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INTRODUCTION 

A course on contingency table analysis for road safety studies 

seems to be rather specialistic. To investigate whether or not this 

subject matter is worth to be selected as a subject for an ASI­

meeting, it is important to know the nature of the data in road 

safety research. Moreover it is necessary to know the power of 

the techniques for the analysis of contingency tables (ct's) and 

their limitations. This lecture is an attempt to give an outline 

of both factors. 

A ct, sometimes called a cross-table, is a table of counts. Obser­

vations are classified according to one or more characteristics. 

After the classification a table is achieved, with numbers of 

observations in each cell. In the analysis of such a table, one ~s 

mainly concerned with the distribution of the observations over 

the cells. The dominant aim in such an analysis is the separation 

of the systematic effects and the random fluctuations that together 

resulted in the observed numbers. Therefore a model is needed to 

describe the systematic effects and an error theory that deals 

with the deviations of the observed data from the data that are 

expected according to the model. 

The investigator is primarily interested ~n the systematic effects. 

He wants to check assumptions with regard to the underlying struc­

ture or model, which process is called "hypothesis testing", or 

he wants to specify the underlying model structure, which is called 

"parameter estimation". In both cases the random component is im­

portant. The research worker has to investigate to what extend 

random fluctuations may have influenced his results. Therefore he 

needs a theory that copes both with the underlying structure and 

the nature of the random fluctuations. 

As to this last aspect, much work has been done in the past. With 

regard to the model specification, recent research has resulted in 

many improvements that account for an increased attention to the 

analysis of ct's. The result of this research is also of great im­

portance for the analysis of road safety data. Road safety is 

measured by road-traffic accidents. Sometimes alternative measures 
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are used such as the number of road-traffic conflicts, when no 

accident data is available. What follows regards to accident data 

and conflict data, because both consist of counts. Even when 

accident rates are used (accidents per head of the population, per 

road length, per vehicle mile travelled etc.) a measure of road 

safety results which is in fact based on counts. 

If one concentrates on the fact that these measures result from 

counts, then the analysis will tend to an explanation of that number 

of counts in that particular cell of the table. This leads to 

questions like: "what is the probability of that number of obser­

vations in that particular cell?" A completely different approach 

is got if one stresses the point that he deals with a measure of 

safety, a safety score. The relevant question then seems to be: 

"what makes the score for that particular cell so high or so low?" 

Both types of analysis do appear in road safety research. 

The analysis of ct's is primarily concerned with the distribution 

of observations over cells. The second approach leads in most cases 

to an analysis in the context of linear models, such as linear 

regression or the analysis of variance. The approaches however lead 

to completely different model assumptions. In the analysis of 

variance approach the expected value for the score in cell <i,j> 

of a two-way table, is generally supposed to result from two addi­

tive components, according to the row and column position of the 

cell: 

E(x .. )= r. + c. 
~J ~ J 

In the analysis of ct's a multiplicative model is generally assumed, 

although additive models do exist. In many practical cases the 

choice of the model structure depends less on the nature of the 

data and more on factors such as the statistical complexity of the 

model, or the knowledge about or availability of the techniques. 

From a statistical point of view, the linear model has many advan­

tages, resulting from the applicability of the theory of linear 

vector spaces on statistics and the statistical properties related 

with linear transformations. The presentation of the multiplicative 
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model for the analysis of et's as a linear model for the log-counts 

resulted in the same advantages and largely accounts for the in­

creased interest in the et-analysis. 

Before we go into more detail with regard to the model structure it 

seems good to recollect some of the basic theories of et-analysis. 
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THE MULTINOMIAL MODEL 

In probability theory there are a number of so called "ideal experi­

ments" that may be used as a model for the analysis of ct's. One of 

these theoretical experiments leads to the multinomial model. The 

experiment consists of a number of repeated independent draws of a 

sample element from a population. Each draw resulting in one of 

several possible outcomes. To apply this model, the following assump­

tions are needed: 

- the probability that a particular observation is classified into 

a certain cell is independent from the classification of other 

observations; 

- the probability is the same for each observation; 

- the observations are classified in one and only one cell, ~n other 

words the events are mutually exclusive and exhaustive; 

- no assumptions are made about how the events occur. The occurrence 

of events is taken for granted. 

These assumptions lead to the following probability distribution: 

The probability that from a number n of observations, 

are classified in class i, is equal to: 

x. A ••• fIX 
~ m x ) 

m 

m 
, IT x. n. --, p. ~ . x.. ~ 

~ ~ 

x. observations 
~ 

where p. is the probability for each observation to be classified 
~ 

in class i. The expected number of observations in each class is 

equal to n.p; the variance is equal to n.p .• (l-p.) and the covariance 
~ ~ 

between the observations in class i and class j is equal to -n.p .. p .• 
~ J 

For road safety research it may be concluded that the model can 

be used for the analysis of ct's that consist of accident numbers. 

However, if the observations are numbers of cars involved in acci­

dents or numbers of persons injured in accidents, then the model is 

not applicable because many observations are collected in groups 

and therefore not independent anymore. 

For the analysis of ct's it is important to realise that the events 

are in fact composite events. The classification of an observation 

in cell <i,j> means a classification in row i and column j. This 
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results in a special restriction of the model. It is often assumed 

that the classification of an observation in row i is independent 

from the column where the observation is in and vice versa. Two 

events A and B are said to be statistically independent if the 

probability p(AnB) that both events occur is equal to the product 

peA). P(B) of the probabilities that each of the events occurs. The 

independence of an observation in row i from being in column j is 

therefore expressed in the model with the restrictrion that the 

probability p .. of an observation in cell <i,j> is the product p .• p. 
~J ~ J 

of the probabilities of an observation in row ~ and in column j. 

Thus the hypothesis of no interaction between rows and columns 

leads to a multiplicative model for the cell counts. The common 

used Chi-square test of no interaction results from this model. Here 

the probabilities p. and p. are estimated from the marginal row and 
~ J 

column distributions of the table. 
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THE POISSON MODEL 

Apart from the multinomial model there is another model that is in 

use in the analysis of ct's with road safety data. This is the 

Poisson model. 

For the application of this model all the assumptions of the multi­

nomial model are needed together with one extra assumption regard­

ing the occurrence of observations. Here the observations are not 

taken for granted, but it is supposed that the occurrences are 

Poisson distributed with parameter A. The probability distribution 

is written as follows: 

which means that the probability of exactly k observations, given 

the Poisson parameter A, is equal to the expression at the right 

side of the equation. If we make this assumption and further assume 

that the observations are multinomially distributed over the cells 

of the table with probabilities p .. , then it is proved that the 
~J 

distribution of the number of observations in each cell is Poisson 

distributed with probability Ap ... Otherwise it can be proved that 
~J 

if the number of observations in each cell is Poisson distributed 

with Poisson parameter Ap .. , then the total number of observations 
~J 

is also Poisson distributed with parameter A = ~Ap ..• 
~J 

Moreover it is easily proved that the conditional distribution of 

the observations over the cells, given the total number of obser­

vations, is a multinomial distribution with probabilities p ... In 
~J 

formula: 

m 
P (Xl = xl A •.• AXm = xm ~ xi = k) = 

~ 

= ~{ e-APi 

m 
= k! IT -

i x. ! 
~ 

(APi)xi / Xi!} / { e -EAPi (DPi)k / k!} = 

x. p. ~ 
~ 



-8-

Thus, in this context, the multinomial distribution can be regarded 

as a restricted case of the Poisson model. 

To investigate in which cases the Poisson assumption is satisfied, 

it is useful to start with the most common interpretation of the 

Poisson model. 

If we apply the before mentioned theoretical experiment to the 

occurrence of observations, then a trial can be regarded as a unit 

period of time during which an event mayor may not occur with 

probability p (more than one event may occur). If the time period 

is divided in n equal parts then we assume for each period of time 

that the probability of an event is p = pin. This results ~n n 
n 

trials each with probability p of an event to occur. The expected 
n 

number of total events remains the same, being equal to A = n.p . . n 
If n tends to infinity, then the probability of more than one 

event becomes negligible and the trials may be interpreted as ~n­

dependent binomial trials. 

It is proved that the limit distribution of the total number of 

events in this case is equal to the Poisson distribution. 

The mean and variance of the Poisson distribution both equal A. 

The essential assumptions are that the occurrence of an event does 

not depend on the history of previous trials, or in other words that 

the trials are independent and that the probability of an event is 

equal for each trial, or that the events occur homogeneous in time. 

The first assumption does not find much resistance in road safety 

research: accidents are rare events and seldom one accident causes 

another. In most cases where this however is true, one often regards 

such a chain of accidents as one (complicated) accident. The second 

assumption however troubles many investigators. Traffic flow changes 

rapidly over time and the accident rate is supposed to change with 

it. However, the homogeneity assumption needs not to hold over a 

long period of time. From the fact that the sum of Poisson distri­

buted variables is again Poisson distributed, it follows that it 

is enough that the homogeneity assumption holds for a short period. 

In many cases support is found for the Poisson assumptions. In 

cases where these assumptions does not hold, one sometimes assumes 

a mixed or compound Poisson process. In these cases the variance 
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exceeds the mean, which is true for instance with the negative 

binomial distribution. Here it is assumed that the sampling is 

from Poisson distributions with different parameters. The statisti­

cal properties of these compound distributions lead to serious 

complications as far as the analysis of ct's is concerned and there­

fore do not lead to practical alternatives. 

The Poisson distribution is used in many investigations of road 

safety research. Recently the multiplicative Poisson model has been 

used for the analysis of ct's with regard to accident data. 

Rasch (1973) applied the model to accidents classified according to 

road categories and days. Furthermore he used the model to estimate 

parameters for accident proneness of different drivers and to test 

whether or not these parameters changed with time. For these test 

he used the Chi-square test, based on the conditional Poisson dis­

tributions. 

Hamerslag (1977) uses the multiplicative Poisson model to estimate 

the parameters for different classes of several accident charac­

teristics jointly, under the hypothesis of independence between the 

characteristics. Which is a rather strong assumption, that only can 

be released by combining variables in one new variable. 

De Leeuw & Oppe (1976) used a weighted version of the Poisson model. 

It has been applied for instance to ct's with accident numbers col­

lected over different areas, or periods of time. This model is 

rather similar to the Multiplicative Poisson model with unequal cell 

rates of Andersen (1977). 
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RECENT DEVELOPMENTS IN CT-ANALYSIS 

We shall now come to a more systematic description of the recent 

developments. 

Most of the applications of an analysis of ct's are instances of 

testing the hypothesis of no interaction in two-way tables. Prob­

abilities of row and column classification are estimated from the 

row and column marginals. 

From these values the expected number E .. of observations in each 
~J 

cell is computed as n.p .• p. 
~ J 

counts O ..• 

and compared to the. observed number of 

~J 

A measure of discrepancy X2 between both series of values called 

Chi-square is defined as: 

t 
i,j 

(0 .. - E .. )2/ E .. 
~J ~J ~J 

Under the assumption that the hypothesis of no interaction is true, 

the value of X2 depends only on random fluctuations. The distribution 

X2 is therefore assumed to be based on the properties of the multi­

nomial distribution only. 

For each total number of observations and each model specified in 

terms of cell-probabilities, there is a discrete set of possible 
2 values of X , the probability of each value depending on the prob-

ability of the corresponding set of cell-observations, given that 

specified multinomial model. Computation of these exact probabilities 

is rather cumbersome. Only in very restriced cases tests based on 

these exact distributions of X2 are of practical use. Fishers exact 

test for 2x2 tables is an instance of these tests. Therefore, ~n 

practice additional assumptions are made ~n order to arrive at the 

distribution of X2-values. In fact it is assumed then that the value 

of X2 is distributed as the sum of a number of squared standard 

normal variates. This results from a well known limit theorem for 

the multinomial distribution. Practical values of this theoretical 
2 distribution denoted with X and known as the Chi-square distribu-

tion, can easily be found from tables if the number of squared in-

dependent standard variates is known. This number is often 
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called the degrees of freedom (df). The use of these tables is only 

warranted when relatively large numbers of observations are present. 

Therefore one often speaks of large sample tests. 

Not much is known about the usefullness of the X2-distribution in 

small samples, other than with 2 * 2 tables. There are a number of 

handrules for usefullness in some situations. An overview can be 

found in Cochran (1952). 

Oppe (forthcoming) investigates the behaviour of maximum likelihood 

and modified minimum Chi-square estimates for log-linear parameters 

and related X2-distributions for a number of tables with small expec­

ted cell counts. This is done by means of the Monte Carlo method. 

The neccessity of large samples often brings investigators in a 

rather difficult position. In many cases there are only small num­

bers of accidents on which statistical analysis can be based. This 

is one of the reasons why the Chi-square test did not get much 

attention for a long time. There is another reason. The Chi-squared 

test as described above is used as a test of no interaction. If this 

hypothesis has to be rejected, then the test does not tell us in 

what way the model fails to describe the data, but only that it 

fails to do so. In other words, the Chi-square analysis is a poor 

instrument for theory building. 

Another problem often mentioned in hypothesis testing, using the 

Chi-squared test, is the fact that small and uninteresting deviances 

from the null-hypothesis will lead to a rejection of that hypothesis 

when a very large number of data has been collected. Thus besides 

the question of significance, there is the question of relevance. 

This problem stresses the need for parameter estimation and compu­

tation of their confidence regions as information additional to 

hypothesis testing. 

The reason why the interest in the analysis of ct's is increased 

specially since 1960 is not because the problem of small numbers 

is solved but mainly because of a more detailed model testing pro­

cedure and the increased possibilities for parameter estimation. 

There are four main developments that must be mentioned: 

1. The application of the Chi-square test as a test for the hypo­

thesis of no interaction, is generalised to ct's with more than 
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two ways of classification. Foldvary & Lane (1974) in measuring the 

effect of compulsory wearing of seat belts, used the method of 

partitioning the total Chi-square in Chi-square values for first, 

second and third order interactions in a four-way table. 

2. Test are not restricted to overall effects, but Chi-square values 

are decomposed with regard to subhypotheses of the model. Not only 

with regard to the different levels of interaction between variables 

as used by Foldvary & Lane, but also within for instance the two­

way table to partition the total Chi-square in Chi-squares with 

respect to (subgroups of) single classes. The advantage over earlier 

methods where the subtables are analysed as such, is that the parti­

tioning of the total Chi-square is exact and results in independent 

Chi-squares for subhypotheses. 

3. As a result of this last mentioned development one has to put 

more attention to parameter estimation also. Subhypotheses as 

mentioned are derived from constraints on the parameters ~n the 

model, such as linear constraints, quadratic constraints on the 

row-parameters etc. 

4. The unit of analysis has been widened from counts to weighted 

counts, where the counts are weighted before analysis. The hypothe­

sis testing of main effects is sometimes possible with weighted 

numbers, for instance if one wants to test whether or not there is a 

significant difference between the number of fatalities in different 

countries per head of the population. 

However, the most important reason for using these extentions of 

the Chi-square method comes from the presentation of the theory in 

terms of linear models. The linear model is assumed to exist for 

the log-counts. Therefore it has been called a log-linear model. 

The log-linear model states that the logarithm of the expected 

value of the cell counts can be decomposed as follows: 

In(E(x .. )) = 11 + a. + S. + y .. 
~J ~ J ~J 

If the parameters are not known, and must be estimated from the 

data, then it is always possible to find a perfect solution for 

the parameters of the above stated (saturated) model. Testing in-
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and columns means that the hypothesis y" 
~J 

o 

Stricter models such as In(E(x" » = ~ + a, can be tested within 
~J ~ 

the former model. It is also possible to test restrictions on para-

meters, such as linearity restrictions for instance on the a's. 

Moreover, the generalisation to higher order tables is going straight 

forward and tests of restricted models are conceptually clear. We 

shall not go into more detail now. A comprehensive description is 

given in Bishop, Fienberg & Holland (1975). 

Sometimes the log-linear model is confused with the log-normal model. 

The log-normal model is used in the analysis of variance to stabi­

lise the variance of the observations for all kinds of measurement. 

The strong resemblance between both techniques is best illustrated 

in Nelder & Wedderburn (1972). In their computerprogram GLIM they 

incorporated the log-linear model for the analysis of counts as a 

special case of the linear model. Only the log-transformation of 

the data is needed to apply the linear analysis. 

This leads us back to the question about the additive and multi­

plicative interaction in ct's. Darroch (1974), who compares both 

models from a statistical point of view, gives the following repre­

sentation of no interaction in a three-way table: 

For the multiplicative model: p, 'k = a, ,.S'k.Y'k and for the addi-
~J ~J ~ J 

tive model: p, 'k / (p, .p, .Pk) = a" + S'k + Y'k· 
~J ~ J ~J ~ J 

This additive model was first introduced by Lancaster (1951). He 

used the model to partition the total Chi-square (that can be 

regarded as a measure of residuals) according to the a- and S- and 

y-values. In this way the residuals are tested further according 

to an additive model for row and column and layer effects. This 

kind of a compromise between interaction seen as statistical in­

dependence and a decomposition of the residuals according to an 

additive interaction model leads to different results in tables of 

higher order than two-way tables. Despite some advantages of the 

additive interaction model, Darroch concludes to a slight prefe­

rence of the multiplicative model based on the statistical prop­

erties only. 

Oppe (forthcoming) applies a generalised linear model to analise 
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a table of accident rates according to wet pavement conditions and 

* hourly traffic volume classes. He uses an additive model: E(a .. ) = 
~J 

r. + c .. 
~ J 

This model however was not applied to the datapoints a .. themselves. 
~J 

A monotone transformation a~. of the data was used that led to the 
~J 

best fit of the model. A description of this kind of monotone regres-

sion models is found in Kruskal (1965). 

The transformation turned out to be logarithmic, suggesting a multi­

plicative model rather then an additive model. Therefore there are, 

besides the logical attractiveness of the multiplicative model and 

some statistical advantages, also emperical results that support the 

multiplicative model for this kind of accident data. In many cases 

these tests of the model are ignored and a poor fit, resulting from 

the use of an incorrect model is much too lightly interpreted as 

just random error. For instance, in linear regression models one 

seldom is interested in the magnitude of the error component. In 

log-linear tests, however, this is not the case. The test of the 

model implies assumptions about the magnitude of the error component 

which is a great advantage of the technique. It leads to a quicker 

rejection of an incorrect model. 
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