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Summary 

This report elaborates and illustrates the proposed methodology for the 
evaluation and exploration of developments in Dutch road safety in the 
SWOV projects ‘Road safety assessments’ (Verkeersveiligheidsbalansen ) 
and ‘Road safety outlooks’ (Verkeersveiligheidsverkenningen ). 
Previous work in this area resulted in what is called the basic evaluation 
model, which considers the development of traffic safety to be the product of 
the developments in two latent, unobserved variables: exposure and risk. 
The basic evaluation model is a bivariate local linear trend model, and well-
suited for handling the dependencies in time series data, thus yielding 
residuals satisfying the model assumption of independence. 
In the present report the basic evaluation model is extended to the 
incorporation of explanatory variables. Two methods are presented for 
including explanatory variables in the basic evaluation model. The first 
method uses a standard regression set-up in which the explanatory 
variables are treated as fixed and known. In the second method, on the 
other hand, they are treated as being subject to stochastic variation. The two 
methods are applied to evaluate the effects of wet weather conditions and 
drink-driving on the annual numbers of single motor vehicle accidents 
involving people being killed or severely injured in the Netherlands. It is 
found that only the second method uncovers the expected relationships 
between the explanatory variables and the risk of getting killed or severely 
injured in single motor vehicle accidents. 

SWOV publication D-2006-3    3 
SWOV Institute for Road Safety Research - Leidschendam, the Netherlands 



 

 

 



 

Contents 

1. Introduction 6 

2. The data 8 

3. The basic evaluation model (BEM) 10 

4. Single accidents 12 

5. Extending the BEM with explanatory variables: first method 15 

6. Extending the BEM with explanatory variables: second method 20 

7. Discussion and conclusions 28 

References 30 

Appendix 1 The BEM in state space notation 31 

Appendix The BEM with explanatory variables in state space 
notation, first method 33 

Appendix 3 The BEM with explanatory variables in state space 
notation, second method 35 

 
 
 
 

SWOV publication D-2006-3    5 
SWOV Institute for Road Safety Research - Leidschendam, the Netherlands 



 

1. Introduction 

This report elaborates and illustrates the proposed methodology for the 
evaluation of developments in Dutch road safety in the SWOV projects 
‘Traffic safety evaluations’ ( Verkeersveiligheidsbalansen) and ‘Traffic safety 
explorations ’ (Verkeersveiligheidsverkenningen), as presented earlier in 
Bijleveld (1999), Bijleveld and Commandeur (2004), and Gould, Bijleveld 
and Commandeur (2004). The objective of the first mentioned project is to 
obtain explanations for disaggregated developments in road traffic safety in 
the Netherlands, while that of the second project is to make forecasts for 
future developments of Dutch road safety, based on the modelled 
disaggregated developments in the past. 
As discussed in Bijleveld and Commandeur (2004), a central issue in the 
modelling of developments over time is that the observations always consist 
of repeated measurements of one and the same phenomenon, like for 
example the annual number of road traffic fatalities as recorded over a 
number of years. Although the individual fatalities are independent of one 
another over the years, their annual sums are not, being the result of a traffic 
process that slowly evolves over time. The number of road traffic fatalities 
observed in a certain year is therefore often quite a good predictor for the 
number of fatalities that will occur in the following year. Since the 
observations in such time series are not independent of one another, special 
care must be taken in dealing with the dependencies in the data. Failing to 
do so usually results in serially correlated model residuals, and therefore in 
flawed confidence limits and significance tests.   
This was one of the reasons to use a family of techniques known as 
structural time series or unobserved component models by state space 
methods (see Harvey, 1989; Durbin and Koopman, 2001), since these are 
capable of explicitly handling the dependencies between consecutive 
observations in time series data. A dedicated multivariate state space model 
called the basic evaluation model was developed, in which the development 
of traffic safety is assumed to be the product of the developments of two 
latent, unobserved variables: exposure and risk. Special features of the latter 
model are that the observed mobility and road safety figures are both 
assumed to be subject to measurement error, and that the risk is completely 
treated as a latent variable. The reason that the risk is completely modelled 
as a latent variable is that this is indeed what risk is: an unobservable entity 
that can not be measured directly. Although this is not discussed in the 
present report, the basic evaluation model can also be used to obtain 
estimates for future developments of road safety. 
In this report, the methodology discussed in Bijleveld and Commandeur 
(2004) is extended to include explanatory variables. Specifically, the basic 
evaluation model is applied to the development of single motor vehicle 
accidents involving people being killed or severely injured in the Netherlands 
in the years 1985-2003. A single accident is an accident in which no other 
traffic participant is involved. These data and other variables used in the 
analyses are discussed in Chapter 2. The basic evaluation model is 
discussed in Chapter 3, and the results of its application to single motor 
vehicle accidents are shown in Chapter 4. 
Then, two explanatory variables are added to the basic evaluation model: 
the annual proportion of time with wet weather, and (an estimate of) the 
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annual proportion of car drivers circulating in traffic with a BAC of more than 
0.05 percent, and the effects of these two variables on the risk of being 
involved in a single motor vehicle accident is estimated. These two variables 
are used for the simple and pragmatic reason that at the time of writing at 
least some information was available about these variables for the period 
1985-2003.    
In Chapters 5 and 6, two methods are presented and illustrated for 
incorporating explanatory variables in the basic evaluation model. The first 
method uses a standard regression set-up in which the explanatory 
variables are treated as fixed and known. In the second method, on the 
other hand, they are treated as being subject to stochastic variation. The 
results of the two methods are compared and their relative merits are 
discussed in Chapter 7. In this comparison special consideration is given to 
the plausibility of the estimated effects of the explanatory variables on the 
risk of getting involved in single motor vehicle accidents with fatal or serious 
consequences. 
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2. The data 

The data used in this report are of the Dutch annual figures of the total 
number of single motor vehicle accidents involving people being Killed or 
Severely Injured (KSI), and the total number of car kilometres travelled 
(travel kilometres) in the period 1985-2003 (see columns two and three in 
Table 1). Note that the travel kilometres for 2003 are missing. 
 

year single 
accidents 
KSI 

travel 
kilometres 
for cars 

single 
accidents 
KSI with 
wet 
weather 

single 
drink 
driving 
accidents 
KSI 

proportion 
of time with 
wet 
weather 

percentage 
of drink 
driving in 
weekend 
nights 

1985 1408 60.6185 449 540 0.06817 missing 

1986 1442 63.2202 363 586 0.06773 missing 

1987 1355 64.7728 383 405 0.08147 8.0 

1988 1315 70.6459 382 382 0.08471 6.0 

1989 1334 71.2214 313 437 0.06144 6.0 

1990 1310 73.5699 323 387 0.06035 missing 

1991 1271 72.1167 294 384 0.05716 3.9 

1992 1195 76.3503 310 297 0.08322 4.0 

1993 1145 73.7701 322 317 0.09535 4.2 

1994 1141 73.6165 331 333 0.09855 4.9 

1995 1296 77.4663 330 370 0.07586 4.7 

1996 1297 78.7220 358 383 0.06227 4.4 

1997 1243 80.2868 293 370 0.06377 4.3 

1998 1175 82.1500 358 326 0.10145 4.5 

1999 1275 85.2666 323 386 0.07279 4.3 

2000 1269 85.9485 324 322 0.08330 4.6 

2001 1194 86.9959 347 281 0.09128 4.2 

2002 1172 88.7302 264 297 0.08285 missing 

2003 1184 missing 226 330 0.05718 missing 

Table 2.1. The data 
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Figure 2.1. Logarithm of single accidents KSI (top) and of car kilometres 
travelled (bottom). 

 
Plots of the logarithm of the number of single accidents KSI, and of the 
logarithm of the number of travel kilometres, are shown in Figure 2.1. The 
reason why their logarithms are taken will become clear in Chapter 3. The 
remaining variables in Table 1 will be explained in Chapters 5 and 6. 
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3. The basic evaluation model (BEM) 

At the core of all the models discussed in the present report is the following 
multiplicative model: 
 
 traffic safety = exposure × risk × eerror,    (1)  
 
where ‘traffic safety’ – further denoted by Ft – is the dependent variable, and 
‘exposure’ and ‘risk’ are the independent variables. 
It is assumed that both ‘exposure’ and ‘risk’ are latent unobserved variables, 
and it is further assumed that the observed development in mobility – as 
measured in travel kilometres, and further denoted by Mt – acts as an 
indicator variable for the unobserved ‘exposure’: 
 
 Mt = exposuret × eerror.      (2) 
 
It follows from (2) that the observed mobility figures are assumed to be 
contaminated with measurement error, and are not identical to, but only 
proportional with the unobserved variable ‘exposure’. 
Taking the logarithms of (2) and (1), respectively, the following additive 
bivariate log-linear model is obtained: 
 

 log(Mt) = log(exposuret) + ,     (3) )1(errort
 
and 
 

 log(Ft) = log(exposuret) + log(riskt) + ,   (4) )2(errort
 
for t = 1, …, n, where n is the number of observations (i.e., time points). Note 
that the observed travel kilometres (Mt) are treated as a dependent variable 
in (3), but that the unobserved exposure derived from (3) is treated as an 
independent variable in (4). 
The observed figures in Ft are not independent observations, due to the fact 
that they involve repeated measurements of one and the same phenomenon 
in time. The same applies to the variable Mt. To accommodate for these 
dependencies, the unobserved independent variables ‘exposure’ and ‘risk’ 
are modelled using two so-called local linear trend models (see, e.g., Durbin 
& Koopman, 2001): 
 
trend[log(exposuret+1)]  = level[log(exposuret)] + slope[log(exposuret)] + 

        (5) )3(errort
 

slope[log(exposuret+1)] = slope[log(exposuret)]  +   (6) )4(errort
 

trend[log(riskt+1)]  = level[log(riskt)] + slope[log(riskt)] +   (7) )5(errort
 

slope[log(riskt+1)] = slope[log(riskt)]  + .    (8) )6(errort
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In these four equations, the level and the slope terms are similar to the well-
known intercept and regression weight of classical linear regression, 
respectively. The crucial difference is that the level and slope terms in (5) to 
(8) are allowed to change over time, whereas they are constant in classical 
regression. 
In fact, it is not very difficult to prove that when all error terms in (5) to (8) are 
restricted to be equal to zero, equations (5) and (7) can be written as 
 

trend[log(exposuret)]  = a + bt + , )3(errort
 
and 
 

trend[log(riskt)]  = c + dt + ,  )5(errort
 
where t = 1, …, n is time, a and c are intercepts, and b and d are regression 
weights. This means that the local linear trend model then collapses to a 
classical linear regression model, and that linear regression is just a special 
case of the state space methods used in this report. 
 
Together, equations (3) through (8) define the so-called basic evaluation 
model (BEM), as presented in Bijleveld (1999), Bijleveld and Commandeur 
(2004), and Gould, Bijleveld and Commandeur (2004). For a more technical 
discussion of the BEM, we refer to Appendix 1. In the next chapter the BEM 
is applied to the single accidents KSI and the travel kilometres shown in 
Table 1. 
All analyses in the present report were performed in Ox/SsfPack (see 
Doornik, 2002; Koopman, Shepard & Doornik, 1999) using the univariate 
approach to multivariate state space methods in which the observation 
disturbances are estimated by putting them in the state vector (see Durbin & 
Koopman, 2001, p.131).  
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4. Single accidents 

Applying the basic evaluation model defined in (3) through (8) to the 
logarithm of the Dutch annual numbers of single motor vehicle accidents KSI 
and of the number of travel kilometres given in Table 1 yields the following 
results. 
One hundred random starts were used to ensure convergence to the global 
maximum of the log-likelihood function. Out of these one hundred random 
starts, the so-called BFGS (Broyden-Fletcher-Goldfarb-Shannon) algorithm 
converged fourteen times to the best log-likelihood value of 54.9339. The 
value of the Akaike Information Criterion (AIC) for this model equals -2.1018. 
The estimated variance matrix for the level disturbances in (5) and (7) (the 
first block in block-diagonal matrix Qt defined in Appendix 1 is 
 

⎥
⎦

⎤
⎢
⎣

⎡
001720.0000339.0
000339.0000067.0

, 

 
while the estimated variance matrix for the slope disturbances in (6) and (8) 
(the second block in block-diagonal matrix Qt defined in Appendix 1 equals 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
000308.0000153.0
000153.0000076.0

. 

 
The estimated variance matrix for the irregular components in (3) and (4) 
(matrix Ht defined in Appendix 1 equals 
 

⎥
⎦

⎤
⎢
⎣

⎡
0000003.0000008.0
000008.0000280.0

. 

 
Plots of the results of the analysis are displayed in Figures 4.1 to 4.3. The 
top graph in Figure 4.1 shows the log of the observed Dutch annual travel 
kilometres, together with the trend in the unobserved exposure 
(corresponding to equation (5)), including its 95% confidence interval. The 
middle graph displays the development of the slope component for the 
exposure (equation (6)), including its 95% confidence interval, while the 
bottom graph contains the irregular component of equation (3). 
Note that the confidence intervals for the trend and slope in exposure are 
larger in 2003, reflecting the fact that no information on travel kilometres for 
cars is available for that year. 
 
The top graph in Figure 4.2 shows the trend for the unobserved risk 
(corresponding to equation (7)), including its 95% confidence interval, while 
the bottom graph displays the development of the slope component for the 
risk (equation (8)), including its 95% confidence interval. 
 
Figure 4.3 finally contains both the log of the observed Dutch single 
accidents KSI as well as the modelled development, including its 95% 
confidence interval. The modelled development is the sum of the trend in 
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exposure (as shown in Figure 4.1) and the trend in risk (as shown in Figure 
4.2). The bottom graph contains the irregular component of equation (4). 
 

1985 1990 1995 2000 2005

4.2

4.4

log(travelkms) trend exposure +/− 1.96SE 

1985 1990 1995 2000 2005

0.000

0.025

0.050

0.075
slope exposure +/− 1.96SE 

1990 1995 2000 2005
−0.02

0.00

0.02
irregular travelkms 

Figure 4.1. Dutch travel kilometres and exposure in the years 1985-2003: 
trend, slope (including 95% confidence intervals), and irregular. 

 
 

1985 1990 1995 2000 2005

2.75

3.00

3.25
trend risk +/− 1.96SE 

1985 1990 1995 2000 2005

−0.10

−0.05

0.00

slope risk +/− 1.96SE 

Figure 4.2 Dutch risk for single accidents KSI in the years 1985-2003: trend and slope (including 95% confidence intervals). 

 

Figure 4.2. Dutch risk for single accidents KSI in the years 1985-2003: 
trend and slope (including 95% confidence intervals) 
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1985 1990 1995 2000 2005

7.1

7.2

7.3

7.4 log(single accs−KSI) trend(exposure)+trend(risk) +/− 1.96SE 

1990 1995 2000 2005

−0.0005

0.0000

0.0005

irregular single accs−KSI 

Figure 4.3. Dutch development in single accidents KSI in the years 1985-
2003 (including its 95% confidence interval), and irregular. 

 
Note that the disturbances of the irregular components in Figures 4.1 and 
4.3 are (much) larger in the first part of the series than in the second part. 
This heteroscedasticity in the residuals suggests that the observed mobility 
figures are more contaminated with measurement error in earlier years than 
in more recent years. 
 
In the next chapters, two methods are presented for adding explanatory 
variables to the basic evaluation model discussed so far.  
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5. Extending the BEM with explanatory variables: first 
method 

In this and in the following chapter, two explanatory variables are considered 
for inclusion in the basic evaluation model. The two variables were chosen 
for the simple reasons that (some) information on them was available for the 
period under investigation, and that they are known to have an effect on 
road safety. 
  
The first explanatory variable is the annual proportion of time with 
precipitation (rain, hail, snow), as measured in De Bilt in the years 1985-
2003. In the sequel, this variable will loosely be denoted as the proportion of 
time with wet weather. The observations for this variable are given in the 
sixth column of Table 2.1, and a plot of the logarithm of the variable is shown 
at the top of Figure 5.1. 
The second explanatory variable is the annual proportion of car drivers 
circulating in traffic with a BAC (Blood Alcohol Content) of more than 0.05 
percent. These yearly proportions of drink driving in Dutch road traffic were 
estimated by consulting two different data sources. 
The first source, SWOV/AVV Drink and driving habits (SWOV/AVV Rij- en 
drinkgewoonten) is a time series of annual percentages of car drivers with a 
BAC larger than 0.05 percent. Unfortunately, these percentages refer to 
weekend nights only (that is, to Friday to Sunday nights from 22.00 PM to 
04.00 AM). For the years 1985 to 2003, these percentages are shown in the 
last column in Table 2.1. Note that the percentages are missing for the years 
1985, 1986, 1990, 2002 and 2003.  
 
The second source of information is a study performed in the years 2000 to 
2004 in Tilburg, a city located in the south of the Netherlands, where 
percentages of drink driving with a BAC larger than 0.05 percent were 
obtained for car, van, and minibus drivers, both for weekend nights and for 
the entire week, 7x24hrs (Mathijssen & Houwing, 2005). The latter 
percentages are 4.8 and 1.1, respectively, implying a ratio of 4.8/1.1 = 4.4 
between drink driving percentages in weekend nights and for the entire 
week. 
On the rather strong assumption that this ratio can be generalized to the rest 
of the Netherlands, an estimate of the percentage of drink driving in the 
whole of the Netherlands during the entire week was obtained by dividing 
the above mentioned percentages from ‘AVV/SWOV Drink and driving 
habits’ for weekend nights by a factor of 4.4. The thus estimated 
percentages were finally transformed into proportions by dividing the 
percentages by 100. A graph of the logarithm of the thus estimated 
proportions of drink driving for the entire week (and for the whole of the 
Netherlands) is shown as a dashed line at the bottom of Figure 5.1. 
 
We finally note that the first method for evaluating the effects of explanatory 
variables (to be discussed below) resulted in numerical problems when an 
explanatory variable contained missing observations. For the first method, 
an ad hoc method was therefore used to obtain estimates of the unknown 
percentages of drink driving during weekend nights in the years 1985, 1986, 
1990, 2002, and 2003 (see Table 2.1). Since the last known percentage is 
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12% for 1983, the percentages in 1985 and 1986 were linearly interpolated 
from the latter percentage, and that for 1987 (8%), yielding estimates of 10% 
for 1985, and of 9% for 1986. The same procedure was applied to 1989 
(6%) and 1991 (3.9%), yielding an estimated percentage of 5% for 1990. 
The percentages for 2002 and 2003 were assumed to be equal to the 
percentage of 2001, which is 4.2%. Just as before, these percentages were 
divided by ten (to get proportions), and then by 4.4 (yielding estimated 
proportions of drink driving for the whole week in these years).   
 
In the first method for introducing explanatory variables in the basic 
evaluation model, the latter variables are simply added to risk component (7) 
discussed in Chapter 3. For one explanatory variable xt, this yields 
 

trend[log(riskt+1)]  = level[log(riskt)] + slope[log(riskt)] + β∆xt + , (9) )5(errort
 
where β is an unknown regression weight, and ∆xt = xt+1 - xt for t = 1, …, n. 
It may be noted that the addition of an explanatory variable to the risk 
component gives the same result as adding the explanatory variable itself to 
(4), that is, 
 

 log(Ft) = log(exposuret) + log(riskt) + βxt + . )2(errort
 
(see, Harvey, 1989; Commandeur, 2004). A more technical discussion of the 
model is given in Appendix 2. 

 

1985 1990 1995 2000 2005

−2.8

−2.6

−2.4

log(proportion of time with wet weather) 

1985 1990 1995 2000 2005

−2.0

−1.5

−1.0

−0.5

0.0
log(proportion of drink driving): weekend nights whole week 

Figure 5.1. Logarithm of proportion of time with wet weather (top), and of 
proportion of drink driving during weekend nights and the whole week 
(bottom). 

 
Adding the logarithm of the ‘proportion of time with wet weather’, and of the 
estimated ‘proportion of drink driving’ to equation (9) gives the following 
results. 
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One hundred random starts were used to ensure convergence to the global 
maximum of the log-likelihood function. Out of these one hundred random 
starts, the BFGS algorithm converged four times to the best log-likelihood 
value of 59.0896. The value of the Akaike Information Criterion equals 
-2.2152, which is an improvement upon the BEM without explanatory 
variables (see Chapter 4). 
 

1985 1990 1995 2000 2005

4.2

4.4

log(travelkms) trend exposure +/− 1.96SE 

1985 1990 1995 2000 2005

0.02

0.04
slope exposure +/− 1.96SE 

1990 1995 2000 2005

0.00

0.02 irregular 

Figure 5.2. Dutch exposure in the years 1985-2003: trend, slope, and 
irregular.  

 
 

1985 1990 1995 2000 2005

2.75

3.00

3.25 trend Risk +/− 1.96SE 

1985 1990 1995 2000 2005

−0.100

−0.075

−0.050

−0.025

0.000

0.025
slope risk +/− 1.96SE 

Figure 5.3. Dutch risk for single accidents KSI including wet weather in the 
years 1985-2003: trend and slope. 

Plots of the results of the analysis are displayed in Figures 5.2 to 5.4. The 
top graph in Figure 5.2 shows the log of the Dutch annual travel kilometres, 
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together with the trend in exposure, including its 95% confidence interval. 
The middle graph displays the slope component for the exposure, including 
its 95% confidence interval, while the bottom graph contains the irregular 
component of equation (3). 
Again the confidence intervals for the trend and slope in exposure are larger 
in 2003, because no information on travel kilometres for cars is available for 
that year. 
The top graph in Figure 5.3 shows the modelled development in risk 
(corresponding to equation (9)), including its 95% confidence interval. The 
bottom graph displays the slope component for the risk, including its 95% 
confidence interval. 
 

1985 1990 1995 2000 2005

7.1

7.2

7.3

7.4
log(single accs KSI) trend(exposure)+trend(risk) +/− 1.96SE 

1990 1995 2000 2005

−0.01

0.00

0.01
irregular 

Figure 5.4. Dutch development in single accidents KSI in the years 1985-
2003), and irregular. 

Figure 5.4 again shows both the observed single accidents KSI and their 
modelled development, including the 95% confidence interval (top), and the 
bottom graph contains the irregular component of equation (4). 
 
The value of the regression weight in (9) for the explanatory variable 
‘log(proportion of time with wet weather)’ equals –0.17, and the t-test for the 
regression weight is significant (t = 5.35). The value of the regression weight 
in (9) for the explanatory variable ‘log(proportion of drink driving)’ equals 
0.09, and the t-test for this regression weight is not significant (t = 1.32). 
 
Since the effect of the explanatory variable ‘proportion of drink driving’ is not 
significant, the analysis was repeated without this variable. Out of one 
hundred random starts, the algorithm converged seven times to the best log-
likelihood value of 60.1896. The value of the Akaike Information Criterion for 
this model equals -2.3258, which is an improvement upon the BEM including 
both explanatory variables (see the previous analysis). 
The estimated variance matrix for the level disturbances in (5) and (9) 
(matrix B in Appendix 2) is 
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⎥
⎦

⎤
⎢
⎣

⎡
000602.0000024.0
000024.0000136.0

, 

 
while the estimated variance matrix for the slope disturbances in (6) and (8) 
(matrix C in Appendix 2) equals 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
000449.0000157.0
000157.0000055.0

. 

 
The estimated variance matrix for the observation disturbances in (3) and (4) 
(matrix Ht in Appendix 2) is 
 

⎥
⎦

⎤
⎢
⎣

⎡
0000002.0000008.0
000008.0000280.0

. 

 
Graphs of the results of this analysis are not shown because they are 
virtually identical to the ones presented in Figures 5.2 to 5.4. 
Compared to the previous analysis, the value of the regression weight in (9) 
for the explanatory variable ‘log(proportion of time with wet weather)’ is 
unchanged; it still equals -0.17 (t = 5.35). 
 
Unfortunately, in both analyses the value of the regression weight for 
‘proportion of time with wet weather’ is not in the expected direction. Since 
this explanatory variable and the dependent variable single accidents KSI 
are both analysed in their logarithms, the regression weight can be 
interpreted as a so-called elasticity. A 1% increase in the proportion of time 
with wet weather is therefore associated with a 0.17% decrease in single 
accidents KSI. The negative sign of the regression weight also indicates that 
larger proportions of time with wet weather are associated with smaller risks 
of becoming involved in single accidents KSI. 
It is also strange that no effect is found for drink driving on the number of 
single accidents KSI (although the sign of the corresponding regression 
weight is at least in the expected direction). 
In the next chapter an alternative and new approach for adding explanatory 
variables to the BEM is presented, which does yield the expected results. 
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6. Extending the BEM with explanatory variables: second 
method 

The second method for adding explanatory variables to the basic evaluation 
model is completely new, and consists of a multivariate time series model 
with the following six dependent variables: 
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where 
 

−  is the observed proportion of time in the year with precipitation 
(rain, hail, snow, as measured in De Bilt) at time point t, 

wet
tp

−  is the observed proportion of drink driving at time point t, alc
tp

− Mt is the observed number of kilometres travelled by cars at time point t, 
− Ft is the observed number of single motor vehicle accidents involving 

people being Killed or Severely Injured (KSI) at time point t, 

−  is the observed number of single motor vehicle accidents KSI that 
occurred during precipitation (rain, hail, snow) (see the fourth column in 
Table 2.1) at time point t, 

wet
tF

−  is the observed number of single motor vehicle drink driving 
accidents at time point t (see the fifth column of Table 2.1). 

alc
tF

 
The starting point of the method is the idea that the total (unobserved) 
exposure in the BEM can be divided in two additive parts: one part that is the 
exposure in wet weather conditions, and a second part that is the exposure 

in dry weather conditions. Let 0 < < 1 denote the proportion of the total 
exposure in wet weather conditions, then it is always true that 

wet
tf

 
 exposure t = exposure t(in wet weather) + exposure t(in dry weather) 

       = (exposure t × ) + (exposurewet
tf  t × (1 - )).   wet

tf
 
 

The next step is to see that the observed explanatory variable can be 
considered as an appropriate indicator variable for this unobserved 

wet
tp
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proportion . Therefore, the following equation is added to equations (3) 
and (4) of the BEM: 

wet
tf

 

 log( ) = log( ) + .    (10) wet
tp wet

tf terror
 
Just as the observed number of travel kilometres is used in the BEM as an 
indicator for the unobserved exposure, so is the observed proportion 

used as an indicator for the unobserved proportion . wet
tp wet

tf
Next, the observed number of single motor vehicle accidents KSI that 

occurred in wet circumstances ( ) can be modelled as the product of 
two unobserved components: the exposure in wet weather conditions and 
the risk in wet weather conditions, as follows: 

wet
tF

 

  = exposurewet
tF t(in wet weather) × riskt(in wet weather) × eerror, 

           = (exposure t × ) × (riskwet
tf  t × ) × ewet

tk error, 
 

where is an unknown constant. The value of determines how 
much the total risk of becoming involved in single accidents KSI needs to be 
in- or decreased in order to explain the observed number of single accidents 
KSI that occurred in wet weather conditions. Taking the logarithm, we obtain 
the additive model 

wet
tk wet

tk

 

log( ) = log(exposurewet
tF  t) + log( ) + log(riskwet

tf t) + log( ) + 
         (11). 

wet
tk terror

 
Summarizing so far, the second method for adding an explanatory variable 
to the BEM consists of equations (3), (4), (10) and (11). 

Again note that the observed explanatory variable is treated as a 

dependent variable in (10), but that the unobserved derived from (10) 
is handled as an independent variable in (11) (just as was done for the 
number of travel kilometres in Chapter 3). 

wet
tp

wet
tf

Finally, to equations (5) through (8) of the BEM two equations are added: 
 

 log( ) = log( ),     

 (12) 

wet
tk 1+

wet
tk

 
and 
 

level[log( )] = level[log( )] + .   (13) wet
tf 1+

wet
tf terror

 
The latter equation defines a local level model. 
 
Applying the same procedure to the explanatory variable ‘proportion of drink 

driving’ ( ), we obtain the following additional equations: alc
tp
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 log( ) = log( ) + ,    (14) alc
tp alc

tf terror
 

log( ) = log(exposurealc
tF  t) + log( ) + log(riskalc

tf t) + log( ) + 
         (15) 

alc
tk terror

 

 log( ) = log( ),      (16) alc
tk 1+

alc
tk

 
and 
 

level[log( )] = level[log( )] + .   (17). alc
tf 1+

alc
tf terror

 
A more technical (state space) notation for the complete model is given in 
Appendix 3. 
 
The second method for adding explanatory variables to the BEM involves all 
data in Table 2.1. Plots of the logarithm of the observed annual numbers for 

 and  are shown in Figures 6.6 and 6.7, respectively. In the 
following analysis, the estimated proportions of drink driving during the 
whole week for the years 1985, 1986, 1990, 2002, and 2003 were treated as 
missing (as can be seen in Figure 6.2). 

wet
tF alc

tF

Using one hundred random starts, the best value for the log-likelihood of 
94.7362 is obtained in three cases. The hyper parameter estimates are (see 
Appendix 3 for their meaning): 
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Graphs of the observed time series as well as their modelled developments 
and 95% confidence intervals are shown in Figures 6.1 to 6.7. 
The modelled development in Figure 6.1 corresponds to equation (13), 
together with the irregular component in (10). The modelled development in 
Figure 6.2 corresponds to equation (17), together with the irregular 
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component in (14). The modelled developments in Figure 6.3 correspond to 
equations (5) and (6), together with the observation errors in (3); the 
modelled developments in Figure 6.4 correspond to equations (7) and (8). 
The modelled development in Figure 6.5 corresponds to equation (4), 
together with its irregular component. Finally, the modelled development in 
Figure 6.6 corresponds to equation (11), and that in Figure 6.7 to equation 
(15), both shown with their irregular components. 
 

1985 1990 1995 2000 2005

−2.8

−2.6

−2.4

log(proportion of time with wet weather) level proportion of time with wet weather 

1985 1990 1995 2000 2005

−0.2

−0.1

0.0

0.1

0.2 irregular proportion of time with wet weather 

Figure 6.1. Observed and modelled development of proportion of time with 
wet weather, and irregular component. 

 

1985 1990 1995 2000 2005

−2.25

−2.00

−1.75 log(proportion drink driving) level proportion drink driving 

1985 1990 1995 2000 2005

0.0

0.2

irregular proportion drink driving 

Figure 6.2. Observed and modelled development of proportion of drink 
driving, and irregular component. 
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1985 1990 1995 2000 2005

4.2

4.4

log(travelkms) trend exposure 

1985 1990 1995 2000 2005

0.01

0.02

0.03

0.04
slope exposure 

1990 1995 2000 2005

0.00

0.02 irregular travelkms 

Figure 6.3. Observed travel kilometres and modelled development of total 
exposure, and irregular component. 

 
 
 

1985 1990 1995 2000 2005

2.50

2.75

3.00

3.25
trend risk 

1985 1990 1995 2000 2005

−0.075

−0.050

−0.025

0.000
slope risk 

Figure 6.4. Modelled development of total risk. 
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1985 1990 1995 2000 2005

7.0

7.1

7.2

7.3

7.4
log(single accs−KSI) trend(exposure)+trend(risk) 

1990 1995 2000 2005

−0.02

0.00

0.02
irregular single accs−KSI 

Figure 6.5. Observed and modelled development of single accidents KSI, 
and irregular component. 

 

1985 1990 1995 2000 2005

5.50

5.75

6.00

log(single accs−KSI in wet weather) level(wet)+trend(exposure)+kappa(wet)+trend(risk) 

1990 1995 2000 2005

−0.05

0.00

0.05

irregular single accs−KSI in wet weather 

Figure 6.6. Observed and modelled development of single accidents KSI in 
wet weather conditions, and irregular component. 
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1985 1990 1995 2000 2005

5.75

6.00

6.25

6.50
log(single drink driving accs−KSI) level(drink driving)+trend(exposure)+kappa(drink driving)+trend(risk) 

1990 1995 2000 2005

−0.1

0.0

0.1 irregular single drink driving accs−KSI 

Figure 6.7. Observed and modelled development of single drink driving 
accidents KSI, and irregular component. 

 

1985 1990 1995 2000 2005

2

3

4

trend total exposure 
trend drink driving exposure 

trend exposure in wet weather 
 

1985 1990 1995 2000 2005

3.0

3.5

4.0

trend total risk 
trend drink driving risk 

trend risk in wet weather 
 

Figure 6.8. Trends of total exposure, and of exposure in wet weather and 
drink driving conditions (top), and trends of total risk, and of risk in wet 
weather and drink driving conditions (bottom). 

 

The maximum likelihood estimate of log( ) in equation in (11) equals 
1.2261 for t = 1985, …, 2003, indicating an increased risk in wet weather 

conditions of e

wet
tk

1.2261 = 3.41. The value of log( ) is very significant, since 
the value of the corresponding t-test equals 28.60. In contrast with the first 
method described in Chapter 5, the present method does result in an effect 
of the explanatory variable ‘proportion of time with wet weather’ on the risk 
which is in the expected direction. 

wet
tk
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The maximum likelihood estimate of log( ) in equation in (15) equals 
0.9758 for t = 1985, …, 2003. Since e

alc
tk

0.8552 = 2.65 this indicates a more than 
two and a half-fold increase of the risk in drink driving conditions. The value 

of log( ) is very significant, since the value of the t-test equals 22.89. 
Again, this result is in line with the well-known positive relationship between 
drink driving and the risk of becoming involved in a road accident. 

alc
tk

 
In Figure 6.8 the modelled total exposure is shown together with the 
modelled exposure in wet weather, and in drink driving conditions (top). The 
modelled total risk together with the modelled risk in wet weather, and in 
drink driving conditions are displayed at the bottom of Figure 6.8. Clearly, 
the exposure in wet weather and drink driving conditions is much smaller 
than the total exposure, while the risk in wet weather and in drink driving 
conditions is considerably larger than the total risk. 
The sum of the solid lines in Figure 6.8 equals the modelled development for 
the total number of single accidents KSI (as shown in Figure 6.5). The sum 
of the dotted lines in Figure 6.8 equals the modelled development for the 
number of single accidents KSI that occurred in wet weather conditions (as 
shown in Figure 6.6). Finally, the sum of the dashed lines in Figure 6.8 
equals the modelled development for the number of single drink driving 
accidents KSI (as shown in Figure 6.7). 
 
The estimated effect of drink driving in the present analysis is still rather low. 
This is related to the fact that drink driving accidents KSI are often not 
reported as such. As far as severely injured drivers are concerned, the 
police almost always only requests a blood sample when they suspect the 
driver of drink driving; even then, in some cases the taking of a blood sample 
is refused by the medical hospital staff on medical grounds. Moreover, in the 
Netherlands, drivers who die in a road accident are not tested for alcohol, 
and the accident is therefore not reported as a drink driving accident. 
To illustrate the impact of under-registration on the estimated effect of drink 
driving, a re-analysis of the data in Table 2.1 with an assumed ratio of 1:2.5 
for registered versus actual single drink driving accidents KSI results in a 

value of 1.8921 for log( ), implying a risk increase of ealc
tk 1.8921 = 6.63 in 

drink driving conditions. 
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7. Discussion and conclusions 

First, results of the basic evaluation model (BEM) were shown when applied 
to single accidents KSI. Next, two methods were presented for incorporating 
explanatory variables in the BEM. In the first method the explanatory 
variables the ‘proportion of time with wet weather’ and the ‘proportion of 
drink driving’ are simply added as fixed variables to the risk component of 
the BEM. With the latter method, a negative relation is found between the 
proportion of time with wet weather and (the risk of becoming involved in) 
single accidents KSI, implying that (the risk of becoming involved in) single 
accidents KSI increase(s) as the ‘proportion of time with wet weather’ 
decreases. Moreover, with this method no relation is found between drink 
driving and risk. This indicates that the first method clearly fails to give the 
expected results. 
 
In the second method, the explanatory variable ‘proportion of time with wet 
weather’ is not treated as fixed and known, but is assumed to be 
contaminated with measurement error. The latent component of the 
explanatory variable is then used to obtain an estimate of the proportion of 
exposure in wet weather conditions, and the effect of the explanatory 
variable on risk is ascertained by estimating how much the risk of becoming 
involved in single accidents KSI needs to be in- or decreased in order to 
optimize the prediction of the observed number of single accidents KSI that 

occurred in wet weather conditions (defined as in Chapter 6). The 
same procedure is used to ascertain the effect of the explanatory variable 
‘proportion of drink driving’ on single accidents KSI. 

wet
tF

The second method therefore requires extra information: we need to know 
the number of single accidents KSI that occurred in wet weather conditions, 
and the number of single accidents KSI involving drink driving. However, in 
contrast with the first method, the second method successfully uncovers the 
positive relations one would expect between the explanatory variables 
‘proportion of time with wet weather’ and ‘proportion of drink driving’, and the 
risk of becoming involved in single accidents KSI. 
 
The methodology shows how to handle time dependencies in the data (and 
therefore how to minimize serial correlation in the residuals). It also points 
out that missing observations (like the travel kilometres for 2003, and the 
proportions of drink driving in the years 1985, 1986, 1990, 2002, and 2003) 
are usually easily dealt with in state space methods. 
 
In future research, explicit diagnostic tests will have to be added to check 
whether the residuals of the models do indeed satisfy independence, 
homoscedasticity (i.e., homogeneity of variance) and normality, since these 
conditions should be met (in that order of importance) for reliable 
significance tests of the effects of explanatory variables, and for the 
computation of reliable confidence intervals for the modelled developments.  
The analyses discussed in the present report could be improved by 
weighting the observed travel kilometres with their error variances, in order 
to decrease the heteroscedasticity (i.e., heterogeneity of variance) observed 
in the irregular component for this variable (see the bottom graphs in Figures 
4.1, 5.2, and 6.3). 

28  SWOV publication D-2006-3   
SWOV Institute for Road Safety Research - Leidschendam, the Netherlands 



 

Moreover, the second method could be extended to include an evaluation of 
the effect of the interaction between wet weather and drink driving; in that 
case yet another time series, consisting of the annual numbers of single 
drink driving accidents KSI in wet weather, should be added to the model. 
 
When estimating the effect of drink driving on road safety, the following 
extensions and alternatives could be considered in future research: 
1. Since higher BAC percentages are associated with (much) higher risks 

of becoming involved in an accident, the method used in the present 
report (where all BAC percentages higher than 0.05 percent were 
considered simultaneously) could be refined by disaggregating drink 
driving into several classes of increasing BAC. 

2. In the present report, estimates of drink driving during the whole week 
were derived by only considering one study (i.e., the Tilburg study). 
However, more studies are available on this topic. For example, a year 
long study was performed in Rotterdam during the whole week (Vis, 
1987). The results of such studies could be used to improve or at least 
validate the estimates made in the present report for the proportion of 
drink driving in the Netherlands during the whole week. 

3. An alternative to the analyses discussed in the present report would be 
to restrict the complete analysis to weekend nights only, for all variables 
involved. In this case, information would be required on the numbers of 
single accidents KSI and travel kilometres during weekend nights only, 
and on the proportion of weekend nights with wet weather conditions. 

4. In order to obtain better estimates of the effect of drink driving on 
accidents KSI, the under-registration of drink driving accidents KSI 
should somehow be taken into account in future time series analyses. 
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Appendix 1 The BEM in state space notation 

The basic evaluation model presented in Chapter 3 is a special case of state 
space methods for the analysis of time series (Harvey, 1989; Durbin & 
Koopman, 2001). In matrix algebra, all state methods can very generally be 
written as: 
 

tttt Zy εα += ,  ),0(~ tt HNIDε   (a) 
 

ttttt RT ηαα +=+1 ,  ),0(~ tt QNIDη   (b) 
 
for t = 1, ..., n, where (a) is called the observation or measurement equation 
(and εt is an irregular component consisting of observation errors or 
disturbances), and (b) is called the state equation (and ηt contains the state 
disturbances). The basic evaluation model for evaluating the individual 
developments in Dutch road safety is a bivariate local linear trend model. 
Specifically, let: 
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where Mt are the observed mobility figures and Ft are the observed accident 
figures at time points t = 1, ..., n. 
Define: 
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Then writing out (a) in scalar notation yields the following two so-called 
observation equations: 
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while working out (b) in scalar notation results in the following four so-called 
state equations: 
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The two equations in (c) are identical to equations (3) and (4) in Chapter 3, 
and the four equations in (d) are identical to equations (5), (7), (6) and (8) in 
Chapter 3, respectively. 
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Appendix 2 The BEM with explanatory variables in state 
space notation, first method 

To add three, say, deterministic explanatory variables to the risk component 
of models (a) and (b), define: 
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Writing out (a) in scalar notation yields the following two observation 
equations: 
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as before, while working out (b) in scalar notation results in the following 
seven state equations: 
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The first three state equations in (f) are needed to estimate the regression 
weights, while the fifth state equation in (f) represents the trend in risk 
including the effects of the explanatory variables on the risk (as in equation 
(9) in Chapter 5). 
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Appendix 3 The BEM with explanatory variables in state 
space notation, second method 

The second method for adding explanatory variables to the basic evaluation 
model is a multivariate time series model where we now consider the 
following six dependent variables:  
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where 
 

−  is the observed proportion of time of the year when the weather is 
not dry (as measured in de Bilt) at time point t, 

wet
tp

−  is the observed proportion of drink driving at time point t, alc
tp

− Mt is the observed number of kilometers travelled by cars at time point t, 
− Ft is the observed number of single motor vehicle accidents involving 

people being Killed or Severely Injured (KSI) at time point t, 

−  is the observed number of single motor vehicle accidents KSI that 
occurred in wet circumstances (see the fourth column in Table 2.1) at 
time point t, 

wet
tF

−  is the observed number of single drink driving motor vehicle 
accidents KSI at time point t. 
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The matrix equation (a) now consists of the following six measurement 
equations: 
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where 
 
−  is the unobserved trend for the proportion of time with wet weather, )1(

tµ
−  is the unobserved trend for the proportion of drink driving )2(

tµ
−  is the unobserved trend for the total exposure, )3(

tµ
−  is the unobserved trend for the total risk, )4(

tµ
−  is the total risk changing factor due to wet weather conditions, )1(

tκ
−  is the total risk changing factor due to drink driving, and )2(

tκ
−  are white noise terms for i = 1, …, 6. )(i

tε
 
Matrix equation (b) now consists of the following eight state equations, which 
represent two local level models (for the proportion of time with wet weather, 
and for the proportion of drink driving) and two local linear trend models (for 
exposure and risk): 
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The six observation equations in (g) are identical to equations (10), (14), (3), 
(4), (11), and (15) discussed in Chapters 3 and 6, respectively. The eight 
state equations in (h) are identical to equations (12), (16), (13), (17), (5), (7), 
(6), and (8) discussed in the same chapters, respectively. 
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