregressive polynomial ∑
=

−
k

k

n

l

T
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0
, )(,0δ  is a 

step in all the three cases (see graphs n° 1 to 3) . The initial model (3.36) has 
been simplified by using three variables representing steps : 
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with : tkStep , , k=1 to 3, three dummy variables equal to 1 in [ kT ,0 , kk nT +,0 ], and 0 

elsewhere. 
 
At last, the model (3.37) was still adjusted by allowing the beginning and the 
end of the two intervention periods corresponding to the presidential amnesties 
to vary, in order to maximise the likelihood of the model. Doing this way leaded 
to restrict the second period to December 1994 - June 1995, without modifying 
the first one.  

 
The results obtained by estimating model (3.37) are given in Tables 2.24 and 
2.25. 
All parameters related to the exogenous variables were kept in the model in the 
first case, whether significant or not, whereas they were only kept in the model if 
significant at a given confidence level (T-ratio superior to 1). 
As for the parameters related to the dynamics, they were only kept if significant 
at the usual 95% confidence level (T-ratio superior to 2). 
 
The best model - in terms of adjustment - , is obtained when all exogenous 
variables are kept, whether significant or not. This is equivalent to considering 
that each variable’s contribution must be taken account for, in order to estimate 
in the best manner the effects of the perspectives of presidential amnesties, 
which remains the main objective.  

3.4.7. Model interpretation 
The dynamics estimated is related to the corrected for exogenous effects 
process, the one that is assumed to be stationary. It is worth noting here that, at 
the difference of the well-known airline model, the simple filter )12( BI−  was 
used in equation (3.37). 
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As for the exogenous part, it’s natural to try to interpreter the relationship15 
between the exogenous variables itZ , i=1 to k and the endogenous variable Y , 
regardless of the dynamics. 
 
The parameters related to explanatory variables seem to be acceptable, 
although the elasticity value of the number of fatalities with respect to oil sales is 
small, around 0.1, and this is probably due to the presence of the other 
explanory variables, correlated oi oilsales.  
 
The parameters related to climate and calendar variables are consistant with 
other results (Bergel, Depire, 2004). 
 
The following comments focus on the intervention step variables. 
Thus, succeeding to a “Cellier effect”  of  -6,1 % per month (average decrease 
of 6,1% in the number of fatalities between April and October 1987), the effect 
of the amnesty’s perspectives of 1988 is estimated at +6,4% per month 
(average increase in the number of fatalities of  6,4% between November1987 
and july1988), and the effect of 1995 is estimated at +3,8% per month (average 
increase of 3,8% in the number of fatalities per month between December 1994 
and June 1995), see Table 3.14.  
 
Measured with an absolute number of deaths, the effects of both perspectives 
of amnesty are estimated at 512 and 183 fatalities respectively. The associated 
confidence levels are 0,06 et 0,25 respectively. 
 
When the number of exogenous variables are reduced – best model in terms of 
forecasting – the average impacts are respectively estimated at -6,5%, +6,5% 
and +3,5% per month during the three intervention periods, see Table 3.15. The 
effects of both perspectives of amnesty are then estimated at 512 and 183 
fatalities respectively, with confidence levels of 0,04 and 0,28. 
                                            
15 Apart from commenting on the value of the parameter iβ  of the variable Zi , the interest often 

goes to the related elasticity function, given by: 
)(
)(

iLogZd
LogYd

.  

For small variations of iZ , at a given time, the following formulation for the elasticity of the 

endogenous variableY  with respect to an exogenous variable iZ ,is used:  
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Δ

Δ
=/ε . 

 
In the very special case where both variables have been log transformed, the parameter iβ  
indeed represents the elasticity ofY with respect to Zi , which is then constant. But it is 
important to note that one does generally comment an « apparent elasticity » ofY  to Zi , 
because the condition of mutual orthogonality of the exogenous variables itZ , i=1 to k, is rarely 
valid. 
 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  1 1 5  

3.4.8. Conclusion 
In this chapter, it was demonstrated that an ARiMA model with exogenous 
(explanatory and intervention) variables is an efficient tool for analysing the 
development of the aggregate number of injury accidents and fatalities in 
France, by taking account for risk exposure (measured with oil sales as a proxy 
of risk exposure) and transitory factors of climatic and calendar nature. The 
possible effects of two presidential amnesties of driving faults, in 1988 and in 
1995, on the number of fatalities in France was questioned by the means of an 
intervention analysis. 
 
The amplitude of the effects of the perspectives of amnesty of 1988 is larger 
(400 to 500 additional fatalities, between September 1987 and July 1988) than it 
is in for the amnesty of 1995 (100 to 180 additional fatalities, between 
December 1994 and June 1995). 
The increase related to the presidential election of 1988 is the only one that is 
statistically significant, at the usual level - i.e. 51716 additional fatalities, with a 
confidence level of 0,04.  

                                            
16 The annual number of fatalities in France was around a thousand in the years 1990. 
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Figures 3.17, 3.18 and 3.19: Monthly impacts of the “Cellier effect” (April - November 
1987), of the perspectives of presidential amnesties of 1988 (November 1987 - July 
1998) and 1995 (December 1994 - June 1995). 
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Parameter Estimate Std Error T Ratio Lag Variable Shift
MU -0.02505 0.0027828 -9.00 0 LTUEFE 0
MA1,1 0.78905 0.04110 19.20 12 LTUEFE 0
AR1,1 0.16913 0.06196 2.73 1 LTUEFE 0
AR1,2 0.16157 0.06374 2.53 2 LTUEFE 0
AR1,3 0.22444 0.06290 3.57 3 LTUEFE 0
NUM1 0.10347 0.08102 1.28 0 LCARBUB 0
NUM2 -0.0022755 0.08441 -0.03 0 LICARB 0
NUM3 0.0013002 0.0003383 3.84 0 DTE 0
NUM4 0.0008768 0.0005836 1.50 0 DTH 0
NUM5 0.00002586 0.00001965 1.32 0 DHPLUI 0
NUM6 -0.0035809 0.0026823 -1.34 0 DNGEL 0
NUM7 0.0043532 0.01137 0.38 0 ATYTES 0
NUM8 0.0013106 0.0038428 0.34 0 ATYTHS 0
NUM9 -0.01157 0.0038852 -2.98 0 ATYTHI 0
NUM10 -0.0022139 0.0030156 -0.73 0 ATYHS 0
NUM11 0.0015597 0.0028888 0.54 0 ATYNGLS 0
NUM12 -0.0083433 0.0081969 -1.02 0 S1 0
NUM13 -0.0060422 0.0089395 -0.68 0 S2 0
NUM14 0.0055669 0.0047984 1.16 0 S3 0
NUM15 0.01411 0.0050085 2.82 0 DP 0
NUM16 0.0026091 0.0026722 0.98 0 VESADI 0
NUM17 -0.06081 0.03512 -1.73 0 STEP1 0
NUM18 0.06417 0.03358 1.91 0 STEP2 0
NUM19 0.03813 0.03346 1.14 0 STEP3 0

Constant Estimate  = -0.0111419

Variance Estimate = 0.00414369
Std Error Estimate = 0.06437153
AIC = -774.14637*
SBC = -685.17573*
Number of Residuals= 301
* Does not include log determinant  

 
Table 3.14: Model for the aggregate number of fatalities In France, for 1975-2001. 
(All exogenous variables kept) 

 
with : 
LTUEFE the log of the monthly number of fatalities, 
LCARBUB the log of the monthly oil sales, 
LICARB the log of the monthly car fuel price, 
DTE-DTH the highest temperature of the day, in summer and in winter, DHPLUI 
the rainfall height and DNGEL the occurrence of frost, averaged on a hundred 
of meteorology stations and on the month,  
ATYTES et ATYTHS the number of « superior » atypical days in the month 
regarding temperature, in the summer and in the winter, 
ATYTHI the number of « inferior » atypical days regarding temperature, in the 
summer, 
ATYHS the number of « superior » atypical days regarding rainfall height, 
ATYNGLS the number of « superior » atypical days regarding occurrence of 
frost,  
S1,S2,S3 the number of days coding a calendar exceptional effect related to 
bank holidays, gathered in three classes, 
DP the number of days coding days a calendar effect related to holiday 
movements, 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  1 1 8  

VESADI the number of week-end days (Friday/Saturday/Sunday), 
STEP1 the dummy variable for the period April -  November 1987, 
STEP2 the dummy variable for the period November 1987 - July 1998, 
STEP3 the dummy variable for the period December 1994 - June 1995 
 

 
Parameter Estimate Std Error T Ratio Lag Variable Shift
MU -0.02452 0.0026660 -9.20 0 LTUEFE 0
MA1,1 0.77833 0.04043 19.25 12 LTUEFE 0
AR1,1 0.16357 0.05849 2.80 1 LTUEFE 0
AR1,2 0.14335 0.05910 2.43 2 LTUEFE 0
AR1,3 0.23408 0.05985 3.91 3 LTUEFE 0
NUM1 0.08976 0.07641 1.17 0 LCARBUB 0
NUM2 0.0013158 0.0003284 4.01 0 DTE 0
NUM3 0.0010321 0.0004655 2.22 0 DTH 0
NUM4 0.0000163 0.00001198 1.36 0 DHPLUI 0
NUM5 -0.0023010 0.0021175 -1.09 0 DNGEL 0
NUM6 -0.01055 0.0031936 -3.30 0 ATYTHI 0
NUM7 -0.0090827 0.0078523 -1.16 0 S1 0
NUM8 0.0044649 0.0044660 1.00 0 S3 0
NUM9 0.01387 0.0048195 2.88 0 DP 0
NUM10 0.0029882 0.0026133 1.14 0 VESADI 0
NUM11 -0.06497 0.03388 -1.92 0 STEP0 0
NUM12 0.06483 0.03206 2.02 0 STEP1 0
NUM13 0.03504 0.03238 1.08 0 STEP2 0

Constant Estimate  = -0.0112535

Variance Estimate = 0.00403826
Std Error Estimate = 0.06354729
AIC = -819.52059*
SBC = -752.08894*
Number of Residuals= 313
* Does not include log determinant  

 
Table 3.15: Model for the aggregate number of fatalities In France, for 1975-
2001(Exogenous variables kept if T-ratio superior to 1) 

 
with : 
LTUEFE the log of the monthly number of fatalities, 
LCARBUB the log of the monthly oil sales, 
LICARB the log of the monthly car fuel price, 
DTE-DTH the highest temperature of the day, in summer and in winter, DHPLUI 
the rainfall height and DNGEL the occurrence of frost, averaged on a hundred 
of meteorology stations and on the month,  
ATYTHI the number of « inferior » atypical days regarding temperature, in the 
summer, 
S1, S3 the number of days coding a calendar exceptional effect related to bank 
holidays,  
DP the number of days coding days a calendar effect related to holiday 
movements, 
VESADI the number of week-end days (Friday/Saturday/Sunday), 
STEP1 the dummy variable for the period April - November 1987, 
STEP2 the dummy variable for the period November 1987 - July 1998, 
STEP3 the dummy variable for the period December 1994 - June 1995 
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3.5. DRAG models (R. Bergel, INRETS) 

3.5.1. Research problem 
We address here the three-level explanatory model constructed on a monthly 
basis, proposed by Gaudry(1984), the DRAG-model (Demand for Road use, 
Accidents and their Gravity) which relies on a multiple regression structure with 
autocorrelated and heteroscedastic errors, and takes account for a type of non-
linearity. The fact that many explanatory variables are introduced allows the 
trend and the seasonal component to be modelled, which thus do not need to 
be filtered. The use of the Box-Cox transformation allows a more flexible form 
(linear form, logarithmic form or a compromise) of the link between the 
endogenous variable and each of the exogenous variables. 
 
A DRAG model is defined on the basis of (at least) three criteria : 

 
- to model (at least) the three following levels : road demand, risk’s 

accident and accident’s gravity, 
- to be explanatory, 
- to rely on a flexible functional form. 
 

The framework of the DRAG approach is well defined in (Gaudry, Lassarre, 
2000). 
In this framework, one level (the exposure to risk) and two risk levels (the risk of 
accident and the risk of being victim in an accident) are defined, as well as 
indicators and factors at each of these levels. 

 
Numerous explanatory variables are introduced, related to exposure, economic 
factors, transitory factors, behavioural factors and road safety measures. By 
modelling exposure, and the two risk levels with the same explanatory factors, it 
is possible to quantify the direct and indirect effects – via the traffic volume - on 
the two types of risk indicators. 

3.5.2. Dataset 
No condition is required from the data.  
Six DRAG models have already been performed whether at a national or at a 
regional level. Because of the voluminous database necessary for estimating a 
DRAG model, the DRAG approach can not be achieved without enough time 
and financial support An example of a DRAG-type model is given by the RES 
Model for France17 . 

                                            
17 With the financial support of the French Observatory for Road Safety, A DRAG-type model 
was applied to the french main road network in France (A-level roads and motorways), the two 
rnetworks on which the number of vehicle-kilometers are measured on a monthly basis.  Only 
two risk factors were taken into account : the traffic volume, and the climatic factor.  
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3.5.3. Model definition 
The model is written as follows, the parameter λ=(λY, λX1, …, λXk) being 
estimated : 
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with :  tY  the endogenous variable to be modelled, 
 itX , i=1 to k, the exogenous (or explanatory) variables, 
 tu  the first residual, and tV  the final residual. 
  
And with: the Box-Cox transformation defined as a power transformation, of 
parameter λ , on any positive real variable tV  by  : 
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Two well-known particular cases are obtained when the parameter λ  is 
identically equal to 0 (we then have a log-log specification), or to 1 (we then 
have the linear specification).     

3.5.4. Objective of the technique 
The main objective of the technique, compared to a multiple linear regression is 
that the use of the Box-Cox transformation to all data allows for a more flexible 
form (linear form, logarithmic form or a compromise) of the link between the 
endogenous variable and each of the exogenous variables. 

3.5.5. Model assumptions 
The endogenous variable is supposed to be gaussian  (the data are aggregate, 
and their frequency is supposed to be larger than 30). 
The stationarity is not required. The explanatory variables take account for trend 
and seasonality, whereas heteroscedasticity on the first residual tu  is also 
modelled separately, in such a way that the final residual tV  is supposed to be 
stationary. 

3.5.6. Model fit and diagnostics 
The model fit is performed with the TRIO program, all the parameters - linear 
and non-linear - being estimated simultaneously. Note that no procedure in the 
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SAS system, for instance, enables to estimate the parameters of the linear and 
non-linear parts simultaneously. 

3.5.7. Model interpretation 
Multicolinearity between the numerous explanatory variables is a source of 
difficulties in interpreting the estimated parameters. In some cases, the Box-Cox 
parameters may not be stable and interpretable either18, and the model’s 
specification seems to be over-parametrised. 
 
In the general case, parameters are not interpreted directly, but provide 
elasticity values, of the endogenous variables with respect to the exogenous 
variables - that is to say  of risk indicators with respect to risk factors. These 
elastcity values, calculated at a country’s level independently of the units of 
measure of risk indicators and risk factors, are used for international 
comparisons. 
Detailed interpretations can be found in (Gaudry, Lassarre, 2000). 

3.5.8. Conclusion 
Because of the need of voluminous databases, it would not be feasible to apply 
the DRAG model to European data, in the SafetyNet project. Nevertheless, the 
theoretical framework is powerful, and is actually used for time series analysis 
for road safety research purposes. 

3.6. State space models (J. Commandeur, SWOV) 
In this section we present the subclass of state space methods collectively 
known in the literature as structural time series models or unobserved 
components models.  Important references in this field are Harvey (1989), and 
Durbin and Koopman (2001). In structural time series models an observed time 
series is typically decomposed into a number of components. The state of a 
structural time series model may consist of several components, which will be 
introduced one by one in the following sections.  
 
First, in Sections 3.6.1, 3.6.2, and 3.6.3, those components are addressed that 
are useful for obtaining an adequate description of an observed time series. 
These components are the level, the slope and the seasonal. Then, in Sections 
3.6.4 and 3.6.5, components of the state are presented that are helpful in 
finding explanations for the observed development in the series. These 
components are explanatory and intervention variables. A third important 

                                            
18 In the case of the RES Model, an analysis of the advantage of the Box-Cox transformation 
was produced for this application (Bergel, Depire, 2004).The Box-Cox transformation was 
retained for the main exogenous variable, whereas the logarithmic transformation was retained 
for the endogenous variable. Tests of comparison of the initial specification with two particular 
cases were carried out. No significant difference could be found between the model with the 
Box-Cox transformation on the main exogenous variable and the model with the logarithmic 
transformation on the main exogenous variable, which indicates that the second specification, 
widely used, can be preferred for reasons of parsimony. Nevertheless, the use of the optimal 
functional form permits to relax the hypothesis of a constant elasticity to the traffic, and to take 
account for certain saturation effects with regard to the traffic. 
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application of structural time series models is the ability to predict or forecast 
further developments of a series into the (unknown) future. This aspect of 
structural time series models is presented in Section 3.6.6. Finally, throughout 
these models will be compared with their equivalent in terms of classical linear 
regression models. These comparisons are particularly easy to make because, 
as will become clear below, classical regression models are easily fitted in the 
framework of structural time series analysis, and are in fact just a subclass of 
these models. 
All the analyses presented below were performed with SsfPack (Koopman, 
Shepard and Doornik (1999)), which is a set of C routines collected in a library 
that can be linked to the Ox matrix programming language of Doornik (2001). In 
the next section we start the presentation with the most simple structural time 
series model: the local level model.   

3.6.1. The local level model 
The first and most simple structural time series model is the local level model. 

3.6.1.1. Research problem 

The research problem addressed with the local level model is how to obtain an 
adequate description of an observed time series. 

3.6.1.2. Dataset 

The dataset in an analysis with the local level model simply consists of only one 
variable: a time series yt consisting of repeated measurements of one and the 
same phenomenon at time points t = 1, …, n. 

3.6.1.3. Model definition 

The local level model is defined as 
 

ttty εμ += ,  ),0(~ 2
εσε NIDt  

          (3.40) 

ttt ξμμ +=+1 , ),0(~ 2
ξσξ NIDt  

 
for t = 1, …, n, where tμ is the unobserved so-called level at time t, tε  is the 
observation error or disturbance at time t, and tξ  is the so-called level error or 
disturbance at time t. In the literature on state space models, the observation 
disturbances tε  are also referred to as the irregular component. The first 
equation in (3.40) is called the observation or measurement equation, while the 
second equation is called the state equation. 
 
The level tμ  in model (3.40) can be conceived of as the equivalent of the 
intercept a in classical linear regression (see Section 3.3.1). Just as the 
intercept of a regression line determines the “height” or level of the regression 
line, so does the level determine the “height” of the state in state space 
modelling. The important difference is that the “height” of a regression line is 
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fixed (i.e. constant over time), whereas the “height” of the state in the local level 
model is allowed to change from time point to time point. 
 
As the measurement equation in (3.40) shows, with this model the observed 
time series is effectively decomposed into two components: the level 
component tμ , and the irregular component tε .  

3.6.1.4. Objectives of the technique 

The objective of the local level model is therefore to establish whether an 
observed time series can be adequately described with a time-varying level 
component.  

3.6.1.5. Model assumptions 

In definition (3.40) the assumptions of the local level model are given 
algebraically by ),0(~ 2

εσε NIDt  and ),0(~ 2
ξσξ NIDt , where NID is a short-hand 

for Normally and Independently Distributed. The observation and level 
disturbances tε  and tξ  are therefore all assumed to be mutually independent, 

and normally distributed with zero means, and variances equal to 2
εσ  and 2

ξσ , 
respectively. 

3.6.1.6. Model fit and diagnostics 

In the remaining part of this section we will first discuss and illustrate what 
happens when the level disturbances tξ  in (3.40) are all fixed on zero, and then 
show the effect of letting the level vary over time. In both cases the same time 
series will be used as already presented in Section 1.2.2: the log of the annual 
number of road traffic fatalities as observed in Norway for the period 1970-2003. 
As already mentioned in Section 1.2.2, the reason that the analysis is applied to 
the log of the fatalities is that the numbers of fatalities themselves are non-
negative count data, meaning that the predicted values obtained with a time 
series analysis should also be non-negative. This is achieved by analysing 
count data in their logarithm, and parallels the use of the log link for count data 
in generalised linear models (see Section 3.3.2).  
 
If the level disturbances tξ  in (3.41) are all fixed on zero (or, equivalently, the 

level disturbance variance 2
ξσ  is fixed on zero), then it is not very difficult to 

show that the local level model simplifies into 
 

 tty εμ += 1 ,  ),0(~ 2
εσε NIDt     (3.41) 

 
for t = 1, …, n. Therefore, in this special situation everything hinges on the value 
of 1μ , which is the value of the level right at the beginning of the time series. 
Once this value is established, it remains constant throughout the remainder of 
the series. In this situation the level is said to be treated deterministically. When 
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the level is allowed to vary over time, on the other hand, it is said to be treated 
stochastically. 
 
Generally, in state space models the value of the unobserved state at the 
beginning of the time series (i.e., at t = 1) is unknown. There are two ways to 
deal with this problem. Either the researcher provides the first value, based on 
theoretical considerations, or some previous research, for example. Or this very 
first value is estimated by the very same procedure that is used to fit the state 
space model at hand. Since nothing is usually known about the initial value of 
the state, the second approach is most often followed in practice, and will be 
used in all further structural time series analyses discussed in the present 
report. In state space modelling, the second approach is called diffuse 
initialisation. 
 
It can be proved that the best estimates for 1μ  and 2

εσ  in model (3.41) are 
 

 ∑
=
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1μ  (3.42) 

 
and 

 
 

(3.43) 
 

 
respectively. This extremely simple structural time series model thus actually 
computes the mean and variance of the observed time series, and the best 
fitting model for (3.40) is simply 
 

( )yyyy tt −+= .        (3.44) 
 
Applying deterministic level model (3.40) to the log of the annual number of road 
traffic fatalities in Norway for the period 1970 through 2003, yields 
 

tty ε+= 5.9323 , 
 
with 0.04858292 =εσ . Thus the mean of this series is 5.9323, and its variance 
equals 0.0485829. For these parameter estimates, the value of the log-
likelihood function that is maximised in state space methods equals 
0.038701012. 
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Figure 3.20: Deterministic level and irregular component for the log of Norwegian 
fatalities. 

 
The level for model (3.41) is displayed at the top of Figure 3.20, together with 
the observed time series. As the figure illustrates, the deterministic level is 
indeed a constant, which does not vary over time. 
 
The bottom graph in Figure 3.20 contains a plot of the observation disturbances 

tε  corresponding to the deterministic level model. As the latter graph shows, 
the disturbances tε  of the deterministic level model are not independently 
distributed at all, but follow a very systematic pattern. In fact, the irregular 
component in Figure 3.20 simply consists of the deviations of the observed time 
series from its mean, as already implied by (3.44). 
 
Diagnostic tests for the assumptions of independence, homoscedasticity, and 
normality of the residuals of the analysis are presented in Table 3.16. For the 
exact definition, computation and interpretation of these diagnostic tests we 
refer to Section 3.3.1. 
 
The value of the autocorrelation at lag 1, which is r(1) = 0.588, exceeds the 95% 
confidence limits of 343.034/2/2 ±=±=± n  for this time series. The high 
amount of dependency between the residuals is also confirmed by the very 
large value of the Q-test in Table 2.26. Since Q(10) = 29.259 and because this 
value is much larger than the critical value of 92.162

)05.0;10( =Χ  (see Table 

3.16), evaluated as a whole the first ten autocorrelations significantly deviate 
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from zero, meaning that the null hypothesis of independence of the residuals 
must be rejected. 
 
The two-tailed H-statistic in Table 3.16 shows that the variance of the first 11 
elements of the residuals is unequal to the variance of the last 11 elements of 
the residuals, because H(11) = 3.661 is larger than the critical value of 

28.3)025.0;11,11( ≈F . This means that the assumption of homoscedasticity of the 
residuals is also not satisfied in the present analysis. 
 
 statistic value critical value assumption 

satisfied
independence Q(10) 29.259 16.92 -
 r(1) 0.588 0.34 -
 r(4) 0.178 0.34 +
homoscedasticity H(11) 3.661 3.28 -
normality N 1.241 5.99 +

Table 3.16: Diagnostic tests for deterministic level model and log of Norwegian 
fatalities. 

 
Finally, since N = 1.241 is smaller than the critical value of 99.52

)05.0;2( =Χ  (see 

Table 3.16), the null hypothesis of normally distributed residuals is not rejected. 
 
Summarising, for the log of Norwegian fatalities series the residuals of the 
deterministic level model neither satisfy the assumption of independence nor 
that of homoscedasticity; only the least important assumption of normality is not 
violated. 
 
In order to compare the different state space models, throughout Section 3.6 the 
Akaike Information Criterion (AIC) will be used: 
 

 [ ])(2log21AIC wqLn
n d ++−= , (3.45) 

 
where n is the number of observations in the time series, dLlog  is the value of 
the diffuse log-likelihood function that is maximised in state space modelling, q 
is the number of initial values in the state, and w is the total number of 
disturbance variances estimated in the analysis. When comparing different 
models with the AIC the following rule holds: smaller values denote better fitting 
models than larger ones. Compared with the more simple maximum log-
likelihood criterion, a very useful property of the AIC criterion is that it 
compensates for the number of estimated parameters in a model, thus allowing 
for a fair comparison between models involving different numbers of 
parameters. 
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In the deterministic level model (3.41) only one variance is estimated ( 2
εσ ), and 

one initial value ( 1μ ). Therefore, the Akaike information criterion for the analysis 
of the log of the number of Norwegian fatalities with the deterministic level 
model equals 
 

( )( ) ( )[ ] 0.040245.11220.03870101342
34
1AIC =++−=  

 
Below, this value will be used for purposes of comparison with other state space 
models. 
 
On the other hand, when the level in (3.40) is allowed to vary over time the 
following results are obtained. For the log of the annual number of Norwegian 
fatalities series, the maximum likelihood estimates of the disturbance variances 
are 0.003268382 =εσ  and 0.00470262 =ξσ , respectively. For these parameter 

estimates, the value of the log-likelihood function equals 0.84686222. 
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Figure 3.21: Stochastic level and irregular component for the log of Norwegian 
fatalities. 

 
The local level for model (3.40) is illustrated at the top of Figure 3.21, together 
with the observed time series. As can be seen in Figure 3.21, when the level is 
allowed to vary over time, the observed time series is recovered quite well. 
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 statistic value  critical value  assumption 
satisfied

independence Q(10) 6.228 16.92 +
 r(1) -0.127 0.34 +
 r(4) -0.105 0.34 +
homoscedasticity 1/H(11) 1.746 3.28 +
normality N 1.191 5.99 +

Table 3.17: Diagnostic tests for local level model and Norwegian fatalities 

 
The irregular component of the local level model applied to the log of Norwegian 
fatalities is displayed at the bottom of Figure 3.21. The diagnostic tests for these 
observation disturbances are given in Table 3.17. In contrast with the 
deterministic level model, the observation disturbances of the local level model 
satisfy all of the distributional assumptions for this model: independence, 
homoscedasticity, and normality. 
  
The disturbance variances of a state space model are often called hyper-
parameters. Since the local level model requires the estimation of two hyper-
parameters ( 2

εσ  and 2
ξσ ), and of one initial value ( 1μ ), the Akaike information 

criterion for this analysis equals 
 

( )( ) ( )[ ] -1.51725.2120.8468622342
34
1AIC =++−=  

 
which is a clear improvement upon the deterministic level model applied to 
these data, since the AIC value for the latter model was 0.040245. It may be 
noted that the addition of a slope component (see Section 3.6.2) to model (3.40) 
does not improve the description of the time series, since this results in an AIC 
value of only -1.28035. 

3.6.1.7. Model interpretation 

A time varying level suffices to provide a good description of the development in 
the log of the annual road traffic fatalities in Norway for the period 1970 through 
2003, yielding residuals that satisfy all the model assumptions. A second more 
general conclusion is that the analysis of a time series with the deterministic 
level model is identical to a classical regression analysis with only an intercept 
in the regression equation. 

3.6.2. The local linear trend model 
In this section we discuss the effects of adding a new component to the local 
level model, called the slope component. The research problem addressed with 
this model is again how to obtain an appropriate description of an observed time 
series. The dataset in an analysis with the local linear trend model again simply 
consists of only one variable: a time series yt consisting of repeated 
measurements of one and the same phenomenon at time points t = 1, …, n. 
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The local linear trend model is obtained by adding a slope component tν  to the 
local level model, and is defined as follows: 
 

ttty εμ += ,   ),0(~ 2
εσε NIDt   

 

tttt ξνμμ ++=+1 ,  ),0(~ 2
ξσξ NIDt     (3.46) 

 
 ttt ζνν +=+1 ,  ),0(~ 2

ςσς NIDt   
 
for t = 1, …, n. The local linear trend model therefore contains two state 
equations: one for modelling the level, and one for modelling the slope. The 
slope tν  in (3.46) can be conceived of as the equivalent of the regression 
coefficient b in the simple classical regression model of yt on time (see also 
Section 6.3.1). Just as the value of b determines the angle of the regression line 
with the x-axis, so does the slope determine the angle of the trend with the x-
axis in state space modelling. Again, the important difference is that the 
regression coefficient or weight b is fixed in classical regression, whereas the 
slope in (3.46) is allowed to change over time. 
 
The objective of the local linear trend model is to establish whether an observed 
time series can be described with a trend consisting of a time-varying level and 
a time-varying slope component.  
 
The assumptions of the local linear trend model (3.46) are that the observation, 
level, and slope disturbances tε , tξ , and tς  are all mutually independent, and 

normally distributed with zero means, and variances equal to 2
εσ , 2

ξσ , and 2
ςσ , 

respectively. 
 
In the remaining part of this section we will first discuss and illustrate the effect 
of fixing all state disturbances tξ  and tς  in (3.46) on zero, and then present the 
effect of allowing the level and slope components to vary over time. In both 
cases the model will be applied to the log of the number of fatalities as observed 
in Finland for the period 1970 through 2003.    
 
Fixing all state disturbances tξ  and tς  in (3.46) on zero, that is, not allowing the 
level and slope component to vary over time, it is not too difficult to verify that 
the linear trend model simplifies into 
 

tt ty ενμ +−+= )1(11 , ),0(~ 2
εσε NIDt     (3.47) 

 
for t = 1, …, n, where the independent or predictor variable (t –1) = 0, 1, ..., n-1 
is time itself, and 1μ  and 1ν  are the initial values of the level and the slope 
components, respectively. 
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Applying the deterministic level and slope model (3.47) to the log of the 
logarithm of the annual number of road traffic fatalities in Finland for the period 
1970 through 2003, we find that 6.87171 =μ , -0.0287331 =ν , and therefore 
 

tt ty ε+−= )1(0.028733-6.8717  
 
with 0.02136032 =εσ . For these maximum likelihood estimates, the value of the 
log-likelihood function is 0.3036367. The latter regression equation can also be 
written as 
 

ttt tty εε +=++= 0.028733-9004.60.0287330.028733-6.8717 . 
 
This is exactly the same result as a classical linear regression of the log of the 
Finnish fatalities on time t = 1, …, n. Thus, treating the level and the slope 
components of the local linear trend model deterministically is the same as 
performing a linear regression of the dependent variable on time. 
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Figure 3.22: Deterministic trend (top), deterministic slope (middle), and irregular 
component for the log of the number of Finnish fatalities. 

 
The best fitting regression line obtained with the deterministic linear trend model 
is shown at the top of Figure 3.22, while the bottom of Figure 3.22 contains the 
graph of the residuals of this classical regression analysis. Just a visual  
inspection of these residuals already reveals that they are not independent of 
one another. 
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 statistic value critical value assumption 

satisfied
independence Q(10) 73.199 16.92 -
 r(1) 0.767 0.34 -
 r(4) 0.271 0.34 +
homoscedasticity 1/H(11) 1.783 3.28 +
normality N 2.226 5.99 +

Table 3.18: Diagnostic tests of residuals deterministic level and slope model for log 
Finnish fatalities. 

 
This is confirmed by the results of the diagnostic tests for the residuals given in 
Table 3.18. The tests for homoscedasticity and normality are satisfactory, but 
the most important assumption of independence is clearly violated. The value of 
the AIC for this analysis is 
 

( )( ) ( )[ ] -0.430803.1220.3036367342
34
1AIC =++−=  

 
Allowing both the level and the slope to vary over time in model (3.46), on the 
other hand, at convergence the value of the log-likelihood function equals 
0.7864746. The value of the AIC for this analysis is therefore 
 

( )( ) ( )[ ] -1.27883.3220.7864746342
34
1AIC =++−=  

 
The maximum likelihood estimates of the variances corresponding to the 
irregular, level, and slope components are 0.003200832 =εσ , 

269.69606E-2 =ξσ , and 0.001533142 =ςσ , respectively. 

 
Since the variance of the level disturbances 2

ξσ  is, for all practical purposes, 
equal to zero, the analysis is repeated with a deterministic level component, 
yielding the following results. 
 
At convergence the value of the log-likelihood function equals 0.7864746. The 
maximum likelihood estimates of the variances of the observation and slope 
disturbances are 0.003200832 =εσ , and 0.001533142 =ςσ , respectively. The 
maximum likelihood estimates of the values of the level and the slope right at 
the start of the series are 7.01331 =μ and 0.00684821 =ν . 
 
The trend (consisting of a deterministic level and a stochastic slope) of this 
analysis is displayed at the top of Figure 3.23, while the stochastic slope is 
shown separately in the middle of the figure. Since the time varying slope 
component in Figure 3.23 models the rate of change in the series, it can be 
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interpreted as follows. When the slope component is positive, the trend in the 
series is increasing. Thus, log of the number of fatalities in Finland was 
increasing in the years 1970, 1982, 1984 through 1988, and in 1998 (see Figure 
3.23). On the other hand, the trend is decreasing when the slope component is 
negative. The log of the number of fatalities in Finland was therefore decreasing 
in the remaining years of the series. 
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Figure 3.23: Trend of deterministic level and stochastic slope model for the log of 
Finnish fatalities (top), stochastic slope component (middle), and irregular component 
(bottom). 

 
Moreover, when the slope is positive and increasing then the increase becomes 
more and more pronounced, while the increase becomes less and less 
pronounced (i.e., levels off) when the slope is positive but decreasing. 
Conversely, when the slope is negative and decreasing then the decrease 
becomes more and more pronounced, while the decrease levels off when the 
slope is negative but increasing. 
 
The irregular component of this analysis is shown at the bottom of Figure 3.23, 
and the diagnostic tests for the residuals of the analysis are given in Table 3.19. 
As the table shows, the assumptions of independence, homoscedasticity, and 
normality are all satisfied, indicating that the deterministic level and stochastic 
slope model yields an appropriate description of the log of the annual traffic 
fatalities in Finland. 
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 statistic value critical value assumption 

satisfied
independence Q(10) 7.044 16.92  +
 r(1) -0.028 0.34 +
 r(4) -0.094 0.34 +
homoscedasticity 1/H(11) 1.348 3.28 +
normality N 0.644 5.99  +

Table 3.19: Diagnostic tests for deterministic level and stochastic slope model, and log 
Finnish fatalities.   

 
The Akaike information criterion for the deterministic level and stochastic slope 
model equals 
 

( )( ) ( )[ ] -1.33766.2220.7864746342
34
1AIC =++−=  

 
Thus, the fit of this model is slightly better than the fit of a model with stochastic 
level and stochastic slope. Since the log-likelihood values are identical for the 
two models, the improved fit of the second model can be completely attributed 
to its greater parsimony. The model with a deterministic level and stochastic 
slope is also called the smooth trend model, reflecting the fact that the trend of 
such a model is relatively smooth compared to a trend with a level disturbance 
variance unequal to zero. 
 
Concluding, a smooth trend model with a constant level and a time-varying 
slope component yields a good description of the log of the annual road traffic 
fatalities in Finland for the period 1970 through 2003.  
 
As the present section illustrates, the deterministic linear trend model actually 
performs a classical linear regression analysis of the dependent variable on the 
predictor variable time. This is an important and very useful result. By way of the 
Akaike information criterion, and of the residual tests for independence, 
homoscedasticity, and normality, this allows for a straightforward, fair and 
quantitative assessment of the relative merits of state space methods and 
classical regression models when it comes to the analysis of time series data. 
The reverse is also true: the state space models discussed in Section 3.6 are 
regression models in which the parameters (intercept and regression 
coefficient(s)) are allowed to vary over time. 
 
In the following section, the effects of adding yet another component to the state 
are discussed: the seasonal. 

3.6.3. The local linear trend plus seasonal model 
Whenever a time series consists of hourly, daily, monthly, or quarterly 
observations with respective periodicity of 24 (hours), 7 (days), 12 (months), or 
4 (quarters), one should always be on the alert for a special type of recurring 
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pattern, called a seasonal. As an example, consider the plot of the log of the 
monthly number of drivers killed or seriously injured (KSI) in the United Kingdom 
(UK) for the period January 1969 through December 1984 in Figure 3.24. In the 
figure, vertical lines have been added through each year in the observed time 
series. 
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Figure 3.24 Log of monthly number of UK drivers KSI with time lines for years. 

 
Inspecting the monthly development for each year in Figure 3.24, the following 
regularity emerges: in every year in this series more drivers are killed or 
seriously injured at the end of the year than during the rest of the year. 
 
The research problem addressed in this section is how to obtain an appropriate 
description of an observed time series when it contains a seasonal pattern. The 
dataset in such an analysis still consists of only one variable: a time series yt 
consisting of repeated measurements of one and the same phenomenon at time 
points t = 1, …, n. 
 
In state space methods, a seasonal can be modelled by adding it either to the 
local level model or to the local linear trend model. Temporarily assuming 
quarterly data, adding a seasonal to the local linear trend model takes the 
following form: 
 

tttty εγμ ++= ,1 ,   ),0(~ 2
εσε NIDt    
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tttt ξνμμ ++=+1 ,   ),0(~ 2
ξσξ NIDt  

 
 ttt ζνν +=+1 ,   ),0(~ 2

ςσς NIDt  
           (3.48) 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 , ),0(~ 2
ωσω NIDt  

 
tt ,11,2 γγ =+ , 

 
tt ,21,3 γγ =+ , 

 
for t = 1, ..., n, where t,1γ  denotes the seasonal component. The disturbances 

tω  in (3.48) allow the seasonal to change over time. 
 
In contrast with the level and slope components, which each only require one 
state equation, the modelling of a seasonal generally requires (s-1) state 
equations, where s is the periodicity of the seasonal. For quarterly data (where s 
= 4), for example, three state equations are needed, as is shown in (3.48). 
Irrespective of its periodicity, the seasonal always satisfies 
 

∑
=

=
s

j
j

1
,1 0γ , (3.49) 

 
thus ensuring that the seasonal is not confounded with the other components of 
the model. The type of seasonal that is modelled in (3.48) is called a dummy 
seasonal. There are other ways in which the seasonal component can be 
specified, one of them being the trigonometric seasonal. For the latter and other 
specifications of the seasonal we refer to Durbin and Koopman (2001), as these 
specifications are beyond the scope of the present report. 
 
The objective of the local linear trend and seasonal model is to establish 
whether an observed time series containing a seasonal pattern can be 
described with a trend consisting of a time-varying level and a time-varying 
slope component, and a time-varying seasonal component.  
 
The assumptions of the local linear trend and seasonal model (3.48) are that the 
observation, level, slope, and seasonal disturbances tε , tξ , tς , and tω  are all 
mutually independent, and normally distributed with zero means, and variances 
equal to 2

εσ , 2
ξσ , 2

ςσ , and 2
ωσ , respectively. 

 
As before, in the remaining part of this section we will first discuss and illustrate 
the effect of fixing all state disturbances tξ , tς , and tω  in (3.48) on zero, and 
then present the effect of letting the level, slope, and seasonal components vary 
over time. 
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When the state disturbances tξ , tς , and tω  in (3.48) are all fixed on zero, the 
model reduces to the following deterministic model: 
 

t
s

i
tit ty εγνμ +−−+= ∑

−

=
−

1

1
1,11 )1( , ),0(~ 2

εσε NIDt .   (3.50) 

 
Applying the latter model to the series shown in Figure 3.24 (with eleven instead 
of four state equations for the seasonal, since the UK series consists of monthly 
instead of quarterly data) the following results are obtained. The maximum 
likelihood estimate of 2

εσ  equals 0.00981585, and the value of the log-likelihood 
function is 0.69830186. The values of 1μ  and 1ν  are 7.5540 and -0.00155, 
respectively. Thus for these data we obtain 
 

t
s

i
tit ty εγ +−−= ∑

−

=
−

1

1
1,)1(0.00155- 7.5540 ,  

 
which can also be written as 
 

t
s

i
tit ty εγ +−= ∑

−

=
−

1

1
1,0.00155- 7.5556 . 

 
We do not mention the estimates for the eleven initial values of the dummy 
seasonal because these are not very informative in the present context.   
 
The deterministic trend (which is the part equal to 7.5556-0.00155t in the just 
mentioned equation) of the analysis is shown at the top left of Figure 3.25, 
which also contains plots of the deterministic slope (top right), the deterministic 
seasonal (bottom left), and the irregular component (bottom right). The 
diagnostic tests in Table 3.20 of the irregular component in Figure 3.25 indicate 
that the residuals of this completely deterministic model neither satisfy the 
assumption of independence nor that of normality. 
 
Since only one hyper-parameter was estimated ( 2

εσ ), and a total of thirteen 
initial values for the state (i.e., one for the level, one for the slope, and eleven 
for the seasonal component), the Akaike information criterion for the completely 
deterministic trend and seasonal model equals 
 

( )( ) ( )[ ] -1.25077.11320.698301861922
192

1AIC =++−=  

 
In the previous sections it was found that deterministic state space models are 
identical to some form of classical regression analysis. This suggests that the 
deterministic level, slope, and seasonal model must also have its counterpart in 
classical regression analysis. This is indeed the case. Results identical to those 
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of the deterministic level, slope, and seasonal model presented above are 
obtained by performing the following classical multiple regression analysis. 
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Figure 3.25: Deterministic trend (top left), deterministic slope (top right), deterministic 
seasonal (bottom left), and irregular component (bottom right) of deterministic trend 
and seasonal model for log UK drivers KSI. 

 
Eleven dummy variables are constructed as follows. The first dummy variable is 
coded eleven (i.e., s-1) whenever an observation in the time series falls in the 
month of January, and minus one for all the other months of the year. The 
second dummy variable is coded eleven whenever an observation in the time 
series falls in the month of February and minus one elsewhere. And so on, until 
the eleventh and last dummy variable, which is coded eleven for the month of 
November and minus one elsewhere. A classical multiple regression analysis 
with the log of UK drivers KSI as dependent variable, and time t and these 
eleven dummy variables as independent variables yields the same results as 
those in Figure 3.25: the sum of the eleven dummy variables weighted by their 
respective regression coefficients is identical to the seasonal shown at the 
bottom left of Figure 3.25. The estimates for the intercept and for the regression 
coefficient for the independent variable time t are 7.5556 and –0.00155, 
respectively, meaning that the linear trend is identical to the linear trend in the 
top left of the figure. The residuals, finally, are therefore identical to those shown 
at the bottom right of Figure 3.25. 
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 statistic  value  critical value  assumption 

satisfied
independence Q(15) 180.100 25.00  -
 r(1) 0.504 0.14 -
 r(12) 0.158 0.14 -
homoscedasticity 1/H(60) 1.008 1.67 +
normality  N 7.655 5.99  -

Table 3.20: Diagnostic tests for deterministic trend and seasonal model for log UK 
drivers KSI. 

 
Allowing the level, slope and seasonal components in (3.48) all to vary over 
time, on the other hand, the following results are obtained. The algorithm 
converges to a log-likelihood value of 0.95650011, with disturbance variances 

0.003467832 =εσ , 0.001000942 =ξσ , 526.74681E-2 =ςσ , and 

0257.28648E-2 =ωσ . The values of 1μ  and 1ν  are 7.4133 and -0.00090532, 
respectively. Since the analysis requires the estimation of four hyper-
parameters (i.e., disturbance variances), the Akaike information criterion now 
equals 
 

( )( ) ( )[ ] -1.7359241320.956500111922
192

1AIC =++−= , 

 
which is a big improvement upon the deterministic trend and seasonal model 
discussed above. 
 
Since the slope and seasonal disturbance variances 2

ςσ and 2
ωσ  are found to be 

extremely small in the last analysis, these two components probably may as 
well be treated deterministically. This is confirmed by performing an analysis 
where the slope and seasonal disturbances tς  and tω  in (3.48) are all fixed on 
zero. At convergence the value of the log-likelihood function is still 0.95650011, 
as before, while the maximum likelihood estimates of the disturbance variances 
are now 0.003467572 =εσ  and 0.00100112 =ξσ . The values of 1μ  and 1ν  are 

now 7.4133 and -0.00090531, respectively. For this model, the Akaike 
information criterion equals 
 

( )( ) ( )[ ] -1.7567521320.956500111922
192

1AIC =++−= , 

 
which is a slight improvement upon the previous model. Since the values of the 
log-likelihood functions are for the two models are identical, this slight 
improvement can completely be attributed to the greater parsimony of the last 
model. 
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Finally, since the slope component is not only found to be best treated 
deterministically, but also obtains the fixed very small value of -0.00090531, we 
may consider completely dropping the slope component from the structural time 
series analysis of the log of the UK drivers KSI series. This yields the following 
results. Treating the level component stochastically and the dummy seasonal 
component deterministically, at convergence the value of the log-likelihood 
function equals 0.98299654. The value of 1μ  is 7.4118, and the maximum 
likelihood estimate of the variance of the irregular component is 

0.003513852 =εσ , and that of the level component equals 30.000945722 =ξσ . 

This implies that the Akaike information criterion now equals 
 

( )( ) ( )[ ] -1.82016.21220.982996541922
192

1AIC =++−=   

 
The latter value of the AIC for the local level and deterministic dummy seasonal 
model is the smallest of all the seasonal models discussed so far, which is the 
reason why we keep it as the best model for describing the log of the UK drivers 
KSI series. 
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Figure 3.26: Stochastic level (top left), deterministic seasonal (top right), the seasonal 
for 1969 (bottom left), and irregular component (bottom right) for stochastic level and 
deterministic seasonal analysis of log of UK drivers KSI. 

 
The three components of the latter analysis are all displayed in Figure 3.26. 
Moreover, the figure also contains a blown-up version of the dummy seasonal 
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for the first year of the series, clearly indicating that April is the safest month for 
drivers in the UK, while December is the most dangerous month. Since the 
seasonal was treated deterministically in this analysis, this pattern is identical 
for all the other years in the series. 
 
Finally, the diagnostic tests in Table 3.21 indicate that the residuals of this best 
fitting model satisfy all of the assumptions of the model, although the test for 
normality seems somewhat close to the critical value. 
 
 statistic value critical value assumption 

satisfied
independence Q(15) 14.370 23.68  +
 r(1) 0.040 0.14 +
 r(12) 0.033 0.14  +
homoscedasticity H(60) 1.093 1.67  +
normality N 5.157 5.99 +

Table 3.21: Diagnostic tests for stochastic level and deterministic dummy seasonal 
analysis of log of UK drivers KSI. 

 
Concluding, a stochastic level and deterministic seasonal model yields the best 
description of the log of the monthly number of UK drivers killed or seriously 
injured for the period 1969 through 1984.    
 
So far, state components have been discussed that are useful for obtaining an 
adequate description of a time series. In the next two sections those 
components are presented that can be used to also obtain explanations for the 
observed developments in a time series. 

3.6.4. Intervention variables 
Apart from the diagnostic tools discussed in the previous sections for testing the 
assumptions of independence, homoscedasticity, and normality of the residuals 
in time series analysis, a second important diagnostic tool for determining the 
appropriateness of a model is provided by the inspection of its so-called 
auxiliary residuals. These auxiliary residuals are standardised versions of the 
observation disturbances tε  and of the state disturbances tξ , tς , tω , etc. 
Inspection of the standardised observation disturbances allows for the detection 
of possible outlier observations, while the inspection of the standardised state 
disturbances makes it possible to detect structural breaks in the underlying 
development of a time series. 
 
For the stochastic level and deterministic dummy seasonal model applied to the 
log of the UK drivers KSI series (see Section 3.6.3) for example, the 
standardised level disturbances of the analysis are presented at the top of 
Figure 3.27, while the standardised observation disturbances are shown at the 
bottom of the same figure. 
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Each of the auxiliary residuals at the top of Figure 3.27 can be considered as a 
t-test for the null hypothesis that there was no structural break in the level of the 
observed time series. The usual 95% confidence limits of ±1.96 for a two-tailed 
t-test are shown in the figure as two parallel horizontal lines. The auxiliary 
residuals exceed these limits at five time points, which is less than the n/20 = 
192/20 ≈ 10 that we would expect purely based on chance for this series. Still, 
the value of the residual for January 1983 particularly stands out as being very 
extreme.         
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Figure 3.27: Auxiliary residuals for the stochastic level and deterministic seasonal 
model applied to the log of the UK drivers KSI series. 

 
Similarly, each of the auxiliary residuals at the bottom of Figure 3.27 can be 
considered as a t-test for the null hypothesis that the corresponding observation 
is not an outlier. Only seven out of the 192 observations exceed the 95% 
confidence limits of ±1.96, which is less than the ten that we would expect 
according to chance. Since, moreover, none of these are very extreme we 
conclude that the series does not contain outlier observations. 
 
Summarising, inspection of the auxiliary residuals of the stochastic level and 
deterministic seasonal model applied to the log of the UK drivers KSI series 
suggests that there was a shift in the level in January 1983. This coincides with 
an actual event in the United Kingdom, which was the obligation from February 
1983 onwards for motor vehicle drivers and front seat passengers to wear a 
seat belt. 
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The effect of the introduction of this seat belt law can be investigated by adding 
a so-called intervention variable to the model at hand. There are several ways in 
which an intervention can affect the development of a time series. One possible 
effect is that of a level shift, where the level of the time series suddenly changes 
and this level change continues after the intervention. A second possible effect 
is that of a shift in the slope component, where the value of the slope shows a 
continuous change after the intervention. A third possible effect is that of a 
pulse, where the value of a state component suddenly changes at the moment 
of the intervention, but then returns back to its previous value, in which case the 
effect is only temporary.  
 
Since the auxiliary residuals in Figure 3.27 suggest a break in the level of the 
log of the UK drivers KSI, we will add a level shift intervention variable to the 
level and seasonal model discussed in the previous section. 
 
The research problem addressed in this section is how to assess the effect of 
an intervention variable on a time series. The dataset in such an analysis now 
contains two variables: a dependent variable yt which is a time series as before, 
and an independent intervention variable which we will denote by tw . 
 
The level, the seasonal, and the level shift intervention variable for the 
introduction of the seat belt law in February 1983 are combined into the 
following state space model: 
 

tttttt wy ελγμ +++= ,1 ,  ),0(~ 2
εσε NIDt  

 

ttt ξμμ +=+1 ,   ),0(~ 2
ξσξ NIDt  

 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 , ),0(~ 2
ωσω NIDt  

           (3.51) 
tt ,11,2 γγ =+ , 

 
tt ,21,3 γγ =+ , 

 
 ttt ρλλ +=+1 ,   ),0(~ 2

ρσρ NIDt  
 

 
for t = 1, …, n, where tw  is a dummy variable consisting of zeroes at all time 
points before the introduction of the seat belt law in February 1983, and ones at 
time points at and after the introduction in February 1983. To keep the number 
of state equations low, we present model (3.51) as if we are dealing with 
quarterly data. In reality, however, there are thirteen state equations involved: 
one for the level, one for the regression coefficient tλ  of the intervention 
variable, and eleven for the seasonal. It may be noted that, although it would be 
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technically possible to treat the regression component in the last state equation 
of (3.51) stochastically, in practice this is never done when dealing with 
intervention variables. 
 
The objective of the local level and seasonal model with an intervention variable 
is to establish the type, size and significance of the effect of the intervention 
variable on the development of an observed time series containing a seasonal 
pattern.  
 
The assumptions of the local level and seasonal model (3.51) are that the 
observation, level, seasonal, and intervention disturbances tε , tξ , tω , and tρ  
are all mutually independent, and normally distributed with zero means, and 
variances equal to 2

εσ , 2
ξσ , 2

ωσ , and 2
ρσ , respectively. 

 
In the remaining part of this section we will first discuss and illustrate the effect 
of fixing all state disturbances tξ , tω , and tρ  in (3.51) on zero, and then 
present the effect of letting the level component vary over time.  
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Figure 3.28: Deterministic level plus intervention variable (top), deterministic seasonal 
(middle), and irregular component (bottom) for the log of the UK drivers KSI series . 

 
Treating all the state components in (3.51) deterministically, it is not very difficult 
to prove that the model simplifies into the following classical regression model: 
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tt
s

i
tit wy ελγμ ++−= ∑

−

=
− 1

1

1
1,1 , ),0(~ 2

εσε NIDt .   (3.52) 

 
Estimating model (3.52) by fixing all the state disturbances in (3.51) on zero, the 
value of the log-likelihood function equals 0.71553091. The optimal values of 1μ  
and 1λ  are 7.4373 and -0.26075, respectively, and the maximum likelihood 

estimate of the irregular variance is 0.01001882 =εσ . The best fitting classical 
regression model can therefore be written as 
 

tt
s

i
tit wy εγ +−= ∑

−

=
− 0.26075- 7.4373

1

1
1, . 

 
The effect of the intervention variable on the deterministic level of the model is 
clearly seen in the top graph in Figure 3.28. The level which is equal to 7.4373 
until January 1983 suddenly shifts down to the value of 7.4373 - 0.26075 = 
7.17655 in February 1983. Since the dependent variable is analysed in its 
logarithm, the following formula must be used to re-express the level change in 
a percentage change in the absolute numbers of drivers KSI: 
 
 0.229511 26075.01 −=−=− −eeλ , 
 
meaning that -according to this model- the introduction of the seat belt law 
resulted in a change of (100)(-0.2295) = -23% in the number of drivers KSI.  
 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.28523.11320.715530911922
192

1AIC =++−=   

 
The latter value of the AIC indicates that the deterministic level and dummy 
seasonal model with intervention variable yields a much better fit than the 
deterministic level and dummy seasonal model without intervention variable, 
which results in an AIC value of only -0.792879. 
 
 statistic value critical value assumption 

satisfied
independence Q(15) 524.110 23.68 -
 r(1) 0.604 0.14  -
 r(12) 0.402 0.14  -
homoscedasticity 1/H(60) 1.475 1.67  +
normality  N 3.604 5.99  +

Table 3.22: Diagnostic tests for deterministic level and seasonal analysis of log of UK 
drivers KSI, including intervention variable. 
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The standard t-test for establishing whether the regression coefficient 
-0.260751 =λ  deviates from zero yields 

 

49-11.704720
2680.02227747
080.26075159-

==t ,     (3.53) 

 
which is very significant. In order to investigate whether this test is reliable, we 
must also check whether the model assumptions of independence, 
homoscedasticity and normality of the residuals are satisfied. However, as 
Table 3.22 indicates, the residuals do not satisfy the most important assumption 
of independence, meaning that the value of the just mentioned t-test (and 
especially the value of the standard error in the denominator) can not be 
trusted, and is probably much too large (since the first autocorrelation r(1) is 
positive).  
 
If we allow the level component in model (3.51) to vary over time, on the other 
hand, at convergence the value of the log-likelihood function equals 1.0168174. 
The maximum likelihood estimates of 1μ  and 1λ  are 7.4108 and -0.23981, 
respectively, and the maximum likelihood estimates of the irregular and level 
variances are 0.003783972 =εσ  and 60.000473512 =ξσ , respectively. 

 
The estimated effect of the seat belt law re-expressed in the percentage change 
in the absolute numbers of drivers KSI is now 
 
 0.213211 0.239811 −=−=− −eeλ , 
 
meaning that -according to this model- the introduction of the seat belt law 
resulted in a change of (100)(-0.2132) = -21.3% in the number of UK drivers 
KSI. 
 
The Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.87738.21321.01681741922
192

1AIC =++−=   

 
The latter value of the AIC for the local level and deterministic dummy seasonal 
model including a level shift intervention for the introduction of the seat belt law 
is smaller than that for the same model without intervention variable which is 
-1.82016 (see the previous section). This means that the intervention variable 
for the seat belt law improves the fit. 
 
Whether the contribution of the intervention variable is significant can again be 
tested with the standard t-test for the regression coefficient -0.239811 =λ , 
yielding 
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-4.5187
8830.05307021

60.23980675-
==t .      (3.54) 

 
The value of the latter t-test is still very significant, but in absolute terms it is 
much smaller than the value of the t-test (2.65) in the previous completely 
deterministic model. 
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Figure 3.29: Stochastic level plus intervention variable (top) 

 
The stochastic level plus intervention variable is shown in Figure 3.29, together 
with the deterministic dummy seasonal, and the irregular component. The 
diagnostic tests for the model assumptions are given in Table 3.23. Since all 
three assumptions are satisfied in the present analysis, we can now rest 
assured that the t-test in (3.54) is a reliable test.   
 
 statistic value  critical value  assumption 

satisfied
independence Q(15) 17.928 23.68 +
 r(1) 0.080 0.14 +
 r(12) 0.085 0.14 +
homoscedasticity 1/H(60) 1.639 1.67 +
normality  N 2.928 5.99 +

Table 3.23: Diagnostic tests for stochastic level and dummy seasonal analysis of log of 
UK drivers KSI, including intervention variable. 
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In Figure 3.30, we have again plotted the auxiliary residuals of the local level 
and deterministic seasonal model applied to the log of the UK drivers KSI, but 
now including the intervention variable for the introduction of the seat belt law. It 
is interesting to note that the large extreme value that was previously found in 
January 1983 for the standardised level disturbances (see Figure 3.31) has now 
completely disappeared. This is the effect of adding the intervention variable to 
the model.    
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Figure 3.30: Auxiliary residuals for the stochastic level and deterministic seasonal 
model applied to the log of the UK drivers KSI series, including a level shift intervention 
variable for the introduction of the seat belt law. 

 
Concluding, the fit of the stochastic level and deterministic seasonal model that 
yields the best description of the log of the monthly number of UK drivers killed 
or seriously injured for the period 1969 through 1984 can significantly be 
improved by adding a level shift intervention variable to the model, where the 
level shift is applied to February 1983 in the series, the month that the seat belt 
law for drivers and front seat passengers was introduced in the UK. Moreover, 
the analysis suggests that the introduction of the seat belt law resulted in a 
21.3% reduction in the number of UK drivers KSI. 
 
Finally, when comparing the value of the t-test for the regression coefficient of 
the intervention variable in a completely deterministic (i.e., classical regression) 
model with that in the stochastic level model, we see that the former test is 
seriously flawed due to the remaining dependencies in the residuals of the 
classical regression analysis. In fact, compared to the t-test of the stochastic 
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model the absolute value of the test in the classical regression analysis is 
11.7/4.5 = 2.6 times too large. 

3.6.5. Explanatory variables 
Apart from binary intervention variables, it is also possible to investigate the 
effects of continuous explanatory variables on the development of a time series, 
which is the research problem addressed in the present section. Just like 
intervention variables, explanatory variables can simply be added to the 
measurement equation of any of the state space models discussed so far. If 
they are added to the local level and seasonal model with an intervention 
variable, for example, then the measurement equation is: 
 

t
k

j
jtjtttttt xwy εβλγμ ∑

=
++++=

1
,1 , (3.55) 

where the jx  are k continuous explanatory variables (j = 1, …, k), and the jβ  
are unknown regression weights or coefficients. The dataset in such an analysis 
consists of the dependent variable yt which is a time series as before, an 
independent intervention variable tw , and the k continuous independent 
variables jx  which are all time series as well.    
 
We will illustrate the effect of explanatory variables by adding one continuous 
explanatory variable to the time series analysis of the log of the UK drivers KSI 
series shown in Figure 3.24. This continuous variable consists of the log of the 
monthly prices of petrol in the UK in the period 1969 through 1984. The idea is 
that higher petrol prices may have induced UK car drivers to circulate less in 
traffic, thus reducing the number of traffic accidents. We also keep the same 
intervention variable in the model that was used in the previous section: the 
introduction of the seat belt law in February 1983 in the United Kingdom. 
 
The level, the dummy seasonal, the introduction of the seat belt law, and the log 
of petrol price are combined into the following state space model: 
 

tttttttt xwy εβλγμ ++++= ,1 ,  ),0(~ 2
εσε NIDt  

 

ttt ξμμ +=+1 ,    ),0(~ 2
ξσξ NIDt  

 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 ,  ),0(~ 2
ωσω NIDt  

 
tt ,11,2 γγ =+ ,         (3.56) 

 
tt ,21,3 γγ =+ , 

 
 ttt ρλλ +=+1 ,    ),0(~ 2

ρσρ NIDt  
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 ttt τββ +=+1 ,    ),0(~ 2

τστ NIDt  
 
for t = 1, …, n, where tw  again contains zeroes at all time points before 
February 1983, and ones at time points at and after February 1983, and tx  is 
the continuous predictor variable ‘log petrol price'. Again, the model (3.56) is 
presented as if we are dealing with quarterly data. In reality, however, there are 
fourteen state equations involved: one for the level, two for the regression 
coefficients tλ  and tβ of the intervention and explanatory variables tw  and tx , 
respectively, and eleven for the seasonal. It may be noted that state space 
methods allow for a stochastic treatment of the regression component in the last 
state equation of (3.56), thus allowing the regression coefficient to vary over 
time. Here, however, we will only consider deterministic regression components.  
 
The objective of the local level and seasonal model with an intervention variable 
and a continuous explanatory variable is to establish the type, size and 
significance of the effects of both the intervention variable and the explanatory 
on the development of an observed time series containing a seasonal pattern.  
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Figure 3.31: Deterministic level plus intervention and explanatory variable (top), 
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK 
drivers KSI series . 

 
The assumptions of model (3.56) are that the observation, level, seasonal, 
intervention, and explanatory disturbances tε , tξ , tω , tρ , and tτ  are all 
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mutually independent, and normally distributed with zero means, and variances 
equal to 2

εσ , 2
ξσ , 2

ωσ , 2
ρσ , and 2

τσ , respectively. 
 
In the remaining part of this section we will first discuss and illustrate the effect 
of fixing all state disturbances tξ , tω , tρ , and tτ  in (3.56) on zero, and then 
present the effect of letting the level component vary over time. 
 
Treating all the state components deterministically, the value of the log-
likelihood function equals 0.84903819. The maximum likelihood estimates of 

1μ , 1λ , and 1β  are 6.4016, -0.19714, and -0.45213, respectively, and the 

maximum likelihood estimate of the irregular variance is 0.007402232 =εσ .  
 
The model therefore reduces to a classical regression model with regression 
equation 
 

ttt
s

i
tit xwy εγ +−−−= ∑

−

=
− 0.452130.19714 6.4016

1

1
1, . 

 
The plot of the deterministic level plus intervention and explanatory variables is 
shown in Figure 3.31, together with the fixed dummy seasonal and the irregular 
component. 
 
Since exp(-0.19714) – 1 = -0.1789, according to the present analysis the seat 
belt law resulted in a 17.9% reduction in the number of drivers KSI. Since the 
variables ‘number of drivers KSI’ and ‘petrol price’ are both analysed in their 
logarithms, the regression coefficient 1β may be interpreted as a so-called 
elasticity, meaning that a 1% change in the petrol price is associated with a 

1β % change in the number of drivers KSI. If the present analysis were correct, 
therefore, the conclusion would be that a 1% raise in the price of petrol was 
associated with a 0.45% reduction (since 1β  is negative) in the number of 
drivers KSI. A nice property of analysing both the number of drivers KSI and the 
price of petrol in their logarithms is that the value of the elasticity 1β remains 
unchanged when the number of drivers KSI is multiplied with a positive number 
and/or when the price of petrol is multiplied with a positive number. 
 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.5418311420.849038191922
192

1AIC =++−= ,  

 
which is a clear improvement upon the completely deterministic model without 
‘log petrol price’.  
 
The standard t-test for establishing whether the regression coefficient 

-0.197141 =λ  for the intervention variable deviates from zero yields 
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29.51098302
0030.02072756

160.19713947
−=

−
=t , 

 
which is very significant. The standard t-test for establishing whether the 
regression coefficient -0.452131 =β  for the continuous variable ‘log petrol 
price’ deviates from zero yields 
 

78.01704601
9760.05639609

70.45213012
−=

−
=t , 

 
which is also very significant. 
 
 statistic value critical value assumption 

satisfied
independence Q(15) 147.020 23.68 -
 r(1) 0.426 0.14 -
 r(12) 0.198 0.14  -
homoscedasticity 1/H(59) 1.110 1.67 +
normality N 0.560 5.99 +

Table 3.24: Diagnostic tests for deterministic level and dummy seasonal analysis of log 
of UK drivers KSI, including variables seat belt law and log petrol price. 

 
However, before drawing any conclusions we must also check whether the 
residuals satisfy the model assumptions. As Table 3.24 indicates, the most 
important assumption of independence is clearly violated in this classical 
regression model, meaning that the values of the just mentioned t-tests are 
seriously inflated since r(1) is positive.  
 
Allowing the level component to vary over time, at convergence the value of the 
log-likelihood function equals 1.0265254. The estimates for 1μ , 1λ , and 1β  are 
6.7814, -0.23759, and -0.27674, respectively. The maximum likelihood estimate 
of the irregular variance is 0.004033942 =εσ , and that of the level variance is 

20.000268082 =ξσ . Thus, the measurement equation can be written as 

 

ttt
s

i
titt xwy εγμ +−−−= ∑

−

=
− 0.276740.23759 

1

1
1, . 

 
Graphs of the components of the analysis are shown in Figure 3.32. 
 
The percent change in the number of drivers KSI due to the seat belt law is now 
estimated to be equal to (100)(ex(-0.23759) - 1) = -21.1%, while a 1% raise in 
the petrol price is now associated with a 0.28% reduction in the number of 
drivers KSI. 
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Figure 3.32: Stochastic level plus intervention and explanatory variables (top), 
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK 
drivers KSI series . 

 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.8863821421.02652541922
192

1AIC =++−= , 

 
meaning that this is the best fitting of all the models that were used to analyse 
the log of the UK drivers KSI series. 
 
The standard t-test for establishing whether the regression coefficient 

-0.237591 =λ  deviates from zero yields 
 

75.11535385
6270.04644589

460.23758719
−=

−
=t , 

 
which is significant. The standard t-test for establishing whether the regression 
coefficient -0.452131 =β  deviates from zero yields 
 

52.81221240
4280.09840666

20.27674044
−=

−
=t , 

 
which is also significant. 
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 statistic value critical value assumption 

satisfied
independence Q(15) 18.676 23.68 +
 r(1) 0.078 0.14 +
 r(12) 0.068 0.14 +
homoscedasticity 1/H(59) 1.025 1.67 +
normality N 1.444 5.99 +

Table 3.25: Diagnostic tests for stochastic level and dummy seasonal analysis of log of 
UK drivers KSI, including variables seat belt law and log petrol price. 

 
As Table 3.25 shows, all the model assumptions are satisfied in the present 
analysis, meaning that the t-tests for the regression coefficients are no longer 
flawed in this case. 
 
Concluding, adding the continuous explanatory variable ‘log petrol price’ to the 
stochastic level and deterministic seasonal model with a level shift intervention 
variable also helps in explaining the observed development in the log of the 
monthly number of UK drivers KSI series. 
 
As before, keeping the intercept (i.e., the level) fixed over time results in 
residuals that do not satisfy the assumption of independence, and therefore in 
inflated t-tests for the regression coefficients. Allowing the intercept to vary over 
time, on the other hand, all model assumptions are satisfied, and the t-tests are 
now reliable. Comparing the t-tests with a fixed intercept with those with a time-
varying intercept, we see that –in absolute value- the test for the regression 
coefficient of the intervention variable is almost two times too large, while that 
for regression coefficient of the log of petrol price is almost three times too 
large. 
 
In the appropriate model the values of the regression coefficients indicate that 
the seat belt law resulted in a 21.1% reduction in the number of UK drivers KSI, 
while a 1% raise in the price of petrol was associated with a 0.28% reduction in 
the number of drivers KSI. We finally note that the estimated effect of a 21.1% 
reduction as a result of the seat belt law in the present analysis is almost 
identical to the value of 21.3% found with the model without the explanatory 
variable ‘log petrol price’ (see the previous section). 
 
Until now we have focused on the descriptive and explanatory aspects of state 
space methods. In the next section we will discuss the issue of forecasting with 
structural time series models. 

3.6.6. Forecasting 
For a proper understanding of forecasting in state space methods, we first need 
to mention that the state components of state space models can be estimated in 
a number of ways. In all the previous sections on the theory of state space 
methods we have presented that estimate of the state that is known as the 
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smoothed state. The smoothed state at time t is typically based on all available 
observations in the time series, therefore including those observations yt+1, …, 
yn that occurred after time point t. 
 
A second type of estimate is the so-called filtered state. The filtered state at time 
t is the estimate of the state only based on all past observations y1, …, yt-1, ànd 
on the current observation yt. 
 
The third type of estimate is the so-called predicted state. The predicted state at 
time t is the estimate of the state purely based on all past observations y1, …, 
yt-1. This last type of estimate typically yields forecasts as they are obtained with 
state space methods. It is interesting to note that forecasts in structural time 
series analysis are actually obtained by treating the future observations in a 
series as missing. 
 
In Chapter 1 we already presented one example of forecasting with state space 
methods. As mentioned in Section 1.2.2, the local level model yields the most 
appropriate description for the log of the annual number of road traffic fatalities 
in Norway in the period 1970-2003. The local level model was therefore also 
used to obtain the forecasts for the log of the annual number of road traffic 
fatalities in Norway in the period 2004-2010 displayed in Figure 1.7. As the latter 
figure shows, forecasts of the local level model are always located on a straight 
horizontal line whose level is equal to the filtered level at time point n+1. 
 
In this section we will present two more examples of forecasting: one with the 
local linear trend model, and one with the local level and seasonal model with 
an explanatory and intervention variable. 
 
The analysis of the log of the annual number of traffic fatalities in Finland with 
the smooth trend model (see Section 3.6.2) was also used to obtain forecasts 
using a so-called lead time of seven years. The observations of the series are 
shown in Figure 3.33, together with the filtered state for the years 1970 through 
2003, and the predicted state (i.e., the forecasts from the smoothed trend 
model) for the years 2004 through 2010. As the figure shows, forecasts of the 
local linear trend model are always located on a straight line with constant level 
and slope. 
 
 
In state space methods, all estimates of the components of the state also have 
associated so-called estimation error variances. This is true irrespective 
whether the estimate is the smoothed, the filtered or the predicted state. Under 
the assumption of normality, these estimation error variances allow the 
construction of confidence intervals for each of the state components, thus 
making it possible to assess the (un)certainty in the estimates of the state. 
Letting Var( tμ ) denote the estimation error variance of the trend tμ  of the local 
linear trend model, therefore, the 90% confidence limits are computed with the 
well-known formula 
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( )tt μμ Var64.1± , 
 
where +1.64 and –1.64 are the z-scores corresponding to the 90% interval 
around the mean of a normal distribution. 
 
The thus computed 90% interval for the filtered and predicted trend of the 
smooth trend model is displayed in Figure 3.33. As the figure shows, the 
estimation error variance for the predicted trend, and therefore its uncertainty, 
becomes larger and larger as the forecasts are located further into the future. 
 

1970 1975 1980 1985 1990 1995 2000 2005 2010

5.0

5.5

6.0

6.5

7.0

log fatalities in Finland filtered trend and forecasts 

 
Figure 3.33: Filtered trend, and seven year forecasts for Finnish fatalities, including 
their 90% confidence limits. 

 
As a last example, we re-analysed the log of the UK drivers KSI series (see 
Sections 3.6.3, 3.6.4, and 3.6.5) with a local level and deterministic dummy 
seasonal model, including the log of the petrol price and the introduction of the 
seat belt law as independent variables. In contrast with the analysis discussed 
in Section 3.6.5, however, we treated the last six observations in the dependent 
and independent variables for July through December 1984 as missing. The 
results of this analysis are very similar to those discussed in Section 3.6.5. 
  
Next, based on the results of the latter analysis forecasts were computed for the 
six missing months July through December 1984. In the calculation of these 
forecasts the observations for the petrol price and for the seatbelt law 
intervention were taken into account, but not the numbers of drivers KSI.  
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Figure 3.34: Filtered signal 

 
The results are shown in Figure 3.34 which only contains the last four years in 
the series. Amongst others, the figure displays the filtered signal of the analysis 
(where the signal is the sum of the filtered state components) as well as the 
observation forecasts for the months July through December 1984 and the 
actual observations for the latter six months. Again, we see that the 90% 
confidence limits become larger and larger as the forecasts are located further 
into the future. We also see that the actual observations fall within the 90% 
confidence limits of the estimated forecasts, which is a good sign. 
 
We end by noting that there are a number of diagnostics that can be used to 
establish the goodness of fit of the predicted values to the observations. The 
mean squared error and the mean absolute percentage error of the forecasts 
obtained with the deterministic level and seasonal model are 0.0080695 and 
0.010684, respectively; those obtained with the stochastic level and 
deterministic seasonal model are 0.0062978 and 0.00946457, respectively. 
 



 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C o m m i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 
P a g e  1 5 7  

Practice: The Manual 

3.7. Multilevel models 

3.8. Time series models 
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