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SUMMARY 

Accident ratios are analysed with regard to the variables road­

surface skidding resistance and hourly traffic volume. In a first 

analysis the Additive Conjoint Measurement model (ACM) is used 

to investigate to what extent the accident ratios can be described 

as a result of independent contributions of skidding resistance 

and traffic volume. Furthermore is considered whether these con­

tributions have to be combined in an additive or mUltiplicative 

way. Based on the results of this investigation a second analysis 

took place in which a stochastic interpretation of the data is com­

bined with the multiplicative model. This Weighted Poisson model 

(WPM) is in fact a generalisation of the log-linear model, recently 

proposed for the analysis of contingency tables. 

It has been concluded that the multiplicative model describes the 

data better than the additive model. Moreover that there is no 

interaction between skidding resistance and traffic volume in their 

effect on accident ratios. The pictures of the relation between 

accident ratios and both variables are shown and the statistics 

regarding the contributions of the variables. 
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INTRODUCTION 

In 1966, the Institute for Road Safety Research SWOV in The Nether­

lands set up a Working group on Tyres, Road Surfaces and Skidding 

Accidents. The terms of reference of Sub-committee V of this Work­

king group were to establish the number of skidding accidents. 

It was also to consider the part played by road-surface skidding 

resistance in accident occurrence. The following organisations 

were represented On the Sub-committee: the State Road Laboratory 

RWL, Delft, the Traffic and Transportation Engineering Division 

Rijkswaterstaat DVK, The Hague, and the Institute for Road Safety 

Research SWOV, Voorburg. 

In order to investigate the extent of the skidding problem, acci­

dents occurring on dry road surfaces were compared with those on 

wet surfaces with and without rainfall. The role of skidding re­

sistance was investigated only as regards accidents during rain­

fall. In this latter investigation a number of variables such as 

speed and visibility were disregarded for practical reasons. The 

investigations did, however, cover hourly traffic volume, traffic 

performance, type of road and type of vehicle. 

This contribution is not a report on the research. This is given 

in Schlosser (1977). 

The present intention is only to describe the methods of analysis 

employed and the consequent conclusions regarding the relationship 

between accidents, traffic performance, hourly traffic volume and 

road-surface skidding resistance. The analysis in based on the 

assumption that traffic can play a part in accident occurrence in 

two ways. On the one hand, if there is more traffic the expected 

number of accidents will increase owing to the larger number of 

accident-suspectible road users; in other words, exposure increases. 

As to this point, the number of accidents is likely to increase 

proportionately to traffic performance. On the other hand, at higher 

traffic volumes the accident hazard will increase for every indivi­

dual road user; i.e. accident-susceptibility increases. 

The analysis was adjusted for the extent to which exposure plays 



-5-

a part. For this purpose, accidents occurring in a given time on a 

given road section were divided by the number of vehicle-kilometers 

driven during that time on that road section. These accident ratios 

are analysed. Besides the adjustment for vehicle-kilometers, the 

hourly traffic volume is used to explain the difference in accident 

ratios, in order to ascertain the influence of traffic volume on 

accident-susceptibility. An endeavour is therefore made to define 

the accident ratio as a function both of road-surface skidding 

resistance and hourly traffic volume. It is reasonable to assume 

that the increase in accident-susceptibility will not be the same 

on all roads. Consequently, roads are divided into two types. 

Type I comprises motorways: roads with split-level junctions and 

separate carriageways each with at least two lanes and generally 

one shoulder. Type 11 comprises other primary national highways, 

mainly single-carriageway roads with two lanes, level junctions 

and sometimes slow traffic. 
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1. DATA 

The accident data required for the research were obtained from 

Rijkswaterstaat (Department of Roads and Waterways). 

The locations, times and dates of the accidents were recorded, and 

whether it was raining. 

For road type I the traffic volumes were divided into 20 classes 

with a width of 100 vehicles per hour for each direction; for type 

11 into 15 classes with a width of 200 vehicles per hour in both 

directions. The coefficient of longitudinal force for a wet surface 

was determined for each road section. The coefficients were divided 

into 9 skidding-resistance classes with a width of 0.05 units of 

measurement from" 0.36 to> 0.7I. 

From the location, data and time, the appropriate skidding-resis­

tance and hourly volume classes were determined for each accident. 

Since the highest resistance class also includes accidents on wet 

surfaces during dry weather, it was completely eliminated from the 

investigation. 

From the length of the road, the distribution of hourly traffic 

volumes and the duration of rainfall, the number of vehicle-kilo­

meters was calculated for each combination of skidding resistance 

and traffic volume, separately for workdays and weekends and ad­

justed for month and year. 

Next, the accident ratio was determined for each resistance-volume 

combination by dividing the number of accidents by the relevant 

number of vehicle-kilometers. 

This resulted in two tables of accident ratios corresponding to 

the two types of roads. 
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2. ANALYSIS 

The intention of the analysis ~s to examine how the accident ratio 

(A) depends on hourly traffic volume (T) and road-surface skidding 

resistance (R). 

The obvious approach to such problem is to apply multiple linear 

regression (MLR) to the data. This would result in the following 

description of the expected value of the dependent variable as a 

linear combination of the independent variables: 

E(A) aR + bT + c (1) 

If a, band c are known, the value of E(A) can be found by filling 

in the values of Rand T. 

With MLR, those values of a, band c are sought which predict the 

A values as closely as possible from the Rand T values. But if we 

examine the assumptions for this regression model more closely, 

the straight foreward application to the given data leads to a number 

of difficulties. 

~~~~~E!!~~_l~_!h~_~~~~~E!!~~_~f_!!~~~E!!Y 
This assumption means that if the independent variable R is kept 

constant, the dependent variable A is linearly related to the 

variable T van vice versa. In such a case we speak of an MLR model 

which is linear in the independent variables. This assumption of 

linearity entails a number of problems. Firstly, the manner in which 

the resistance classes are established will determine how the accident 

ratio is related to skidding resistance. There is no prior reason 

for assuming that this relationship will be linear. Moreover, the 

relationship is less clear as regards traffic volume. It is indeed 

not unreasonable to say that the accident ratio increases within 

certain limits with traffic volume. But it is possible that it 

increases at a very low volume, while it decreases at a high volume 

and low capacity. Overal inspection of the data suggests that this 

assumption is correct. Moreover the question remains whether the 

relation is linear in the central range. 
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In order to meet these problems, it is possible to extent the MLR 

model with terms that are quadratic in the independent variables 

or with terms of a still higher order. 

~~~~~E!!~g_~~_!h~_~~~~~E!!~g_~f_~QQi!!y!!y 

According to this assumption, the dependent variable can be written 

as a (weighted) sum of independent variables. As regards assumption 

2, the following can be said: 

Suppose the probability of a given accident occurring on a road sur­

face belonging to skidding-resistance class j (j = I, ... , m) is in­

dicated as p(R.), and the probability of this accident occurring in 
] 

traffic-volume class i (i = I, ... , n) is indicated as p(T.). Now if 
1. 

we assume that both events R. and T. are independent of each other 
] 1. 

(which means that the probability distribution over the resistance 

classes is the same for every volume class and vice versa), it fol­

lows that the probability of an accident for the combination of traf­

fic-volume class i and skidding-resistance class j can be written as 

the product of the (marginal) probabilities p(T.) and p(R.), viz: 
1. ] 

P (T . () R.) = P (T .) • P (R.) 
1. ] 1. ] 

(2) 

This consideration should lead to the choice of a mUltiplicative model 

instead of an additive model. 

We would verify this hypothesis by extending the MLR model aready 

mentioned (I) by adding an R.T term, i.e.: 

E(A) aR + bT + cR.T + d (3) 

If for each class of T the relation between A and R is linear (and 

vice versa), and the hypothesis of multiplicity is true, then (3) 

reduces to E(A) = cR.T + d. 

A following suggestion could then be not to analyse the data them­

selves, but to make the analysis with the logarithm of the data. 

In general, if Z = XY, then log(Z) = log(X) + log(Y) and multiplicity 

changes into additivity. From this analysis the required information 
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could then be derived regarding the contribution of T and R to A. 

From formula (2) and the discussion of the linearity assumption, 

however, the suggestion obtrudes to include a separate parameter in 

the model for each class of Rand T. Within the MLR model this is 

possible, for example by using an m_1 st degree polynomial in Rand 

1st 1·· an n- degree po ynom~al ~n T. 

A model in which this requirement is met in a slightly different way 

is the Additive Conjoint Measurement (ACM) model. 
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3. ADDITIVE CONJOINT MEASUREMENT 

3. I. General description 

We speak of an ACM model if an order relation has been assumed 

between the dependent variable and the sum of arbitrary functions 

of the independent variables. 

The ACM model has the requirement of additivity, but here too multi­

plicity can be converted into additivity by using a logarithmic 

transformation. 

In general, let X and Y be the independent variables and Z the de­

pendent variable. Then the linearity requirement is replaced by the 

requirement of arbitrary functions f on X and g on Y with the aid of 

which Z (or a logarithmic transformation of Z) can be described as 

a function of X and Y. 

For every Z .. value belonging to the combination (X., Y.): 
~J ~ ] 

E(Z .. ) = f. + g. + c 
~J ~ ] 

(4) 

Where f. = f(X.), g. = g(Y.) and c is a general parameter. 
~ ~ ] ] 

If the n times m Z values are regarded as a vector Z and the n + m + I 

parameters as a vector 8, then model (4) can be written E(Z) = V8, 

in which V is then called the design matrix. V is then a matrix of 

ones and noughts in such a way that each Z-value has parameters 

added to it in conformity with the indices i and J. 

In analysis of variance the emphasis in the specification of V is 

verification of hypothesis according to some experimental design 

(hypothesis testing), in ACM it is more a matter of combined mea­

surement of the variables X and Y with the aid of the parameters 

(parameter estimation). With the MLR models mentioned, the matrix 

V would be replaced by a matrix whose column vectors are the values 

of the independent variables or their polynomials. Interaction terms 
2 could be added to these MLR models, such as XY, X Y and so on. In 

ACM analysis, these effects are assumed to be non-existent. 
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So far, two alternatives have been mentioned for analysis. 

The first possibility is to apply the analysis directly to accident 

ratios; the second is to apply it to their logarithms. Here we assume 

that the order relation between the dependent variable and the in­

dependent variables is linear or logarithmic. 

Another possibility, following a method developed by Kruskal (1965), 

is to make an analysis seeking for the monotone non-descending 

transformation of Z which, if filled in for Z, gives a solution of 

equation (4). In this case we speak of an ACM model. If it is sub­

sequently examined which monotone transformation leads to the best 

fit of the ACM model, the above arguments regarding additivity or 

multiplicity can still be verified. For example, if the monotone 

transformation is a linear transformation, then the ACM solution is 

identical to the solution that results from application of the com­

mon linear model as in analysis of variance. If it is a logarithmic 

transformation then a multiplicative model has been applied to the 

data. 

Nelder & Wedderburn (1972) used fixed transformation functions to 

choose between an additive and other models. They speak of general 

linear models if an other transformation then the identity trans­

formation is used. This results from the fact that after the trans­

formation the model is linear. 

Here we use no fixed transformation of Z but seek for the best 

monotone transformation to describe the data with model (4). If we 

generalize MLR models in this way, one mostly speaks of non-metric 

MLR analysis, because it is, in fact, assumed that only ordinal in­

formation exists concerning Z. 

Formulated somewhat more exactly, Kruskal's method amounts to the 

following: Suppose f and g are known, then for each Zk and Zl there 

is a 

Z~ 
k 



-12-

Or: 

if, and only if Zk~Zl 

in which k and 1 are indices continuing through the resistance­

volume combinations (1,1), .... , (I,n), .... , (m,n). 

If f and g are unknown, then we have to find a monotone transfor­

mation Z~ of Z and values for f and g such that (5) holds. 

(5) 

As a rule, a transformation of Z will be possible only up to a 

certain level. An effort will thus have to be made to find the 

transformation for which the model gives the best possible descrip­

tion of the data. As a criterion for optimum description, a least-
+ squares criterion is chosen as used in MLR. In other words, let Zk 

be the value belonging to a given monotone transformation of Zk' 

Given the values of Z+, we can look for a solution of f and g. 

From the values of f and g we can compute the values of Z~. Finally 

the monotone non-descending transformation is sought for which the 

sum of the discrepancies (8) between the Z~ and Z~ values is as small 

as possible. Or, more precisely, for which: 

min mi¥k + Z~)2 f2:k (Z~ - z*) ~ 8 = (Z -
k k 

Z+ e 

The denominator in this expression is merely a scale factor. In 

an interative process seeking simultaneously the best fitting 

functions f and g and monotone transformation of Z, the Z values 

themselves are chosen as the starting configuration. 

By comparing the value of 8 found with the starting configuration 

8
d

, with 8 of the monotone transformation, it is possible to 
mon 

examine how far the solution can be improved if we allow a monotone 

transformation for Z. If we also apply the analysis to the log-Z 

values, we again obtain a starting solution with matching 8
1 

which, og 
compared with 8

d
, shows whether it is better to speak of an additive 
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or multiplicative model, while Sl compared with S (identical og mon 
of course for both starting situations) again shows how this solution 

can be improved. 

If the hypothesis concerning multiplicity is correct, we expect 

Sd>Slog = Smon 

The testing of hypotheses regarding monotone transformation is not 

easy. To get an indication of the significance of the results a 

Monte-Carlo study is made. This results, under the assumption of 

normal distributed S-values, ~n the testing of the hypotheses by 

means of t-statistics. 

xx 
3.2. Results 

Table lA gives the accidents for road type I and Table IB the rele­

vant vehicle-kilometres. Tables 2A and 2B give the same values for 

road type 11. 

Figure I gives the solution for the eight values of function f in 

formula 

x 
E(A .. ) 

~J 
f(R.) + g(T.) 

~ J 

which is a specification of (5) with regard to the given accident 

data. 

In this formula R. 
~ 

fic-volume class j 

is the skidding-resistance class i, 

and A~. the relevant accident ratio 
~J 

T. the traf­
J 

after mono-

tone transformation. For classes 2 to 7, the size of the parameters 

decreases more or less linearly with the class value. 

If the mUltiplicative model is correct (L e. if the monotone trans­

formation is found to be logarithmic) and f(R.) is indeed linear, 
~ 

this means that the relationship between accident ratio and resistance 

class is exponential. 

xx The computer programme ACM, written in PLI by J. de Leeuw, 

Leyden State University, was used for analysing the data. 
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Figure 2 gives the solution for the values of function g. The relation­

ship is not so clearly interpretable with road type I. It can, however, 

be inferred that the accident ratio increases with traffic volume, 

except at the ends of the scale. At very low volumes the accident 

hazard increases, and at very high volumes it decreases. For road 

type 11 we do not see these peripheral effects. 

Figures 3 and 4 show the transformations of the accident ratios 

for both types of road. For road type I it follows from Figure 3 

that the transformation can indeed be regarded as a log-transforma­

tion. For road type 11 this is not the case, as can be seen in 

Figure 4. It will be found later that the extra curvature for road 

type 11 does not contribute much to improving the solution, as re­

lated to a log-transformation. 

In order to examine this more closely, the S values of each of the 

fit procedures are important. These are given in Table 3, for the 

least-squares solution of the original data, the log-data and the 

ultimate solution after monotone transformation respectively. The 

table shows that the stress after log-transformation over the da­

ta becomes smaller, while it is of course higher than that of the 

solution after monotone transformation. 

In order to obtain an idea of the degree to which the established 

differences in stress are significant, a Monte Carlo study was 

made. The procedure is as follows: 

Allot the established accident ratios at random to the Rand T 

classes and apply an ACM analysis to these data and the relevant 

log-data. Repeat this very many times (for economy, this was done 

only forty times). Calculate the means and standard deviations. 

The values in Table 3 can be compared with these means. The Monte 

Carlo data are given in Table 4. It follows from this tables (on 

the assumption that the stresses are distributed normally): 

A. That the fit of the original data and log-data is very signifi­

cantly better than random. For the log-data, for instance, we find 

a t-value of 
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.1334 - .6928 

.058 
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= -9.64 (df = 39) 

B. That the stress values for analysis with the Monte Carlo data 

and Monte Carlo log-data do not differ, as was to be expected 

(t = .183); the difference between the stress values Sd and Slog 

in the original analysis is .0515. This difference, though fairly 

high (t = .0515/.038 = 1.35), is not significant. For road type 11, 

the absolute difference is greater. It is thus reasonable to choose 

the multiplicative model. 

C. That the mean (trivial) reduction in stress after monotone 

transformation of data for the Monte Carlo data is .0603. For the 

original analysis this value is .0180 for road type I and .0441 for 

road type 11, and there is thus no reason to assume that monotone 

transformation produces an additional improvement which is not 

trivial. This conclusion strengthens the view that the mUltiplica­

tive model is correct. 

It also shows that the bending in the curve in Figure 4 already 

mentioned hardly improves the solution. 



-16-

4. STOCHASTIC INTERPRETATION OF THE MULTIPLICATIVE MODEL 

Assuming that the occurrence of accidents can be described as a 

Poisson process with parameter A and that the accidents are multi­

nomially distributed over het skidding-resistance and traffic-volume 

classes while the volume and resistance variables have a mutually 

independent influence on the probability of an accident, then: 

I. For each resistance class R. with multinomial probability p., 
~ ~ 

and each volume class T. with multinomial probability q., accidents 
J ~ 

can be described according to a Poisson distribution with parameters 

~p. and Aq .. 
~ J 

2. For each cell (R., T.) 
~ J 

tributed with parameterJA 

4.1. Log-linear models 

the accident frequencies 

.• = A.p .. q .. 
~J ~ J 

are Poisson dis-

In recent years methods of analysis have been developed specially 

for data collected in the form of contingency tables. The subdivi­

sion of the data into volume and resistance classes described above 

is an example of such a contingency table. If it can in fact be 

assumed for the values in the cells of the contingency tables that 

they are Poisson distributed or multinomially distributed, these 

methods can be employed. Within the Poisson models one tries to de­

scribe the Poisson parameters, which may differ from cell to cell, 

in terms of the variables that constitute the contingency table. The 

multiplicative model described above is a specific example of this. 

The Poisson parameter for each cell is described there as being com­

posed of three part-parameters: a general parameter (identical for 

each cell) )\, one (identical for each cell is one row of the contin­

gency table) p., and one (identical for each cell in one column) q .• 
~ J 

In other words, restrictions are imposed on the ultimate Poisson 

parameter of every cell relating to the position in the row and 

column of such cell in the contingency table. However, it is a 

single choice from a number of possible restrictions. If we say, 
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for instance, that road-surface skidding resistance has no influ­

ence at all on accidents, viz. that all p.'s are the same, the 
1. 

model could be simplified. For each cell, its Poisson parameter 

would then be equal to ~ q. (one general part-parameter and one 
J 

part-parameter for the location of the cell in a column). 

The most general form in which the parameters can be written is: 

;.A •• = A. p .• q . 
I 1.J 1. J 

. r .. 
1.J 

or, if we take the logarithm: 

m .. (= log M .• ) = 0<.+ ~. + 1. + S .. 
1.J I . 1.J ,- 1. <1 J 1.J 

(6) 

in which the terms after the sign indicate the logarithms of the 

previous expression. 

Models which try to give such a representation of the Poisson para­

meters}J .. are therefore known as log-linear models. A detailed 
. 1J 

description is given in Goodman (1970), Haberman (1974) and Bishop, 

Fienberg &·Holland (1975). 

The multiplicative ACM model 1.S in fact also a log-linear model, but 

without this stochastic interpretation. The multiplicative model 

comparable with model (4) imposes the additional restriction that 

<5 .. = 0, for all combinations (i, j). The data in a contingency 
1.J 

table can always be constructed perfectly with the aid of (the sat-

urated) model (6). 

It can now be checked, for instance, whether the (non-saturated) mul­

tiplicative model m .. = ex + ~. + '1 . represents the data signifi-
1.J . 1. I J 

cantly worse than model (6). 

An example of applying such a type of analysis to road-traffic problems 

(but with a differing model description) is found in Rash (1973). 

4.2. Weighted Poisson models 

The application of log-linear models to contingency tables in which 

accidents are given seems warranted: the assumption that the num­

bers of accidents is Poisson distributed, is generally accepted. If 
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we are dealing with accidents ratios instead of accidents such an 

analysis is not directly applicable. 

De Leeuw (1975) describes a more general model applicable to Poisson 

distributed variables corrected by dividing the variables by a con­

stant. In other words: Poisson distributed variables are first 

weighted before being analysed. The accident ratios can be regarded 

as such weighted variables. A drawback to this is that strictly 

speaking vehicle-kilometres are not correcting constants but in fact 

stochastic variables. The variance of these variables, however, is 

many times smaller than that of the accident variables, and the draw­

back will not be very important in practice. A second drawback apply­

ing to all log-linear analyses is that the model is only verifiable 

asymtotically, which means that it holds good in so far as the expected 

number of accidents is large enough for each cell. In the present 

case, this condition certainly does not apply to each cell, which 

makes the model difficult to test. A detailed description and an 

example of using weighted Poisson models can be found in De Leeuw 

& Oppe (1976). 

The same type of model has been used in Andersen (1977). There the 

model is applied to lung cancer cases in different Danish cities for 

different age-groups weighted corresponding to the number of inhabi­

tants. 

xx 4.3. Results 

The initial analysis for road type I is applied to the data of skid­

ding-resistance classes 2 to 7 and traffic volume classes 1 to 16, 

while in addition the sum of classes 17 to 20 was included as a 

class. The results are shown in Figures 5 and 6 together with those 

of the ACM - analysis for the log-data. 

In a second analysis, each two volume classes were combined, and 

eight volume classes and the remaining class were therefore ex-

xx The computer programma WPM written the PLI by the author was used 

for analysing the data 



-19-

amined. The result of this analysis is also shown in Figure 5 as 

far as regards the parameter estimates for the volume classes. On 

the whole, there is close agreement between the ACM-log solution 

and the WPM solution. The solution of the doubled volume classes 

shows that the instability of the curves has been greatly reduced, 

and hence the relation between accident-susceptibility and volume 

class is more clear. The information in Table 5 shows from the 

size of the Chi-squared value that especially road-surface skid­

ding resistance determines the difference in accident-suscepti­

bility (X2 = 373.40, df = 5). 

But the difference in traffic volume also makes a substantial 

contribution (X
2 = 72.32, df = 16). 

There is no significant interaction (X2 = 83.51, df = 80) in the 

first analysis; on the other hand there is a moderately signif­

icant interaction if the volume classes are combined (X2 
= 56.48, 

df = 40). All this greatly favours acceptance of the multiplicative 

model as such and to a lesser extent the omission of the interaction 

term. 

The latter means ~n fact that the relation between accident ratios 

and road-surface skidding resistances is the same for each volume 

class and that there is only a difference in level between accident 

ratios for the volume classes. In terms of adopting measures, this 

means that the same norm can be applied everywhere on type I roads. 

The effectiveness will, of course, depend on the volume of traffic. 

For type 11 roads, skidding-resistance classes 1 to 7 were analysed. 

For the traffic-volume classes, the values of classes 1 to 10 were 

used and those of the 11th to 15th classes were added. The results 

are shown in Figures 7 and 8. Here again, there is close agreement 

between the ACM-log and WPM solutions. Table 5 shows that the main 

contribution to the difference in accident-susceptibility is made 

by skidding resistance (X2 = 331.41, df = 6) and that traffic volume 

also makes a very significant contribution (X2 
= 120.72, df = 10). 

Within the multiplicative model, however, there is a very signif­

icant interaction for road type 11 (X2 
= 191.89, df = 60), and it 

can therefore be said that the multiplicative model without the 
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interaction term does not fit as well here as for road type I. 

In a second analysis, resistance classes 1 and 2 and 6 and 7 were 

combined, while volume classes 9 and 10 were put in the remaining 

class. Hence, the number of cells with few observations was greatly 

reduced. Here again, interaction was found to be significant (X2 = 
142.27, df = 32) and it is not reasonable to assume that the inter­

action can be explained by the number of observations within cells 

being too small. 

An explanation might be the great diversity of type 11 roads as 

mentioned in the introductory remarks and the fact that carriage­

ways of this type are not usually separated. Moreover, accidents 

at junctions may distort the picture. In this case the use of vehicle­

kilometres is certainly not the best correction for exposure. 

To sum up, the conclusions are: 

I. The ACM model gives a good description of the log-data. 

2. The application of the WPM model for road type I data, based 

on the results of the ACM analysis, supports the hypothesis 

that road-surface skidding resistance and traffic volume have 

independent effects upon accident occurrence. 

3. Consequently a description of accident ratios can be given in 

terms of only one of the two variables. The practical implica­

tions of this as regards measures to be adopted have been 

worked out by Schlosser (1977). 
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~ 2 3 4 5 6 7 8 

01 3.50 5.00 34.50 52.00 7.50 
02 3.00 1.00 6.50 23.75 33.25 8.75 .25 
03 2.00 5.50 38.75 55.00 16.00 1.25 
04 4.00 4.50 8.50 52.00 56.00 21.50 
05 3.00. 2.00 6.25 58.75 67.50 11. 50 
06 3.50 1.50 6.50 47.75 52.00 11. 75 
07 15.00 2.50 8.50 52.50 81.25 10.25 
08 13.50 3.75 15.25 61.00 77.25 15.75 
09 8.00 2.50 13.25 81.50 66.50 7.75 
10 4.50 5.25 H:~OO 70.75 66.25 9.75 
11 4.00 3.75 18.50 85.75 85.;0 7.00 1.00 
12 2.50 1.50 26.25 66.75 58.25 7.25 1.00 
13 .25 23.00 54.50 43.25 8,50 
14 3.50 1.50 11. 75 59.50 34.50 7.25 
15 1.50 10,50 44.25 23.25 2.00 
16 .75 ·12.75 35.25 21.25 1.00 

17 .75 6.25 25.75 5.75 
18 6.75 27.75 3.00 
19 2.25 12.25 6.50 
20 .50 10.25 48.50 11.25 1.00 

Table lA. Distribution of mumDer of accidents on road type I 

according to road-surface skifhling resistance (R) and traffic 

volume (T). 

The fractions are the result of dividing accidents into classes 

where the class cannot be in.icated precisely. 



~ 2 3 4 5 6 7 8 

P1 79 140 488 4145 9598 l;l204 610 

02 116 165 711 6219 13662 5457 485 

03 228 238 1273 11675 25830 11525 877 

04 361 400 1699 15613 28172 11457 493 

05 193 594 1610 14431 29096 10183 223 

06 239 563 1586 14166 31019 8579 195 

07 442 626 1539 13952 31060 7508 178 

08 492 579 1729 14699 30537 6276 128 

09 386 470 1585 14109 25306 4942 100 

10 264 475 1518 12865 22231 3524 78 

11 239 404 1715 11794 19160 2485 50 

12 172 234 Hi67 10480 15703 2238 32 

13 77 153 1029 8085 11093 1483 22 

14 78 102 863 6132 8001 926 13 

15 40 67 570 4453 5502 551 5 
16 6 51 475 3129 3669 442 

17 2 45 495 2362 2782 284 

18 26 379 1702 1798 145 

19 19 236 1513 1454 115 

20 4 26 875 4148 3373 233 

Table 1B. Classification of »umber of vehicle-kilometres acc~­

ing to road-surface skidding Fesistance (R) and traffic volume 

(T) for road type I. 



~ 1 2 i If: 5 6 7 8 

01 8.00 2lf:.00 20.00 If:9.00 189.00 369.50 93.50 6.00 

02 1lf:.00 50.00 57.00 92.50 290.25 If:87.75 130.00 9.00 

03 16.00 35.00 If:0.00 78.50 323.75 If:39.25 83.00 1.00 

Olf: 11.00 21.00 38.00 70.00 309.50 357.50 If:3.00 1.00 

05 If:.00 21.00 33.00 63.50 197.00 168.00 19.00 

06 If:.00 12.00 29.00 47.00 163.50 116.00 13.00 

07 1.00 9.00 13.00 36.00 83.00 58.00 6.00 2.00 

08 7.00 If:.00 13.00 66.00 If:1.00 3.00 

09 3.00 1.00 6.00 11.00 39.50 31.00 1.00 

10 2.00 1.00 If:.00 29.00 17.00 1.00 

11 2.00 If:.00 17.50 32.00 

12 2.00 1.00 6.00 13.00 8.00 

13 1.00 1.00 1.00 8.00 3.00 

1lf: 3.00 1.00 

15 If:.00 

Table 2A. Classification sf B.m~er of accidents on road type 11 

according to road-surface ski.li~ resistance (R) and traffic 

volume (T). 

The fractions are the result of dividing accidents into classes 

where the class cannot be indicated precisely. 
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~z 1 2 3 4 5 6 7 8 

01 620 2198 2919 4866 24512 60184 21175 1883 

02 860 34,70 5521 12544 53617 112993 36351 1583 

03 781 2425 3886 11427 54940 86961 20241 583 

04 387 1192 2543 7840 45977 55499 9680 491 

05 145 589 2157 6800 28100 30695 4691 246 

06 58 234 1182 4566 16184 19079 2570 129 

07 30 53 436 2392 9722 12643 1676 46 

08 38 34 294 1424 5525 7609 945 11 

09 15 16 113 708 3070 4724 469 8 

10 19 8 57 302 1946 3361 430 6 

11 20 11 36 155 1594 2765 299 2 

12 18 8 17 125 1109 1706 171 

13 7 3 7- 66 337 622 47 

14 4 4 16 83 135 18 

15 2 3 1 182 301 12 

Table 2B. Classification of ~.~r of vehicle-kilometres accorj­

ing to road-surface skiddin& l!esistance (R) and traffic volume 

(T) for road type 11. 

. 



- 2" -

Sd S S 
log mon 

road type I • 18lJ:9 • 133lJ: .115lJ: 

road type 11 .2355 .1230 .0789 

Table 3. Stress values for solution of data, log-data and ultimate 

ACM solution for road types I and 11. 

Sd S S S - S S - S 
log mon d log log mon 

mean .6939 .6928 .6325 .0011 .0603 

s.d. .05lJ: .058 .054 .038 .038 

Table lJ:. Mean stress values for solutions of Monte Carlo data and 

the relevant standard deviations for data of road type I. Number 

of data sets lJ:0. 
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Effect X2 

~~~~lR~_!L_£E!~!~~!_~~~: 

T 72.3155 

R 373.4048 

T x R 83.5095 

~~~_~lR~_!L_~~~!~: 

T 

R 

T 

T 

R 

xi;R 

T x R 

51.80 

377.33 

56.48 

120.72 

331.41 

191.89 

~£~~_~lR~_!!L_~~~~~: 

T 215.92 

R 652.44 

T x R 142.27 

NS 

DF 

16 

5 

80 

8 

5 

40 

10 

6 

60 

8 

4 

32 

2 
X .95 

26.29 

11. 07 

101.88 

15.51 

11.07 

55.76 

18.31 

12.59 

79.08 

15.51 

9.49 

46.19 

Table 5. Results of the four WPM analyses. The source is given under 

"effect"; against these, the chi-squared values (X2) with the relevant 

degrees of freedom (df) and the chi-squared limits belonging to the 
2 

5% level (X. 95 ). 
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