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1. Introduction 

The increasing interest in the research field of biomechanics or, 

more specificial~y, injury mechanics, in the past" few decades has 

already produced a great amount of data. 

Various, more or less succesful, attemps have been made to integrate 

~his mass of data into consistent theories for injury mechanisms, 

sometimes resulting in relatively simple injury criteria. 

Since it is common knowledge that the existing injury criteria 

yield predictions that are only partially consistent with "reality", 

we feel justified in making an other attempt; the hereby presented 

project should be considered as such. 

2. Basic assumptions and limitations 

The first limitation is that we only consider those injury mechanisms 

that are brought about by external violence to a victim, thus 

excluding "natural" di sease s. 

A more important limitation is that we must confine ourselves to the 

well investigated areas of injury mechanics (e.g. head injuries) 

since we do not have research facilities of our o,vu. 

Furthermore, research of the presented kind is only practical if 

we can assume that any injury process is mainly influenced by limited 

if possibly large, number of recognisable and measurable parameters. 

3. The injury process 

Let us consider an injury generating process as applied to a single 

victim. 

Such a process may be divided in the following stages: 

generation of forces, injury 

ccident_ moments, accel"rations generation of injury 
pa~tern 

". pattern acting on victim pattern 
of 

violence 
on v1ctl.m 



-3-

The first stage of the thus divided process has been and is a subject 

of extensive research, sometimes resulting in quite acc~rate 

mathematical models (the IW-TNO developed, SWOV sponsored MADYMO· 

models for instance). 

It is clear that in this stage already certain characteristics of 

the body of the victim play an important part in the generation of 

violence. 

A number of those characteristics such as: linea~ dimensions, mass, 

mass distribution, force-displacement properties of various tissues, 

are relatively easy to get; other properties,like moments of 

inertia of parts of the body, resistive joint torques etc. are 

harder to obtain. 

Nonetheless, for an accurate insight into the pattern of violence 

on a single victim we need to quantify all those characteristics 

simultaneously. 

The same reasoning goes for the second stage of the process: the 

generation of injury. 

The difference with the first stage lies mainly in the fact that the 

definition and evaluation of important characteristics is much 

more difficult, if at all possible; examples of such parameters are: 

mechanical propextiesof bones, blood vessels, brain tissue, tissue 

of the liver etc. 

Furthermore, factors as fatigue, sports training and other hardly 

measurable factors may play a role in injury generation. 

Modelling the injury process 

For modelling purposes the division in the injury process is a 

convenient choice; as said, the first stage is already well looked 

at by research and, to obtain data and patterns of violence on an 

arbitrary subject, we may make use of various mathematical models 

available. 

Moreover, violence data may also be obtained by dummy tests. 

Thus, our attention should mainly be given to the second stage of the 

process. 
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In the following, we will give a step by step accounting of the 

considerations that may lead to a model for this stage. 

3a. General considerations 

The actual injury process is continuous in many respects. 

Violence may be applied to any point of the body, resulting in 

injuries of (continuously) varying degree. 

In our model, however, those conditions are somewhat hard to handle 

and the most common solution to such a problem_is, to divide that 

problem in classes, subclasses etc. to make it more accessible. 

Thus, making some choices for divisions, the overall model-· may be 

divided in submodels for various parts of the body like this: 

submodel head injuries 

input)

violence submodel thorax injuries 
output inUu}."y 

pattern --------.,.,.. 

forces 

moments 

accelerations -on thorax 

-- -.----- ---- ----
submodel abdominal injuries 

etc. 

Within each submodel, especially at the injury output side ,the 

injury prediction process can also be divided into discrete blocks, 

mainly to provide a means for differentiation in injury categories 

and injury levels. 

For example, the thorax-injury submodel may look as follows: 

r 
predictor of injuries 

to rib-cage 

predictor of injuries to 

etc. 

a . 
b 
c 

laver 
a 

b 
c 
d 
---- ~--.--. 

etc. 

J 
.-' 

possible levels 

of injury to ribs 

possible levels 

of injury to 

liver 
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In this way, the model consists of a ve>luntary number of submodels, 

each in its turn divided into predictor modules for injury categories. 

The output of a predictor module consists of a vector in 'vhich each 

element, representing a certain injury level, is assigned the 

probability of occurance of that level. 

(N.B. If we assume that we can quantify all 

significant parameters, the accuracy of prediction is 100 %, which 

means that .only one element of an output vector is assigned a value 

1 while all other elements must be 0). 

Observe, that the use of submodels and predictor modules makes a 

highly flexible model; we "only" have to establish a general processing 

routine for one such a submodel-predictor combination and apply this 

routine to all combinations no matter how many there are. 

Thus the model can be easily expanded. 

3.b. Single victim model and generalisation 

So far we have only considered the modelling of an injury process of 

a single subject. 

Such a model may be applicable in a limited way but it is, itself, 

not suited for use as a general prediction tool. 

Essentially, what we have to do to generalise the results is to 

apply the model a number of times to different subjects that are 

chosen so as to form a representative sample of the considered 

population. 

This repeated application of the model can be put into a "flow chart" 

as drawn on the next page. 

In this flow chart there are two separate functions: 

A: the "bookkeeping": this involves all manipulations to provide 

input for injury prediction and to process the output of the 

predictions (functions are marked Ai through A6). 
B: the model which provides the actual prediction (marked B). 

In the following \vewill consider the two functions separately. 
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s.tart 

determination 

of sample 

selection of 

a single 

subject 

determination of all possible 

characteristic parameters for that 

subject 

B application of the single victim model 

A3 

A4. 

A5 

wheighirig of the injury prediction with 
the degree of representation of the 
selected subject , 
addition of the weighed injury-prediction 

to the general result 

whole 
sample pro

cessed? 

yes 

stop 

no 
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4. Functions of· the generalised model 

Generally speaking, it is impossible to quantify all 

relevant parameters that govern the outcome of an injury process 

even for a single subject. 

Moreover, if there are such parameters that can be measured 

accurately, it is very difficult to obtain those parameter values 

for a whole population. 

All this imposes at least two important (if trivial) limitations to 

the modelling activities: 

a. certain types of injuries will not be predictable at all; 

b. the prediction of other injuries will generally be based on limited 

information which renders the prediction uncertain. 

The effect of the first limitation is clear, the eff~ct of the second 

one will now be considered. 

4a. The model function 

The single victim model, as introduced in chapter 3a with its 

divisions and subdivisions is already adapted .to handle 

"uncertain predictions". 

The main effect of uncertainty of prediction versus 100 % certain 

predictions is, that the output vector of each predictor module will 

contain a probability factor Pi (O~Pi < 1) in each element i of the 

vector. (For consistency, the sum of all elements of any injury 

probability vector must be 1). 

At this moment it is impossible to select a way by which the 

probability factors will be calculated, since that depends on the 

availability and accuracy of parameter data (the first literature 

studies are not yet completed). 

Moreover, also depending on parameter data, the method of calculation 

of the probability fac,tors may vary for different predictor modules. 

Ho ''1ever, . a number of ways can be hypothesised; see appendix A for 

examples. 
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4,b. The "bookkeeper" function 

From the flow chart in chapter 3b we see that the bookkeeper function 

consists of 2 major tasks: 

1. selection of a subject and collecting all data pertaining to 

that subject; 

2. updating of the output injury-vectors with the results of the 

model function. 

Since the first task implies data transmission rathe:r than data 

processing, it will not be influenced by the degree of certainty 

(the second limitation) of the data. 

The second task does imply data processing; however, now it concerns 

the output vectors of the model, consisting of non-dimensional 

probabilities (= simple real numbers). 

So this task, too, is not affected by the second limitation. 

All this implies, that we need to construct a bookkeeper function 

only once and we will not have to change that function if (through 

research) more extensive data about the injury-process become 

available. 

In fact the only part of the overall model that needs adaptation 

then, is the "model" function itself. 

Let us now consider the separate tasks of the IIbookkeeper" more 

closely, and let us start with the simplest task: 

This task is probably best illustrated by an example: 

Assume: as certain subject from the sample represents 0,8 % of the 

total considered popUlation. 

Assume furthermore: the output vector of one of the predictor modules 

"scores" as follows: 
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Predictor module X (~ injury-levels) 

injury level probabili ty of Qccurrence for selected sub,ject 

I 

11 

III 

IV 

0,1 

0,~5 

0,25 

0.2 

1,00 

+ 

Now, since the predicted probability of injury-levels only applies 

to the selected subject = to the represented percentage of the 

population, the contribution to the general output vector for 

injury type X will be: 

General output vector for injury X 

injury level probability of occurrence for considered population 

I 

11 

III 

IV 

+ 8/1000;£ 

+ 8/1000;1; 

+ 8/1000;1; 

+ 8/1000;1; 

0,1 

0,~5 

0,25 

0,2 

= + 0,0008 

= + 0,0036 

= + 0,0020 

= + 0,0016 + 

0,0080 

Thus, the output vector of all predictor 'modules is weighed" with 

the degree of representation of the subject and added to a general 

output vector or, before weighing and addition, first be weighed by 

a diagnostic criterion like AIS. (See chapter 6). 

The tasks of determining a sample, selecting a subject from that 

sample and collecting the data pertaining to that subject must 

all be considered as operations upon the simultaneous distribution 

of the parameters for the considered popUlation. (See appendix B 

for amplification on the simultaneous distribution). 

The nature of those operations is best illustrated with a simplified 

example, in Which the simultaneous distribution function of n 

parameters is replaced by a single distribution of one parameter P. 
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frequency. f ------t I 

Let us say that the curve represents the. distribution function of 

P as measured for I = 10,000 individuals. 

We may want to represent those 10,000 by N selected individuals, 

each in a certain group, so that each member of the group has a 

value of P sufficiently close to the selected value to be acceptable 

according to a certain criterion. 

A very common sampling technique which we can adopt, is to devide 

the P axis in N intervals of equal ·width. 

Thus the area belo,v the curve is divided into N small fields. 

We can calculate the area of a certain field by A.= AP ~ F. in 
1 1 

which Fi represents the average frequency value associated with the 

field and P. the average value of P. 
1 

Since A.~ I (= A. ~ 10,000) represents the number of individuals 
1 1 

with a parameter value of P in the considered field, 100 % ~ A. ~ 1/1= 
1 

100 % ~ A. denotes the degree of representation for this field. 
1 

In this way we assign a degree of representation to each sample'. 

It is clear that the way, by which we determine a representative 

sample in the case of the simultaneous distribution is far more 

complex. Nevertheless, the basic considerationssare the samei 

4c. The overall model structure 

In most considerations concerning the construction of a model for 

injury prediction we have assumed that a certain pattern of violence 

works on all members of a population. 

However, already in chapter 3 we have seen that this pattern of 
, 

violence may also be dependent upon certain characteristics of 

the victim. 
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So if we want to attain the original .goal: to be able to predict 

injury patterns that are evoked by a distinct type of accident, 

we must take into account that the violence, sustained in such an , 
accident may vary. 

This effects the model flow chart in so far, that between cthe 

determination of parameters and application of the injury-prediction 

model a phase must be incorporated in which the pattern of violence 

is calculated. 

Referring to chapter 3b the flow chart becomes: 

start 

A2 

prediction of 

C violence 

pattern 

B 

stop 
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Although this incorporation is correct theoretically, it is not 

always practical. 

If we obtain the prediction of the pattern of violence by means 

of a mathematical model, it may be possible to construct a 

continuous chain of "bookkeeping and prediction" within a single 

computer model structure. If, on the other hand, the prediction of 

the pattern of violence is obtained by dummy tests, .the whole 

model becomes fysically disjoint. 

Therefore, it can be practical to maintain the separation that we 

introduced in the injury process chapter 3; first predict the 

pattern of violence: to this end we need a sample of the simultaneous 

distribution of only those parameters that are relevant to violence 

prediction. 

- second: prediction of the injury pattern as outlined in chapter 3b; 

however, now ,ye must take into account the restrictions, in selection 

of the parameters, that the sample in the first phase may impose 

on us. 

If, for instance parameterO( is necessary in the first as well as 

in the second phase, we must realise that in the first phase a 

number of values (samples) for D<. already have been chosen, so if 

we determine a sample of parameters in the second phase, parameter 

~ must have the same values as in the first phase and cannot be 

chosen freely. 

Note: If we employ dummy tests as a predictor for patterns of 

violence with for each type of dummy an inherent selection of a 

number of parameter values we must reali$e that subsequent prediction 

of generalised injury patterns can only be valid for those subjects 

in a· population that-have approximately those parameter values in 

common. 
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5. Input data for the models 

In the previous chapters we always assumed the availability of data 

on the simultaneous distribution of parameters. 

However, tHose data are not readily available from litterature. 

In fact, a lot of publications on injury research normalJ;y give 

ample data on the investigated injuriestbut otherwise commonly 

onl~ the most easily accessable parameters like age, sex, mass 

and body- ·length. 

Moreover, the human material available for research can hardly be 

called representative for a whole population since it concerns a 

majority of cadavers of older people. 

And, apart from that, there are the data on animal experiments 

with theire own peculiar scaling problems. 

All this makes, that the construction of a database for the 

prediction model in itself will be a complicated iterative .. 

process in which: 

a. the available data must be fitted into a hypothesised and . 

approximate.d form· of :simultaneous di:stributioll; 

b. the model output on basis of this hypothesis must be checked 

against "reality"j 

c. the hypothesised form must be adjusted as a result of that check. 

Since it is clear from the previous chapters that parts of the 

model.structure are influenced by the nature of the jnput data, 

it ,vilI:.be clear that model construction and construction of the 

database are inseparable activities; thus in the iterative proces 

follows a phase: 

d. revision of some parts of the model. 
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6. Interpretation of the output of the model 

In chapter 4:b, under the heading: "updating of the output vectors", 

we summarised briefly what steps can be taken once we have calculated 

the output vectors of all predictor modules for one se.lected subject. 

We will now examine those possibjlities. 

In-this case a general output vector contains all types of predicted 

injuries and their subdividions (see chapter 3a). 

After addition of the predicted probabilities for all samples, this 

vector still contains a probability factor in each element, however, 

now valid for the whole population. This vector gives us information 

about the occurrence of the injuries separately and does not tell 

us which types of injuries occur simultaneously; in this way the 

information about the injury patterns of the individual samples is 

lost. 

This possibility gives us more information but is considerably 

more complex. 

We start at the moment that we have predicted the injury probabilities 

for one sample, before we weigh those probabilities with the level 

of representation of the sample. At that moment we have information 

about the combination of injur~-es. 

How we proceed in this case is again best ill!J.strated by an example. 

Say that we have a version of the model that predicts 4: types of 

injury;~"injuries are: la, Ib, Ic and Id. Each type of injury has 

only 2 severity classes: 1 = no injury, 2 = injury. 
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Say that after the processing of a certain sample, the output vector 

looks like this: 

injury type class probabili ty 

la 1 0 
2 1 

Ib 1 0 
2 1 

lc 1 ·3 
2 ·7 

Id 1 .~ 

2 .6 

First we apply the AIS criteria to those injuries that are predicted 

with certainty: la and lb. 

Let us assume that, on basis::of those t,vo, AIS severity 2 is calculated. 

In addition the following combinations are p~ssible: 

le 

class 
1 

2 

Id ~ class 

1 

·3 ~ .~ 

.7 ~ .~ 

2 

.3 ~ .6 

.7 ~ .6 

Resulting possibilities for AIS evaluation with their respective 

probabilitie~ are: 

combination of classes 

injuries nr 1 nr 2 nr 3 nr ~ 

la 2 2 2 2 

lb 2 2 2 2 

lc 1 1 2 2 

Id 1 2 1 2 

probability .12 .28 .18 .~2 
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We can assign AIS values to all these possibilities assume: 

. combination nr AIS 

1 2 

2 3 

3 3 
iJ: iJ: 

Assume furthermore, that the degree of representation of this 

sample is: 0.05. 

If we now define a general output vector it must be a vector of 

only 6 elements: one element for each level of the AIS. 

We can calculate the contribution of the example to the output 

vector in the same way we did in chapter iJ:b: 

.: ~ 

contribution to 

possibility nr probability AIS = 

1 .12 2 .12 :f .05 = 0,006 

2 .28 3 .28 :f .05 = Ot01iJ:3O.023 
3 .18 3 .18 :f .05 = 0.O{}9 

iJ: .iJ:2 iJ: .iJ:2 :f .05 = 0.021 

In this way, the output vector does give us information about 

the severity of simultaneously occurring injuries, at the cost 

of a considerable increase in the number of calculations. 
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Appendix A 

Internal structure of a "predictor Jnodule.':'. 

As indicated in chapter 4A, the nature and precision of available 

data determines largely the nature of the prediction technique. 

That technique may be a physical calculation or a purely stochastical 

one or any mixture of both. 

The difference between the two is best illustrated with a few examples. 

Say that "le ,,,ant to· predict a femur fracture, due to transverse 

forces somewhere one the bone. 

Assume that we can obtain the follo'ving data (remember that in this 

stage of the model we have already selected one subject by a sampling 

technique). 

location of the points of application of the forces 

- length of the bone G m 

tensile strength of the bone 

moment of inertia and maL diameter of cross-section of the bone, 

I and d resp. 

Under these conditions the prediction process is straight forward: 

• from the forces on the bone we calculate a bending moment M 

• we calculate a tension a- on the surface of the bone by: 
$ 

(J = M.d 
s 2.1 

• we calculate the ratio <r; /<r~ · 

If er / (j ./ 1, no fracture will be predicted. 
s ill ~ 

For er / <r: > 1 a fracture will be predicted; we might even s m 
differentiate the severi ty of fracture as a function of V / cr' 

s 'm 

In any case, the calculation yields an unambiguous result and the 

outputv~ctorwill therefore contain zero's, exept for one element, 

representing the calculated fracture severity; this element will be 

assigned the value 1. 
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If we know too little of the causal relations between violence, body 

characteristics and sustained inj~ries but still have date on _' 

violence and subsequent injuries, we may construct a transition, 

matrix type of prediction. 

Say, for instance, that we want to predict aort~uptures from the 

acceleration level of the thorax and from the forces applied to the 

rib cage. 

The model matrix might look as follows: 

acceleration force 
A F 

P(I/A) P(I/F) level I: aorta rupture 

P(II/A) P(II/F) level 11: no aorta rupture 

. 
In which: 

P(I/A) denotes: the probability of level I given accel~.ration A 

P(II/A) 11 the probability of level 11 given acceleration A <=: 
i-P(I/A» 

,P(I/F) 11 the probability of level I given force F 

P(II/F) 11 the probability of level I given force F( = i-P(I/F» 

If we may assume that acceleration A and force F may act independently 

then the total probability of level I and 11 can be calculated by: 

P(I/A,F)= P(I/A) + P(I/F) - P(I/A) ~ P(I/F) 

and, since I and 11 are mutually exclusive: 

P(II/A,F) = i - P(I/A,F) 

Apartl from levels of force and acceleration, there may be a number 

of personal characteristics that play a role in the calculation of 

probability levels. 

Moreover, instead of two injury levels we may needan arbitrary number 

of levels. 
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If we generalise the above calculation jor injury levels as well as 

influential factors it can be shown that~ 

r 

P(k/a1 , a 2 ····ar ) = ~~2 {'p{k/ai _1 ) + P{k/ai ) - P{k/ai ) ~ 
s-1 .r. 
j=1 

where: r denotes the number of influential factors 

s denotes the number of injury levels 

P{k/a.) denotes the probability of injury level k, given the evidence 
1 

of factor a .• 
1 

The calculations as shown above are only possible if we have some 

means of obtaining the values P{k/a.). 
1 

These values must be derived from the literature and research data. 

To this end, a substantial number of statistical methods can be 

utilised, all depending on the nature of the data so it is not 

meaningful to .choose any such method as yet. 

Generally speaking the data processing to derive the probability 

P{k/a.) consists of three stages: 
1 

stage 1: collection and preselection of influential variables 

stage 2: selection of those variables that are most significant 

to the prediction of a certain injury; this is the most 

complicated operation, which probably needs a non-linear 

correlation technique 

- stage 3: calculation of the probabilities pertaining to the 

selected variables simply by counting of cases in each 

category. 
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Appendix B 

Simultaneous distributions 

In problems as the current one, in which a great number of parameters 

must be taken into account, we must consider the possible inter

dependence of certain of those parameters. 

This is especially important if we want to make selections (samples) 

from the collected parameter data since the inter-dependence 

prohibits independent selection. 

To illustrate that effect we will consider a simple example of 

two parameters that are non-linearly correlated. 

Say, that in a survey of cadaver data, we have established that the 

relation between age and breaking strength of tibia bone may be 

. represented by the following diagram (all data points fit within 

the dra\\'ll band). 

frequency 
streng.tli------------~--------------r-----------------------a-g-e---

Also plo.tted along the axis, are the frequency distributions of the 

variables. 
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Let us assume that both are normal distribJaons (it is an example, 

not based on real data). 

Now, if we would treat the variables independently we c.ould take the 

50 percentile value for both parameters and declare that pair of 

parameter values as one of our selections, as a typical combination of 

values. However, as illustrated in the figure, the point correspondipg to 

those values lies well outside the band; in this way we have selected 

parameters for a non-existent specimen. 

Though this example by itself might no~ be a realistic one, it 

illustrates clearly that neglection of possible interdependence of 

variables may lead to unrealistic selections. 

If we realise als9 that more than two variables of the total set 

of human data w'ill probably be somehow' related ,we must take the 

consequence that we can treat none of those varibales as independent 

ones from the onset. 

In the example, this means that, instead of using the frequency 

distributions along the axis, we must assing a frequency to each 

of the datapoints within the band, thus forming a 3-dimensional 

frequency-distribution function. 

We may then proceed by dividing the band in a voluntary number of 

parts and find the average values for the parameters (age and 

strength) and the frequency corresponding to each part. 

In practice, the consequences are more complex, because we must find 

a way to describe a multidimensional surface. 

To that end we may employ techniques like multi dimensional curve 

fitting, linear- or non-linear interpolation between datapoints etc. 

As for now, the exact method th be used is yet undecided, since this 

also depends straingly upon the nature of the data from literat~re. 


