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RECENT DEVELOP~ IN THE METHODOLOGY OF EFFECTIVENESS STUDIES 

- NEW APPLICATIONS AND STATISTICAL MODELS FOR QUASI-EXPERIMENTAL 

DBSIGNS 

Ekkehard Bruhning and Gabriele Ernst 

German Federal Highway Research Institute 

Summary 

The aim of effectiveness studies is to describe the type, direc­

tion and extent of the effects of safety measures on the number 

of accidents, i.e. its particular objective is to quantify the 

effects. Because experiments under laboratory conditions are 

generally not possible, studies of traffic safety measures are 

carried out as quasi-experiments. In such quasi-experiments the 

experimental groups are studied one or several times, before 

and/or after application of the measure. 

Quasi-experimental designs always raise the question of whether 

or not measured changes are due to effects of the particular 

measure or can be explained by other effective influences. 

The control efforts required to take care of such possible 

interferences or distorting influences are connected with the 

particular experimental design. When there are no control groups 

it is necessary to carry out extensive and very costly control 

experiments to take into account all di storting influences . This 

additional control effort can be reduced considerably if it is 

possible to achieve design - immanent Controls by choosing an 

adequate experimental design. 

Effectiveness studies in accident research or on traffic safety 

measures are frequently carried out no t only at one place but a t 

several places at the same time . In p r inciple, two different 

experimental plans can be associated with such studies: 
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a) Depending on the underlying design, all observations are 

aggregated to form experimental and control groups . 

b) In simultaneous studies several 

conducted at different places 

experiments are planned and 

or different experimental 

groups (e.g. road sections) using one and the same experimen­

tal design. Each individual experiment should by itself fur­

nish undistorted results on the effectiveness of a measure. 

If simultaneous designs are used, findings on the success and 

the efficiency of a measure will be of a better quality than if 

the measure is studied only once (e.g. at one place). In princi­

ple, simultaneous comparisons reduce or even eliminate the 

threats to the validity of the results and increase their accu­

racy. Simultaneous designs are therefore increasingly employed 

for large-scale studies of traffic safety measures. 

The adequate analysis of simultaneous comparisons for the 

evaluation of the effectiveness of a measure cannot, however, be 

carried out by using the conventional statistical methods. 

To evaluate the effectiveness of a measure wi th the previously 

available statistical tools, it was necessary to aggregate the 

data of the individual experiments. The cell frequencies of the 

underlying design had to be summed up from all simultaneous com ­

parisons. The statistical analysis was then based on a single 

contingency table. 

Such an aggregation preserves the advantages of the simultaneous 

design concerning the avoidance of dangers and the increase of 

the number of cases. But the statistical analysis of simul ta ­

neous comparisons through this me t hod (aggregation) cannot be 

satisfactory because the additional information provided by the 

simultaneous design is no t exploited. 

A simul taneous experimental design is based n the hypothesis 

that there is one true value of the effectiveness of a measure. 

The measure 

then appear 

factors determined ~n the individual 

in random "distribution around this 

experimen t s 

true value. 
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Before the simul taneous measure factor is determined a test of 

whether the individual measure factors are homogeneous (jointly 

compatible) has to be made. Only when this condition is fulfil ­

led can the simul taneous measure factor be regarded as consi­

stent and therefore as an adequate solution. 

New methods employing loglinear or Logi t models have recently 

been developed for simultaneous experimental designs. The model 

formula in effectiveness studies depends directly on the under­

lying experimental design. Depending on the particular design, 

appropriate loglinear models with adequate test statistics have 

to be employed: Thus it is possible to formulate adequate models 

for simultaneous experimental designs. A simultaneous analysis 

can be carried out without aggregation of the data of the 

individual experiments. This method makes considerably better 

use of the available information. 

The evaluation of a measure's effectiveness is based on diffe­

rent types of criterion variables. The frequency of events 

(accidents, possibly conflicts) is mostly used as the criterion 

variable. But other possible types of cri terion variables are" 

interview results, measurements, percentage changes, monetary 

values and relati vized quanti ties (e. g. the number of accidents 

related to kilometers driven = Accident Rate). 

These different types of criterion variables are connected with 

different assumptions regarding their statistical distribution: 

e. g., numbers of accidents usually follow a Poi. sson dis tribu ­

tion; vehicle speeds, percentage changes, interview results are 

often approximately in normal distribution. 

Depending on the distribution type, adequate tests can be used 

to check whether an observed value is consisten~ with a hypothe ­

tical expected value or some other empirical vd l ue. 

In the case of percentage changes it is, however, not permitted 

to check exclusively on the basis of assumptions regarding the 

distribution, i. e. wi thou t weighting, whether- an observed vdlue 

deviates significantly from a compar i son value. Rather, the 
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value of the reference variable which was used for determining 

the percentage change has to be taken into account. 

In the case of relativized or risk quantities (e.g. Accident 

Rates) the exposure quantity is frequently taken as a determini­

stic (non-random) quantity with no error of measurement. In this 

case, loglinear models can be used whose parameters can be 

estimated by the classic maximum likelihood methods. This proce­

dure is similar to that of weighted Poisson models. 

If for the analysis of risk quantities the exposure quantity is 

not deterministic but stochastic (random), there are special 

problems because the type of the joint distribution of nominator 

and denominator of the risk quantity is unknown. But even for 

this case a solution can be found by using the recently 

developed theory of pseudo maximum likelihood estimation 

(Gourieroux, Monford, Trognon). 

A manual about the statistical analysis of simultaneous effecti­

veness studies has recently been published. On the basis of log­

linear and Logit models solutions are offered in this manual for 

a number of simultaneous quasi-experimental designs as well as 

for different types of criterion variables. A detailed descrip­

tion of the analysis methods is given on the basis of applica ­

tion examples employing standard software. 

For reasons of transport policy and the efficient use of 

available funds effectiveness studies on traffic safety measures 

are carried out frequently and with considerable amounts of 

research money. It is a fact that better results are obtained at 

no extra cost if methodologj cal knowledge is employed early in 

the planning phase of a study. 



ALTERING THE PATTERN or TRAFFIC AND ACCIDENTS IN URBAN AREAS 
A METHODOLOGY TO DETECT CHANGE 

Heather Ward, R.E.Allsop, A.M.Ma~kir and R.T.Walker 

1. INTRODUCTION 

Since 1982 the Transport and Road Res~arch Laboratory 

(TRRL) has been leading an Urban Safety Project which aims to 

demonstrate the effectiveness of introducing a package of low ­

cost accident countermeasures to improv~ th~ safety of residen­

tial areas of typical British free-standing towns. The Transport 

Studies Group (TSG) at University College London has been invol­

ved in the development of a methodology for evaluating urban 

safety schemes in conjunction with TRRL and Transport Operations 

Research Group (TORG) at the University of Newcastle upon Tyne. 

The area-wide approach to I'oad s afet y requ i res low-cos t 

accident countermeasures to be combined to produce an area-wide 

effect. strengthening where possible t~e hierarchy of the street 

system and diverting traffic from prima ~ily residential roads on 

to the local distributors and arterials whilst ensuring that sui­

table measures ar~ taken bn these roads to ease flow and improve 

safety. 

The first stage in the planning and development of an urban 

safety scheme is the definition of the existing road hierarchy. 

This is followed by an appraisal of each route in turn to identi­

fy inadequacies in terms of safet.y or traffic management. The 

next, stage is t ·o definr· a new or imp r lived road hierarr,hy ba~t-'d 

upon which safety objectives and ~t r at e gies can be developed for' 

each class of route and for the area as a whole. Each cate~ory of 

route in the hierarchy should be improv~d in linl~ with its fun C­

tion, thus making thp.m safer and making it prarti c able to dis00u ­

rage through traffic from residential ar C':'~s · The individual nt<:-a ­

sures should be chosen to support thp newly d~fined hirrarchy and 

to bring about a c cident reductions in nl~ ordanre with the safety 

objectives. The measurE"-S required to achip· v( ~ thp,se objertivp-c;; 

are. to a great extent, interactivn and are not necessar' jly sit e d 

at locations which hav~ nn accidrnl hi.tor y . 



2. MONITORING - THE DEVELOPMENT OF A METHODOLOGY TO n~TECT 

CHANGE 

A methodology has been d~velopRd which is ~upabl~ of provi ­

ding information lo e-.lIab1e t .he-. assp.ssment. of 

( i ) the 0 vcr a 11 ob j e c t i ve 0 f r ('.d u d n g t h f' tot a ] nu m 0 e r 0 fin j u r y 

accidents, 

(ii) lhe objectives defined for indivirlunl routes or rE'sldenti~] 

an:aas in terms of the transfpl" of traffic lo morf' suitahl~ 

routes, the change in traffic flows entering and leaving thR 

residential areas and redu~tions in InJury ac~ident~ of 

porticular kinds, and 

(iii) areas of unforeseen diffj~ulti~s of operation or inconve ­

nience such as increased travel tim~s on main routes, de ­

cr~ased accessibility to residential areas, or transfer of 

traffic and accidents to areas adjacent to the scheme area. 

2.1 Scope of monitoring 

In pursuit of their safety object.ives, area-wide schemes are 

expected lo offect the pattern of routeing and the speed of tra­

vel along lIain roads but would not. be expected to affect. the 

total numbrr of trips made. By their nature, however, restrictiv~ 

traffic measures are likely to result in increase-d journey dis ­

tances for some residents. A method of estimating the order of 

magnitude of this effect has been dev~loped. To establish these 

changes fully, it would be necessary to undertake origin-destina­

tion surveys on a before and after oasis . Whilst this would pro ­

vide a wealth of information, it h:=ts not been done bp,cause- it is 

a very costly ond intrusive exer~ise when compared with the bud ­

get for the total package of engineering measur~s of the type 
considered here. 

2.2 Size of effect - size of sampl~ 

The Urban Safety ProJ"f'-c: t sr.hemf-'s hilVP been pI nnned <is pro ­

jects with full experimental rlesi~n. A pilot study was undertaken 

(Dalby and Ward, 1982) in which the variabiI ity of traffic and 

accident parameters wos BSSf'IiIII·d tu pt 'ovid€' input into the stA ­

tistical design of traffic HII/VPY·5 . F ...... pp.rimental design ~n("ompas ­

ses sample size, a f!tho\b of oI l1 ta c:oller.tion ann suhsequL~nt sta -



t.islica] analysis t·o allow thE\ monitoring tE'am to ciraw l' one-}u 

sions about· traffic and accident parameters h~fore and after the 

introduction of the schemes with a giv~n prohability of estahli­

shing with a given level of confidence that a certain exp~ctpd 

change has not occurred by chance. In order nol lo waste scnrce 

res 0 u r c e s. i t i s imp 0 r tan t. t 0 ch 0 0 set h f' l~· 0 r" r f' (' t S a m pie s i z f' • I f 

B sample is too small and insufficient. datH are colleclE'd. large 

real differences may not be established as statistically signifi­

cant whilst if too much data is collecled. real differences loo 

small to be of practical importance appear statistically signifi­

cant. 

The size of areas used in the Urban Safety Project was 

determined by taking an expected reduction of 15 per cent· in 

accidents as a starting poi.nl. A sample size of 500 injury acci­

dents a year would be necessary to have about a 50 per cent 

chance of establishing a reduction of 15 per cent a1 the 5 per 

cent level of significance after one year of operation of the 

scheme. Five towns. Bradford. Bristol. N~lson. ReAding and Shef­

field, participated with study and comparison areas each with 

about 100 injury accidents per year, giving the required tota] 

sample size of 500 injury 80cidents in the stuciy areas. 

2.3 Type of surveys and data collected 

The surveys undertaken by the monitoring teams were designed 

to allow the assessment of the effectiveness of the area-wide 

schemes in the five towns with relatlon to the stated safety 

objectives for each town · They also had to take into account th~ 

need to identify, in the short-te r m, areas of uuforesE'en diffi­

culty of operation or inconvenien Ce. ThE" tyPp.s of survey and dat·a 

collected are describE"d b~low. 

Accident records wpr~ colle0tp.d ov~r R fiv~ year h~for~ pe ­

riod. The use of such an extended bE'· fol ·~ per"iod allows the detec ­

tion of t·rends and seasonal va r iability in tht- a Ce- i df'nt patter"n 

and enables the rang-Po to bf' ~stablishpci in whi!'!l 8r:cident totals; 

might be e~pected to fall in the aflp.r period. It also provides a 

basis for detection of p- ffecls on the number" of road a r-r- jdp.nt~, 

their severity and distribution UV~I the road n~twor~ among 

different groups of road usprs " 



A s m a] 1 nu m h (' r 0 f it U tom n tiC' t r n f f ; c ~ ' 0 \J n l PI ' S pro v i. d t' d d <l t Cl 

about flows over extE'.nded pf>riods whic-h enablf'd thE' (h,t.E'cti.on of 

trends and overall redistribution uf traffic. Classifi~d manual 

counts of flows and turni.ng mOVE'ment s w~·re carl·it-.d out at about 

50 key junctions throughout th~ area OVE'r H four-day pE'riod at , 

four times a year before and aft~r th~ chang~s in the study areas 

of each town. Sites WAre selR~ted to ~nuble changes to be 

detected in the points at which drivers choose to enter and leave 

the residential areas and to provid~ a measurr of compliance at 

junctions where certain movements have been prohibited but not 

necessarily physically prevented. 

The redi s t r i bu t i on of t r a rfic-. can affec,t j ou rne·y t.imes bot h 

within and adjacent to the area treated. Changes in layout and 

control at important junctions and in the type and number of 

points of access from residential areas to the main roads can 

have a substantial effect on both the durat.ion and locat.ion of 

delays. 

Journey time data were collec ted us i ng i .he mov i n gobs erver 

technique (Wardrop and Charlesworth. 1954) on a link-by-link 

basis on preselected routes in the study and comparison areas. 

The use of a portable in-car computer allowed accurate data to be 

collected at frequent intervals along the routAs leading to a 

detailed assessment of delays incurred in approaching junctions 

and pedestrian crossings. By incorporating suitable loops into 

the journey time routes. key junctions could he approached from 

each arm and delays to side road traffic sub~equently quantified. 

T his add i t ion i s imp 0 I ,t ant i n t. hat e x t r a d i s tan c- e t r a vel I r~ dill 

th~ residential area may be spt against gains made in time taken 

to exit from these arE'·as when mini-roundabout.s, 01 ' other ' changps 

In control. are introduc-pd. 

Pe d p,s t . r i a n m 0 v em e n t 1 sdi f fir u ] t . tom 0 nit Cl r b E' c- cHI S (:'. 0 f ,. t s 

complex and OftHII diffus(' paltf~rm,. Schemes of the tYPL~ desrl ' ihnd 

her ear e un 1 i k f> ] y to h n v f' (\ n a d v l" r " (, (' f f e cl 0 n pe des t r i a n m 0 v e -

ment within the rp-sidt;o.nlial at 'ens but those ('rossing on the main 

r 0 ads are m 0 reI i k ld Y l 0 hp.. a f f e c t (' d h y r-h a n g p ·s j n t r a f f i c: as 

well as in the provision and location of ppd~strian faciliti~s 

Cl n d 1 0 ca I sur v e y s m a y h P.. a p pro p r i ii l (' l 0 d f" l t.' ( ·t s 1I c h E' f f e c t s . 



3. EVALUATION OF EFFECTIVENESS - THE DETECTION OF CHANGE 

3.1 Detection of changes in numbpr and pattern of accidents 

In order to test the effectiveness of sr-hemes in reducing 

accidents, th~ accidents in each study and comparison area were 

divided into quarterly totals and log-linear models were fit t~d 

to these totals. This enables the effect of the scheme to be 

estimated after allowing for trends Hnd seasonal effects, whir-h 

may well differ between study and comparison areas. The accidents 

occurring in the implementation period should be analysed separa­

tely because the rate of occurrence may be atypical in this 

period as road users become accustomed to th~ changes, especially 

when required to find new routes. 

Using the Reading data as an example, th~ log - linear model 

which gave the best fit was 

YJklm = exp{a+[b+(bc)k]j+ck+dl+em+(ce)km+(de)lm 

where j 

k 

I 

m 

is 

is 

is 

is 

time in 

area, 

season 

period 

quarters 

k= 1 comparison and k=2 study 

1=1 Nov-Jan .... 1=4 Aug-Oct 

m=l hefore, m=2 implementation, and 
m=3 and 4 two parts of after period 

The term which provides information about the effectiveness 

of the scheme is (ce)km, the inclusion of which means that there 

is a difference between before and after periods which is not the 

same in the study and comparison areas · Comparison of this para­

meter with its standard error of estimate shows how likely this 

effect is to have occurred by chance. The size of effect may be 

calculated by exp{(ce)z3 - (ce)21 - ( 0e)13+(c~)11}-I. 

In the case of Reading, no third order interaction terms 

were statistically significant so ar~ not included in the model. 

However, these terms should always be tested and included wherA 

necessary. The inclusion of third order terms In period and area 

complicates th~ estimation of s i ze of effect as the second order 

term (ce)km on its own no longer does thi~. A method has, how ­

ever, been d~velop~d which ~nabl~s t h e calculation of both the 

size of effect and its standard ~rror in such cases. 

Log - linear models may be fitted i n a similar way to disag -

gregate data, for example to pedeslt "ian, motorcycl~ or pedal 

cy c le accidents . The effe ct of the scheme on severity of injury 



may also be assessed, 

t ·OI' of severi ty used 

a g Bin b y fit tin g ] i n e a J' m n d pIs. T h Po i n die u -

has b~en th~ ratio of fatnl plus serious 

accidents to total injury accidents. In this case on~ appropriate 

model is the logit model which is fitted to thp proportion, p, of 

fatal plus serious accidents in the following way, 

In[{Pkm/(l-Pkm)] = a + Ck + em +{cehm 

where the indicator of effe('.t. on stwerity is the t.erm (ce}km. If 

the reduction in deviance associated with adding this term to the 

model is statist.ically significant, this indicates that. the 

change in severity b~tween the before and after periods in the 

study area differs from that in the comparison area. It is 

important to consider severity of injury because it may be 

possible to reduce it· in an area without necessarily 

significantly changing the total number of accidents occurring. 

3.2 Detection of changes in pattern of traffic movement 

The collection of traffic data was undertaken on a before 

and after basis extending over at least one year before the 

introduction of the schemes and for two years afterwards. 

The junctions at which turning counts were made were divided 

into four groups which enabled a latin square analysis of 

variance to be carried out on the result.ing data. This provided 

information regarding variations with respect to the time of day, 

day of week and week of survey, and whether these differed 

between before and after periods. The count data were not nor­

mally distributed and a standard square root transformation was 

used prior to analysis. Analysis of variance enabled junctions 

with statistically significant changes in mean flow to be con ­

firmed as a first stage in the identification of new patterns of 

routeing. The analysis took account of differenGes at the three 

times of day surveyed In ord~r to detect, for example, changes 

affecting routes into town but not thf' rpt ·urn journp.y . 

The journ~y tim~ dnta wer~ analysed hy fitting linear models 

to the recipro cals of t he link travel times. Th~ effect. of flow 

was t est e d us i n g a n a n a I y s i s 0 f <. ' 0 v a r j a n CP. toe s tab 1 ish w het her 

the journey l ime/flow relationship was signifi cantly different in 

the before and after p~riods . 

The final type of survey undertaken was of pedestrian move ­

ments. To accommodate the large fluctuation in flows sometimes 



found, proportions of p~destriRns crossing in each s~ctor of n 

site were analysed on a before and after basis. Traffic flows 

were observed at each site which allowed logit models of the form 

In(p/l-p) = a + bq to be fitted, where p is the proportion of 

pedestrians using a crossing or crossing in a given section and q 

is the traffic flow during the corresponding survey periods. This 

allows the effect of traffic flow on where ped~striRns choose to 

cross the road to be assessed. 

4. THE ECONOMIC EVALUATION OF EFFECTIVENESS 

When assessing the cost-effectiveness of a scheme there are 

on the benefit side net savings in accidents and there may well 

also be net savings in vehicle operating costs and time. On the 

disbenefits side are the cos~ of the scheme, its maintenance and 

monitoring, and possibly in some cases a net increase in vehicle 

operating costs and travel time and some extra accidents occur­

ring during or just after implementation. Standard values of 

accident costs and value of time are provided by the Department 

of Transport (annual). 

5. IMPLICATIONS FOR FUTURE PRACTICE 

In this paper a methodology has been outlined which enables 

the monitoring of urban safety schemes. The monitoring programme 

allows an economIC evaluation to be made of the main effects both 

in terms of changes )n amounts and patterns of traffic and acci­

dents . However, in routine applications of the resulting area­

wide approach, it is not envisaged that local authorities will 

have the budget, staff resources or need to monitor on an equiva­

lent scale to that. undertakp.n in the Urban Safety Project . Even 

for routine monitoring purpos~s it is important to 00nsid~r some 

aspects of experimental deslgn des cribed in this paper espec :ially 

with respect to monitoring of acoid~nt patterns where changes in 

number of accidents are often th~· only input into an economlO 

evaluation or justification for expenditure on su ch schemes. 

The monitoring teams and TRRL will continu~ to learn from 

the experience gained in the Urban 

further work, will be in a position to 

Safety Proj~ ct and with 

offer guidelines to the 



design 

local 

implementation and monitoring of urhun 5uf~ly schAm~s l>y 

authorities as part of their routine accident rem~dial 

programmes. 
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AREA-WIDE TRAFFIC CALMING MEASURES: ACCIDENT ANALYSIS 

wolfgang Senk, Ruhr-University, Bochum, West Germany 

Introduction 

The Federal Office of Environmental Protection (UBA) , the Federal 

Instititute for Regional Studies and Environmental Planning (BfLR) 

and the Federal Road Research Laboratory (BASt) are carrying out a 

common long-scale experiment in six German model cities to inves­

tigate the impact of area-wide traffic calming measures on urban 

areas and different traffic situations. The Chair of Traffic Engi­

neering I at the Ruhr-University Bochum has been commissioned to 

anal~i'se the accidents in the following six cities (see appendix 

l) : 

- Berlin-Moabit, an area with residential and shopping streets in 

the midst of a large city; 

Borgentreich, a rural community in Eastern Westfalia with about 

10.000 inhabitants; 

- Buxtehude, a town near Hamburg with a population of 18.000 inha­

bitants; 

Esslingen, a middle order centre situated near the river Neckar; 

- Ingolstadt, a town with a historical centre located in Bavaria; 

- Mainz, a large city near the river Rhine. 

First concluding reports about these six model cities will be pu ­

blished in May 1988. 

The methodology of this accident analysis was developed in the 

course of a pilot study on an area in Berlin-Charlottenburg whe r e 

traffic calming measures were carried out and investigated (see 

appendix 2). The objective of the study was to prove the practical 

applicability of statistical methods that are powerful enough to 

recognize changes in accident occurence even in cases of low 

accident rates. Furthermore, these statis~ical methods should a l so 

point at correlations between traffic calming measures and a 

decrease of accident rates. 



All tests were before-and-after studies with control groups. For 

this, an area in Berlin similar to the one in Charlottenburg re ­

garding its architectural structure and traffic situation had to 

be found. A part of Berlin-Moabit, the later area of the long ­

scale investigation mentioned above, proved to be sui table as a 

control group. During the pilot study, only sporadic traffic-calm­

ing measures were carried out in this area. 

The tests were based on various figures (realizations of the ran­

dom variables of the stochastic model) consisting both of absolute 

accident rates like 

- total number of accidents 

- accidents of a certain kind 

- accidents with injuries to persons 

- accidents in correlation with certain road users 

- accidents of a certain severity 

and relative accident rates, i.e. the quotients of absolute acci­

dent rates and suitable exposure values such as 

- number of residents 

- length of the road network 

- kilometres travelled. 

These accident rates were analysed as a whole, and they were fur­

thermore differentiated according to 

- accidents on road sections and 

- accidents at intersections 

Overall accident occurrence 

A fil "st survey of the overall acciden~ occurence was gained by 

temporally dividing the seven years of the investigated period 

into three parts, the time before the beginning of the traffic 

calming measures, the time of the architectural modifications and 

the adjustment of the residents, and the time after the end of the 

measures. Fu r thermore, the whole area was divided into 8 zones. 

These were a zone of architectural modifications, a zone with a 

speed limit of 30 km/h, a zone in which traffic had been calmed 

down as a side effect of measures carried out in areas next to it 

(zone of passive traffic calming measures), neighbouring ar -



terials, limiting arterials, and a neighbouring area. In the con­

trol area, these zones were a residential area and neighbouring 

arterials. 

A more detailed subdivision comprised 7 periods of one year and 11 

local zones. In the course of this investigation, the access 

points to the urban motorway in the investigated area were consi­

dered additionally. In the control area, the "Turmstra~e", a main 

road intersecting this zone, and a residential area where sporadic 

traffic calming measures had been carried out, were also analyzed 

(see appendix 3). 

As a result of this, the accident rates were compiled in 8x3 or 

l1x7 contingency tables. These contingency tables were analysed 

using X2-tests. A X2 -test is based on the hypothesis that the 

accident rates of the individual cells of a contingency table de­

pend on accidental variations and are independent of each other. 

If the test variable is greater than the corresponding critical 

figure, the hypothesis has to be rejected, i.e. it may be conside­

red as statistically proven that there are systematic divergences 

between the actual accident occurrence and the accident occurence 

expected according to the hypothesis. Since the test variable is 

calculated by regression of actual and expected values, one cannot 

deduce the cause of deviations from significant divergences from 

the expected accident occurrence when rej ecting the hypothesis. 

This becomes evident to everyone calculating a X2 -test of a 2x2 

table with paper and pencil. An abstract of a X2 -test is to be 

found in appendix 4. 

Thus, more refined statistical methods were necessary to establish 

a causal connection between traffic calming measures and a sub ­

stantial change in accident rates. For ~his, a log-linear approa ch 

and a Poisson-regression model we re used. 

The log-linear approach is based on the assumption that the acci ­

dent rates of each cell of a contingency table result from various 

factors. These components comprise a universal factor, the influ ­

ence of the area, the influence of time, and the interrelation 

between time and place. The name of this model is derived from the 

fact that this multiplicative approach is both logarithmitized and 



linearized in the course of the numerical evaluation . If the log­

ari thIns of the interrelation factor are negative in each cell of 

the investigated area in the time period after the traffic calming 

measures, one may conclude that the measures are responsible for 

this decrease. If they equal zero, the measures have no influence 

on accident occurrence. If the logarithms of the interrelation 

factor happen to be positive, this means that the measures cause 

an undesirable increase in accident rates. The values of the in­

terrelation factors also allow for statements on the different ef­

fectlveness of the individual measures, if values in different 

cells correspond to different traffic calming measures. The log­

linear analysis is described in appendix :'. 

The Poisson-regression model is based on four plausible hypothe­

ses: 

- accident rates in different intervals are independent of each 

other; 

accident rates only depend on the length of the interval consi­

dered, but not on certain moments; 

- the probability of the occurence of more than one accident du­

ring a very short interval almost equals zero; 

- the probability of the occurence of exactly one accident during 

a very short interval is proportional to the length of the in­

terval. 

Based on these assumptions, one can mathematically derive that ac ­

cident rates must be realizations of Poisson-distributed random 

variables. 

The actual modelling approach, which is similar to the log - linear 

model, is founded on hypotheses about the number and kind of fac ­

tors influencing accident occurence. Thus, the validity of the mo ­

del depends decisively on the choice of the factors considered i n 

the modelling approach. 

For the accident analysis of the area in Berlin-Charlottenburg, an 

approach containing seven factors without interrelationships was 

chosen (see appendix 6) . The model conf irmed the results of the 

log -linear approach ; however, it will be revised for further eva -



luations. Statements on the effectiveness of the measures were 

mainly based on the results of the log-linear evaluation. 

In those cases in which the value almost reached the corresponding 

critical figure in the X2 -test but did not exceed it, it could be 

supposed that changes in the number of accidents had occurred, but 

had not been classified as significant in the X2 -test, which is 

not powerful enough for this. In these cases, the data were once 

again examined by means of a Bayes' method, which is a mere be­

fore-and-after comparison based on the assumption that accident 

rates are realizations of Poisson-distributed random variables. 

The parameter of the Poisson-distribution is assumed to be r-dis­

tributed and is calculated from the accident rates of the period 

before the traffic calming measures. This information is also 

considered when the confidence interval is calculated in the 

course of the evaluation of the accident rates occurring in the 

period after the traffic calming measures have been carried out, 

which increases the power of the test. Thus, a significant de ­

crease in accidents on the road sections of the investigated area 

could be detected with the aid of this Bayes' method. (For further 

information on the Bayes' method see appendix 7.) 

Individual aspects 

Many aspects could not be investigated with the rather coarse 7x11 

and 3x8 contingency tables. Although approximately 14.000 ac­

cidents were recorded, the sample sizes were too small to analyze 

certain aspects, e. g. how many pedestrians older than 65 years 

were killed. Several cells of the contingency tables would have 

contained insufficient values or no values at all. In these cases, 

the relevant accident rates of the investigated and the control 

area were comprised in a 2x2 contingency table for the time before 

and after the measures and were evaluated by means ofaX2 -test 

if there were enough values. If there were values in 

but in at least one cell insufficient values for a 

all cells, 

X2 -test, 

Fisher's exact test was applied. Five actual accidents and five 

accidents expected due to the test hypothesis were considered as 

sufficient values for a X2 - test. With the help of these tests it 

was possible to find out whether statistically valid changes in 



accident rates had occurred. As with the larger contingency 

tables, the log-linear approach was used again to analyze whether 

the measures were responsible for such changes. The results of the 

individual analyses were summed up in a large table (see appendix 

8) • 

The evaluation of these aspects made it possible to analyse the 

effectivenes of the measures in detail. The measures were more ef­

fective in the zone calmed by architectural modifications (zone 1) 

than in the zone with the speed limit of 30 km/h (zone 2). How ­

ever, the effects in this zone were still stronger than in the 

zone calmed as a result of the measures in the neighbouring area. 

It can therefore be concluded that architectural modifications are 

the most efficient means to reduce accident rates. On the other 

hand, the significant increase in accidents with oncoming traffic 

at narrowings of streets and staggered lanes indicates that the 

design of these architectural measures must still be improved. 

Conclusion 

The pilot study showed that the X
2
-test is a simple means to de ­

termine changes in accident occurrence exceeding accidental va­

lues. However, causes for these changes cannot be deduced with a 

x2 -test, they can only be determined in the course of the log­

linear analysis. Moreover, Poisson-regression models are suitable 

means to establish causal connections between measures carried out 

and changes recorded afterwards. 

Among other things, the study showed that architectural measures 

lead to a significant decrease in the following kinds of ac ­

cidents: 

- accidents with vehicles at i>.ltersect i.cns (-46%); 

- accidents with pedestrians (-78%) ; 

- accidents with children (-62%) ; 

- accidents wi.th motor cyclists ( - 39%) • 
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x· - Te a t 

A bbrevlations U~I~I; l~J~Jl: 

U •. : accident-rate In cell U,Jl 
P:;: probability that an accident will ke , kserved in cell (Lj) 

Expected Values of u .. : 
lJ 

Hypothesis Ho: 

Pij = Pi. • P.j 

with 

Le.: If hypothesis Ho is true, then the rows and columns of the 
{IxJ)-contlngency-table are stochasUcaHy independent 

XZ 
- Statistic: 

- for ((xJ)-contingency tab les: 

- especially for (2x2) tables: 

Critical Region: 

T = 
Z 

u .. • (u ll u 22 - u12 u 2l ) 

Ut. u z • u. 1 U. Z 

- if T) · X
2 

ar, (1-1)0-1)' then hypothesis Ho has to be rejected 

- X
2 

are <1-1)0-1) is the ex-quantile of the X 2 
- distribution with 

U-1)(J-U degrees of freedom (the exact value can be found in most 

statistical books) 

Result of the Test: 

- If hypothesis Ho has to be rejected. then the acc ident rates have 
significantly changed 

- there Is no hint due to which factors hypothesis Ho has to be 
rejected 
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, 
LOI-llnear Yodel 

Abbreviations: 
PiJ: probabUity, that an accident wlll happen in the i-th area 

during the J-th period of time U~is:l; lS:jS:J) 

UiJ: accident·rate in cell (LP 
u: number of all accidents observed 

Log·Linear Model: 

A' AA A~ A~a 
p ij = e e i e J e IJ 

)": general e(fect 

). ~ : ecrect of the area 
I 

A ~ : effect of the time period 
J 

AAa: interaction oC area and time effects 
ij 

Expected Accident Rates: 

Uij - u.Pij. u.e A'. At· Aj
a

• A~a 

Lineaeisation: 

InCu ij )· A· At. A~. Ai~a. with A:. In(u) + A' 

Maximum-Likelihood Estimatora for the Effects: 

1 
J 

'At • I In(u . . ) - 'A 
J IJ 

ja I 

I 
I 

..... a L In (u . ) ~ A. a - -J I i a I IJ 

"AB' ('A ('B " ). .. .. In (u .) - A.. - it. . - A 
IJ IJ 1 J 

Result: 

If there are significant changes In the accident Tates and 
there are traffic c .. ming measures in the i ~he area and 
the j-th period of time, then: 

Appendix 5 

f cOl 
: 0 

1 ) 0 J -+ measures lcause a decrease in accident ·rates I 
are irrelevant 
C .. 1e an increase in accident-rates 
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Pol •• on-r •• r .... oD model 

Ab breviatlons: 
U .. : Poisson-distributed accident-rate in the i-th local area and the 

1J j-th period of time U~ls:li l~J~J) 
,.. 
Uij: expected value of Uij 

the Model: 

with 

{ 
1, present } 

xk: 0, factor is absent 

Ak .. (unknown) weight of factor Xk 

Linearlsatlon and Lexicographic Ordering of Uij. X~j and A k : 

representation of the model by vectors 

Lean-square Estimator of l : 

A = (X T X)· XT • u with 

XT : transposed of matrix X 

(XT X)·: Moore-Penrose-Inverse of matix (X T X) 

Flachenhafte Verkehrsberuhigung Lehrstuhl fur Verkehrswesen I 
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BayliaD Approach 

Abbreviations: 
u: accident-rate 
~:: (ul •...• un) sample of accident-rates 

u: sample mean 

s: sample deviation 

A - priorI Distribution: 

- U is Poisson-distributed with parameter \.L. this means 

Ilu 
'feu) = P[U:: u] = - e- Il with E(U) ::" and VadU) = \.L u! I'"' 

- the parameter Il is f-distributed 

n P 
'f(\.L) z: -- Il p-l e - n ~ 

rep) 

A - priori Estimators for n. P. \.L: 

n = U / 15 2 
o 

A - posteriori Distribution: 

'f(u): f(po+n) 
f(po) rtu+U 

A - posteriori Estimator for Il: 

nollo+nu 

no + n 

Confidence I nterval for \.L 1 : 

o < III < 
2 (no + n) 

-
X2 

QC : the a -Quantile of the X2 -distribution with 2 ( Po + nu) 
degrees of freedom 
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Summary 

zone 1 zone 2 zone 3 zo"e , zone 5 Z~Ee (; 
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Cl 
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" Cl Cl 11 .. I: 11 c: e 0 e 0 • 0 - f 0 • 0 11 ~ 

3' ~ 3 i ~ 
I. i tl - I. ;J - " R ., 
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., !! ., - " !! " .. .. .,I ... .. ... u 0 J 0 " 0 " 0 .. 

.! .! a .! .s 11 0 .s " .. .. .. - • .. • .. • ... • 
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il 

chUdrea •• - •• - 0 - - - - 0 0 0 - 0 - 0 0 0 

"U aert=ly 
0 := • 0 0 = - 0 - 0 •• - - = - 0 0 -

-Cl 
iaJu or deAd 

I. ... aUsht.y 0" 0 • 0 0 0 - 0 0 := •• := 0 0 • = 0 0 -~" 
iDJure 

damaBet.o 
0 • 0 0 - • 0 - • •• •• 0 - - - 0 0 -property 

velUclea •• •• • • - •• 0 - • •• • • 0 - - - 0 0 --.. ., p.a •• Dser car • •• •• •• • - •• 0 - • •• •• 0 - - - 0 0 -
D 

" 
bike • • 0 := 0 - - - - 0 - •• - 0 - - -- -• e pede.triaD. ... 0 •• 0 0 - 0 : 0 0 • 0 ~ 0 - 0 •• 0 
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U 
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~ 
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1000 re.' eata 0 0 0 0 - 0 
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I 

Symbols 

•• significant decrease in accident rates (a = 0.01 ; X2 - test) 

• signUicant decrease in accident rates (a = 0.05; X2 - test) 
-t significant decrease in accident rates (a = 0.05j I'lsher's exact test) 
0 decrease In accident rates, but not significant decrease 
- increase In accldeut rates, but not sign!ficclnt Increcl~e 
- - significant Increase of accident rates (a = 0.01; X2 - test) 
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A KODEL FOR. EVAWATING EDUCATIONAL R.OAD SAFETY MEASURES 

Dr. 'J .A. R.othengatter, 
Traffic Research Centre, University of Groningen 

Abstract 

The purpose of evaluating educational road safety measures is two 
fold. Firstly evaluation resear-.:h serves as a method for obtaining 
information that can aid the development process of these measures · 
Secondly, evaluation research can provide information about the 
potential effects of educational road safety measures both in terms of 
behavioural changes and in terms of accident reduction. In practice, 
these two purposes are often confused, which leads to use of inapprop­
riate evaluation methods and hence to incorrect conclusions regarding 
the development and implementation of road safety education pro­
grammes. 
This paper presents a recently developed model for evaluating educa­
tional countermeasures. The model distinguishes process and product 
evaluation and outlines a sequential approach in terms of a number of 
discrete stages. For each of these stages the suitable research 
methodology is specified in terms of obj ectives, methods and con­
clusion validity. Examples of recent evaluation studies of educational 
programmes will be analysed to illustrate the use of the model, and it 
will be demonstrated how a stringent use of the model can improve both 
the development process and the decision making regarding the imple­
mentation of education measures. 





ACCIDENT COUNT ANALYSIS: 

THE CLASSICAL AND ALTERNATIVE APPROACHES 

A J Nicholson 
Senior Lecturer in civil Engineering 

University of Canterbury 
Christchurch 

New Zealand 

Visiting Fellow, Institute for Transport Studies 

University of Leeds 
united Kingdom 

ABSTRACT 

The classical approach to estimating accident rates, and to 

testing the statistical significance of changes in accident rate, 

involves interpreting accident count data relating to a specific 

site over an extended period of time. An alternative approach, 
involving the analysis of accident data relating to groups of 

sites over a shorter period, has been proposed. This paper 

describes both approaches, discusses their strengths and 

weaknesses, and suggests avenues for further research. 



INTRODUCTION 

Much of the recent literature on accident analysis has been 

focus sed on two problems: 

(1) the identification of hazardous locations (or blackspots), 

and 
(2) the estimation of the effectiveness of treatment. 

Both involve estimation of what may be termed the "underlying 

true accident rate" (or UTAR); hazardous location identification 

requires estimation of the current ~TAR only, while treatment 
effectiveness estimation requires estimation of the UTAR both 

before and after treatment. 

It should be noted that the underlying true accident rate (UTAR) 

is not known with certainty, and is almost certainly not equal to 

the number of accidents observed ~er unit time (or per exposure). 
The observed number of accidents is merely an indication of the 

UTAR, which can only be estimated on the basis of observations. 

Accidents are relatively rare, and are subject to both temporal 

and spatial variations; at a site where the UTAR is not changing, 
there is generally considerable variation in the annual accident 

counts about the UTAR, while it is generally accepted that at a 

point in time the UTAR varies from one location to another. In 
reality, it may well be that the UTAR for each specific location 

is varying with time. 

When analysing accident count data for many sites over several 

years (see Figure 1), it must be remembered that a mixture of 

spatial and temporal variations underly the count data, and it is 

a difficult task to separately identify those variations, in 
order to identify hazardous locations and estimate treatment 

effectiveness accurately. 
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Figure 1: Matrix of accident counts for I sites and J years. 

The classical approach to the problem entails analysing the data 
for each site separately, in order to estimate the UTAR for each 
(or the pattern of variation of the UTAR, if it is not constant). 
One can then identify the sites with an unusually high UTAR 

(blackspots), or detect whether there has been a change in the 

UTAR since treatment. The longer the time period for which 

accident count data is available, the more precise the estimate 

of the UTAR (assuming it is constant). If the UTAR is changing, 

then the pattern of variation of the UTAR can be identified more 
accurately as the time period increases. 

Road safety work is invariably undertaken in less than ideal 

circumstances, there being considerable pressure upon researchers 
and practitioners to adopt procedures which permit responses or 

results in a short time. For instance, a sudden spate of 

accidents at a site may lead to intense public pressure for 

immediate remedial treatment, and the practising traffic engineer 

will have difficult convincing the public (or their elected 

representatives) that any action should be deferred until it is 

known with a reasonable level of confidence that the spate of 
accidents did indeed indicate an increase in the UTAR, or is 



merely confirmation of the stochastic nature of accident 

occurrence. Similarly, there is often a demand for a quick 

assessment of the effect of some change to the road environment 

upon the accident rate. The development of the traffic conflicts 

technique is a reaction to this pressure, as is the development 

of statistical analysis procedures involving the analysis of 

accident data for groups of sites over a shorter time period. 

THE CLASSICAL APPROACH 

Estimating the Underlying True Accident Rate 

Consider the case of x'1' x'2' •.. , x, accidents in n years at a 
~ ~ ~n 

single site, i. If it is assumed that the annual accident counts 

are governed by a stationary Poisson process, the mean of which 

is the UTAR a" then one can derive confidence limits for a . 
~ i 

If the accident counts are Poisson-distributed with mean ai' then 

the sum of the counts is also Poisson-distributed (with mean 

nail. Since the cumulative sum of the Poisson distribution is 

related to the cumulative Chi-square distribution, it follows 

that, with a level of confidence of (1-2k), 

Bl < a, < B 
~ u 

where 

Bl = x2 (k I v, = 2c, ) / (2n) 
~ ~ 

B = x2 (l-k IVi = 2c, + 2) / (2n) 
u ~ 

and 

n 
c = , 1:1 x, , 

J= ~J 

Using these relationships and tables of the percentage points of 

the X2 distribution for integral and fractional degrees of 

freedom (Pearson and Hartley, 1976), graphs of confidence limits 



for the UTAR ( a
i
), for various values of the observed rate of 

accident occurrence (c./n) and time period (n), have been derived 
~ 

(Nicholson, 1987). An example is shown in Figure 2. 

Figure 2: 

" 

13 

12 

tt 

10 

9 

·8 

7 

6 

5 

3 

2 

I 

90% CONFIDENCE LIMITS FOR THE MEAN 

OF A POISSON PROCESS 

c = Observed fofol number 
01 evenfs 

n = Number ~f years of 
observaflons 

n =1 

3 

5 

10 
15 

co 

o __ ~~WW~llll~~~WWWW~uwww~wwww~~~ __ 

o 2 J 5 6 7 8 
Observed Rofe of Occurrence. c /n 

90% Confidence Limits for the Underlying True 
Accident Rate 



The width of the confidence interval for the estimate of the UTAR 

reduces as the number of years of observation increases, as shown 

in Table 1. Clearly, the rate of improvement in precision 

decreases as the period of observation increases. A graph of the 

width of the confidence interval (as a percentage of the observed 

accident rate) versus observation period (Nicholson, 1986) 

reveals that in the vicinity of n = 5, there is a marked decrease 

in the rate of improvement in precision as the observation period 

increases. 

Total no. No. of 

of accidents years Bl Bu B - B 1 u 
c n (c/n) 
5 1 2.0 10.6 172 % 

15 3 3.1 7.7 92 % 
25 5 3.5 7.0 70 % 

50 10 3.9 6.3 48 % 

75 15 4.1 6.0 38 % 

Table 1: varlation in width of 90% confidence interval with 

increasing observation period 

It seems, from the viewpoint of statistical reliability, that 

five years is about the optimum time period for estimation of the 

UTAR. It might be argued that five years is too long a time 

period, in that it would prevent the quiCk detection of sudden 

changes in the UTAR, and many roading/highway authorities use a 

much shorter period (Zegeer, 1982; silcock and Smyth, 1984). 

Such an argument implies that annual accident counts are governed 

by a non-stationary stochastic process. The procedure described 

above is based upon the assumption that the mean and variance of 

the accident process are constant and equal. Clearly, if non­

stationarity is assumed, a greater observation period is required 

to identify the form of variation of the mean and/or variance of 

the accident process (and, hence, the UTAR at some point in time) 

than if non-stationarity is assumed. 



Testing the Significance of Accident Rate Changes 

consider now the case of x i1 ' x i2 ' .•.. , x in accidents in n years 
before some change (remedial treatment, say) and 

Yi1' Yi2' ••• , Yim accidents in the m years afterwards. 
Assuming that the accident counts are Poisson-distributed, with 

m7ans a i and 6 i "before" and "after" respectively, then the 
corresponding accident totals X and Y are also Poisson­

distributed, with means na i and m8 i respectively. According to 
Feller (1971), the probability distribution for the difference in 

accident totals is given by: 

P[X-Y=d] 

where 

d/2 
= exp ( -n a. -m 8 . ) (n a. Im B . ) I ( a . , S . ,m, n, d) 

~ ~ ~ ~ 1 1 

= 
00 

r 
x=o 

-1 
(x!(x+ldl)!) 

(2X +ldl)/2 

is a modified Bessel function. 

In this situation, one is interested in estimating the 

probability that the observed difference in the accident totals 

is due to chance, assuming that the UTAR "before" is equal to the 

Ul'AR "after" (i.e., ai =Si). If it is also assumed that the 
observation periods are equal then the above expression can be 
simplified, to give: 

where 

P[X-Y-d] = exp(-2c.) 
1 

c. = na. = mB . 
~ 1 1 

00 

E 
1.=0 

-1 
( X'· (A + Id ,) ! ) C. 

1 

(2 X + Id I) 

Using this expression, the discrete density function of (X -Y) 

can be calculated, from which graphs of the critical change in 

accident rate, for various values of the observed rate of 
accident occurrence and time period, have been derived 

(Nicholson, 1987). An example is shown in Figure 3. 



Figure 3: 
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The greater the number of years of observation, the smaller the 
required change in accident rate for statistical significance, as 
shown in Table 2. Clearly, the required change in accident rate 
decreases as the period of observation increases, with five years 
again appearing to be about optimum from the viewpoint of 

statistical reliability. 

Total number of Number of critical critical Change 

accidents 

c 

5 
10 

15 

25 
50 

75 

Table 2: 

"before" years change (c/n) 
n 

1 4.7 94 
2 3.4 68 

3 2.8 56 
5 2.2 44 

10 1.6 32 
15 1.3 26 

variation in critical change with increasing 

observation period (90% confidence level) 

% 

% 

% 

% 

% 

% 



Depending upon the time period and the confidence level, the 
change in accident rate required for statistical significance may 

exceed the accident rate "before" (i.e. it may not be feasible to 

achieve statistical significance). The "zone of infeasibility" 

is shown in Figure 3. 

When comparing the means of two stationary Poisson processes, it 

is easier to make inferences about the ratio of the means than 

the difference. If one is interested in testing the statistical 

significance of the difference in the UTAR's, Cox and Lewis 
(1966) suggest that one "shall almost always have to fall back on 
large-sample approximations". such approximations are very often 
inappropriate for accident data analysis; the above-described 

test does not involve stlch approximations, and may be applied to 

the analysis of small numbers of accidents. 

It may be thought satisfactory to estimate the confidence 

intervals for the UTAR's before and after a change, and if there 
is no overlap conclude that there has been a statistically 

significant change in the UTAR. Hence, if one observed 25 and 11 

accidents in the five years both before and after a change, then 

the corresponding 90% confidence intervals would be 3.5 to 7.0 

and 1.2 to 3.6 accidents per year (Figure 2), and given that they 
do overlap, it might be concluded that there has not been a 

statistically significant change in the UTAR. It can be seen 

from Figure 3, however, that the critical change in accident rate 
is 2.2, and since the observed change is 2.8 accidents per year, 

then it can be concluded that there has been a statistically 

significant change. Clearly, the rigorous test is more reliable; 
the use of the simple test gives a bias towards incorrectly 

concluding that a treatment has not had a statistically 

significant effect. 

THE ALTERNATIVE APPROACH 

The Non-Parametric and Empirical Bayesian Methods 

Consider the case of x
1 

0' x2 0' ... , x ° accidents in year j at 
J J nJ 

n sites. The sites may be ranked according to their accident 



counts in year j, and those with a high ranking (i.e. a high 

accident count in year j) may be selected for treatment because 
they seem unusually hazardous in comparison with the other sites. 

Due to the stochastic nature of accident occurrence, the sites 

with a high ranking based on data for one year may not have a 
high ranking if data for another year is used. In fact, the 

sites with an above-average accident count in one year will tend 
to have a lower accident count in the next year. The nature and 

extent of the regression-to-the-mean effect is discussed in 

detail by Hauer (1980), who has clearly shown that if 

(1) sites are selected for treatment because of a history of 

many accidents, and 

(2) the regression-to-the-mean effect is ignored 
then the effectiveness of the treatment will be exaggerated. 

According to Persaud and Hauer (1984), there are two analytical 

methods which may be used to correct estimates of treatment 

effectiveness, in situations where control groups have not been 

established. They are 

(1) the non-parametric (NP) method, and 
(2) the empirical Bayesian (EB) method. 
Both methods are aimed at providing an estimate of the total 

number of accidents that would have occurred at the group of 
sites selected for treatment had they not been treated; this 

estimate can be compared with the observed total number of 
accidents at the sites after treatment, in order to obtain an 

unbiased estimate of the overall effect of the treatment. 

The non-parametric (NP) method is based upon the assumption that 

the number of accidents at each individual site is governed by a 
stationary Poisson process. It has been shown (Hauer, 1980; 

Hauer and Persaud, 1982) that if sites which during a period of 
time had k or more accidents are selected for treatment, then 

where 

A(k) = B(k + 1) 

A(k) = the expected total number of accidents at the 
selected sites for an equivalent period after 

treatment, if the treatment has no effect 



and 

B(k+l) = the actual total number of accidents at those 

sites having (k+1) or more accidents during the 
before-treatment period. 

Persaud and Hauer (1984) stated the NP method as follows: 

where 

a(k) = 

a(k) = the expected number of accidents during an 
equivalent after-treatment period at a site that 

had k accidents in the before-treatment period 

= the number of sites having k accidents in the 

before-treatment period. 

They also stated that the empirical Bayesian (EB) method, first 
proposed by Abbess, Jarrett and Wright (1981), could be written 

in the similar form 

where 

a(k) = [(k+l) N~+1 ] / Nk 

N* = the number of sites expected to have k accidents 
k 

in the before-treatment period. 

The EB method, as proposed by Abbess, Jarrett and Wright, 
involved two assumptions: 

(1) that the number of accidents at each individual site during 

a year, say, is governed by a stationary Poisson process, 
and, 

(2) that the means of the Poisson processes varies between 

sites, according to a Gamma distribution. 

Hence, the number of sites expected to have k accidents in a 

year, say, is given by the Negative Binomial distribution. 



Abbess, Jarrett and Wright examined the actual distributions of 

annual accident numbers at blackspots and concluded that the 
Negative Binomial distribution gave "a reasonable fit". They 

also noted that "there tends to be more sites with zero accidents 

than one would expect" (about 33% had zero accidents). They 

therefore tried a truncated Negative Binomial, excluding sites 

with zero accidents, and claimed to have obtained a "good fit", 
although they did not give any goodness-of-fit statistics. 

Andreassen and Hoque (1986) reported that a very high proportion 
(about 93%) of all intersections in Melbourne have zero accidents 

in a year, and they also chose to exclude the zero accident 
category. They concluded that the truncated Negative Binomial 

distribution was unsuitable, because the parameter estimation 

procedure gave a negative value for one parameter. They did 

conclude that the observed distribution of annual accident counts 

was well described by the logarithmic series distribution. Maher 
(1987a) has subsequently claimed that a negative parameter value 

is quite acceptable and that the truncated Negative Binomial 

gives a much better fit to the Melbourne data than does the 
logarithmic series distribution. 

It is hard to imagine any p.d.f. providing a good fit to an 

observed accident count frequency distribution for all locations 

in a large network, as very many locations, most of which are low 

in the roading hierarchy (e.g. low volume roads/intersections in 
residential areas), experience zero accidents in any given year. 

Even if low-hierarchy locations are omitted, it must be 

remembered that a good fit of the Negative Binomial distribution 

to observed accident count data for the other locations does not 

mean that the Poisson and Gamma distributions are appropriate. 

It has traditionally been assumed that accident counts at a site 

are governed by a Poisson process, and the choice of the Gamma 

distribution is really one of mathematical convenience, as it is 

the natural conjugate of the Poisson distribution. Hauer and 
Persaud (1982) refer to the assumption of the Poisson 

distribution as being "empirically unproven", and there is 

evidence (Nicholson, 1985) that it is not generally valid, as 

some locations have either too much or too little variance in 
their accident counts for the Poisson dlstribution. 



Persaud and Hauer compared the performance of the NP and EB 

methods for debiasing estimates of countermeasure effectiveness, 
using a large number and variety of data sets, and concluded that 

the EB method generally performed better and "should be used in 
assessing the safety effect of a treatment". They did, however, 
note that for sites having zero or one accident, the NP method 

gave slightly better results; this was probably due to the 
tendency to underestimate the number of sites having zero or one 

accidents when using the Negative Binomial distribution. It 

should be noted that Persaud and Hauer did not employ statistical 

tests in making the comparison, but relied upon graphical and 
numerical descriptive measures only. 

One problem associated with the NP method (Hauer, 1980; Abbess, 

Jarrett and Wright, 1981) is that the estimate of the bias is 
unreliable when the number of systems treated is small. This is 

due to the small numbers of sites having x accidents in a year, 
and the large variation (from year to year) in the numbers of 

sites having x accidents, when x is large. 

of values for a(k), k = 0, 1, 2, ... , can 

Hence, the sequence 

exhibit considerable 
random noise. In a recent paper (Hauer, 1986), a procedure for 

reducing the random noise is described. It involves fitting a 

function to the calculated, unsmoothed a(k) in order to obtain a 

smoothed sequence of values for a(k). 

A New Method 

Another problem associated with the NP method noted by Abbess, 

Jarrett and Wright , is that the method can be applied to groups 

of sites only. Hauer (1986) has subsequently proposed a 

procedure for estimating the number of accidents expected to 

occur annually at a single site, given accident count data for 
several sites over several years, as follows: 

where 

-= x · 
~ 

+ [xl (J ( s 2 -i) + x)] [x - x .] 
~ 

E(x.) = expected annual number of accidents at site i 
~ 

x.. = the number of accidents at site i during year j 
1.) 



I = number of sites 

J = number of years 

J - x .. /J xi = E 
j =1 ~J 

I J - x .. / (IJ) x = E E 
i=1 j=1 ~J 

I J 
S2 = E E (x .. - x)2 / (IJ) 

i=1 j=1 ~J 

Like Abbess et aI, Hauer assumed that UTAR's are Gamma 

distributed and annual accident counts for each site are Poisson 

distributed. 

The form of the expression for E(x.) is such that 
~ 

(1) the first term is the mean accident count for site i 

(2) the second term is an adjustment, which depends upon the 

spatial and temporal distribution of accidents (over the I 

sites and J years) and the duration of the accident history. 

It is helpful to consider the accident count matrix (Figure 1), 

and think in analysis of variance terms. It can be seen that 

(1) x is simply the overall mean accident count. 

(2) S2 is simply the total sum of squares, divided by the total 

number of accident counts. 

(3) the second part of the second term is the difference between 

the overall mean accident count and the mean accident 

count for site i. 

Hauer suggests that 

(1) the first term converges on the UTAR as J increases; 

(2) the adjustment term tends towards zero as J gets large, so 

that the more information one has about a particular site, 

the less is the effect of using data for other sites. 

An analysis of the expression for the expected annual number of 

accidents at a particular site (see the Appendix) reveals that 

the adjustment term may not reduce to zero as J~increases. 

Hauer also investigated the error associated with the above 

procedure for estimating E(x.). He suggested that the mean -
1. 



square-error is comprised of two parts: 

(1) the difference between the underlying true accident rate 
(UTAR) at site i from the mean of the UTAR's for the group 
of sites having the same total number of accidents; 

(2) the difference between the estimated accident rate at site i 

and the UTAR at site i. 

Using his data and estimation procedure (as described above), 

Hauer found that the first component of the mean-square-error was 

very much larger (at least one order of magnitude) than the 

second component. The first component arises from the grouping 
together of sites and Hauer suggests that the only way to reduce 
this component is by judiciously changing the criteria for 

deciding whether sites are sufficiently similar to be grouped 

together. 

APPLICATION OF BOTH APPROACHES 

Consider the case of ten sites for which there is five years of 

accident count data, the accident count matrix being as shown in 
Figure 4. Row and column totals and means are also shown. 

sites 

Column Tot 

Column Mea 

Figure 4: 

Years 
1 2 3 4 5 

1 5 2 1 4 3 

2 5 7 4 6 3 

3 3 1 4 0 2 

4 3 5 1 7 4 

5 0 6 2 4 3 

6 0 4 1 2 3 

7 1 2 0 1 1 

8 4 3 1 5 2 

9 3 5 4 2 6 

10 1 5 2 4 3 

al 25 40 20 35 30 

n 2.5 4.0 2.0 3 .5 3.0 

Example accident count matrix 

Row Row 

Total Mean 

15 3 

25 5 

10 2 

20 4 

15 3 

10 2 

5 1 

15 3 

20 4 

15 3 --
150 



For this case, 

(1) the total sum of squares = 172 

(2) the overall mean accident count x = 3.0 

(3) the variance s:Z == 3.44 

so the correction term will reduce as the number of years i s 

increased. 

Table 3 shows the results of applying Hauer's estimation 

procedure to the year 1 data, the years 1 and 2 data, and so on. 

The values of x. and E(x.) are both shown, and it can be seen 
1 1 

that the absolute magnitude of the adjustment term is quite 

SUbstantial even after five years of data; for site 7, after 

five years, it is still greater than 

the effect of the adjustment term is 

in the values of E(x.), i = I, ... , 

x .. It is also evident that 
1 

to give much less variance 

1 
10, than in the values of x .. 

1 

Number of years of observation 

Site 1 2 3 4 5 

1 5, 3.08 3.5, 3.32 2.67, 2.76 3.00, 3.00 3.00, 3.00 

2 5, 3.08 6.0, 4.03 5.33, 3.96 5.50, 4.36 5.00, 3.85 

3 3, 2.62 2.0, 2.90 2.67, 2.76 2.00, 2.45 2.00, 2.58 

4 3, 2.62 4.0, 3.46 3.00, 2.91 4.00, 3.55 4.00, 3.42 

5 0, 1.92 3.0, 3.18 2.67, 2.76 3.00, 3.00 3.00, 3.00 

6 0, 1.92 2.0, 2.90 1.67, 2.31 1. 75, 2.32 2.00, 2.58 

7 1, 2.15 1. 5, 2.76 1. 00, 2.01 1. 00, 1.91 1.00, 2. 15 

8 4, 2.85 3.5, 3.32 2.67, 2.76 3.25, 3.14 3.00, 3.00 

9 3, 2.62 4.0, 3.46 4.00, 3.36 3.50, 3.27 4.00, 3.42 

10 1, 2.15 3.0, 3.18 2.67, 2.76 3.00, 3.00 3.00, 3.00 

Table 3: Values of x. and E(x.) for J = I, 2, . . . , 5 
1 1 

Table 4 shows the results of using the classical approach, 

embodied in Figure 2, to estimate the 90% confidence intervals 

for the UTAR's after 1, 3 and 5 years. As expected, those 

confidence intervals are generally reduced considerably by the 

use of data for a longer time period. 



Number of years of observation 

Site 1 3 5 

1 5, (2.0-10.6) 2.67, (1.3-4.8) 3.0, (1.9-4.7) 

2 5, (2.0-10.6) 5.33, (3.4-8.1) 5.0, (3.5-7.0) 

3 3, (0.8- 7.8) 2.67, (1.3-4.8) 2.0, (1.1-3.4) 

4 3, (0.8- 7.8) 3.00, (1.6-5.3) 4.0, (2.7-5.9) 

5 0, (0.0- 3.0) 2.67, (1. 3-4.8) 3.0, (1.9-4.7) 

6 0, (0.0- 3.0) 1. 67, (0.7-3.5) 2.0, (1.1-3.4) 

7 1, (0.1- 4.8) 1. 00, (0.3-2.7) 1.0, (0.4-2.1) 

8 4, (1.4- 9.2) 2.67, (1.3-4.8) 3.0, (1.9-4.7) 

9 3, (0.8- 7.8) 4.00, (2.3-6.5) 4.0, (2.7-5.9) 

10 1, (0.1- 4.8) 2.67, (1.3-4.8) 3.0, (1.9-4.7) 

Table 4: Best estimates (with 90% confidence lower and upper 

bounds) for J = 1, 3 and 5. 

It is interesting to note that for site 7, the value of E(X i ) is 

2.15 (Table 3), and this is outside the 90% confidence limit (0.4 

to 2.1). 

REGRESSION-TO-THE-MEAN 

It is well known that regression-to-the-mean, in combination with 

the selection of sites for treatment on the basis of high 

observed accident counts over a short period, can lead to biased 

estimates of the effect of treatment (Hauer, 1980; Abbess, 

Jarrett and Wright, 1981). 

When considering whether to treat a site, anyone of six possible 

conditions may exist~ 

(1) k < a < (i 

(2) k < Cl < a 

(3) (i < k < a 

(4) a. < k < (i 

(5) a < (i < k 

(6) (i < a < k 



where 

~ = UTAR for the site 
& = observed accident rate for the site 

k = critical accident rate 

Ideally, the site should be treated if ~ > k and should not be 

treated if ~ < k, but in reality ~ is unknown and is estimated 

by ~, so that treatment will occur " if ~ > k and will not occur if 

& < k. 

In virtually all discussion of r~gression-to-the-mean, attention 

is focussed upon cases 1, 4 and ~, . where ~ < & and the . 
regression will be downwards. Abaess et al do mention the 

possibility of the regression-to-the-mean effect being 

"completely reversed". For cases 2, 3 and 6, where ~ > & , the 

regression-to-the-mean will be upw~rds. 

If one has a large number of sites under consideration for 

treatment, then one would expect to have the same number of cases 

1 and 2, and of cases 5 and 6. He~ce, the regression effects of 

cases 1 and 2 would be expected to be equal and opposite, and to 

thus cancel. Likewise, the effects of cases 5 and 6 would be 

expected to cancel. Case 3 sites should not be selected for 

treatment and should have no effect, except in certain 

circumstances as discussed below. Case 4 sites should be 

selected, with the consequence that there is an expected nett 

downwards regression effect. 

If case 3 sites should happen to be included in the set of 

control sites, there will be an expected nett upwards regression 

effect in those sites, and this might be taken as evidence of an 

accident migration effect. The existence of an accident 

migration effect has been a matter of considerable debate since 

it was raised by Boyle and Wright (1984), and Maher (1987b) has 

suggested that there is a statistical explanation, which seems 

essentially the same as that given here. 



As the observation period increases, one would naturally expect 
the observed accident rate,d , to more closely approximate the 
underlying true accident rate,a , and 'Figure 2 shows how the 

confidence interval for a decreases in width as the observation 

period increases. If one assumes that accident counts are 
Poisson distributed about a constant UTAR, then one can (from 

Poisson probability tables or charts) readily derive confidence 

intervals for ~, for varying observation period length, as shown 

in Figure 5. The 90% confidence interval for d, given a = 5, 
narrows quickly from 2.2 to 9.4 for one year, to 3.5 to 6.8 for 

five years. Thereafter the rate of narrowing is much less, and 
after 10 years the 90% confidence interval for d is 3.9 to 6.3, 

or 22% below to 26% above the UTAR. 

10 

9 

8 

--------------

4 

3 

2r---~--~--~--~~--~--~--~--~----~ 
1 2 3 4 5 6 7 8 9 10 

Duration ( y n..a r s ) 

Figure 5: 90% Confidence Interval for d g1ven a = 5 .0 



Hauer (1980) investigated the effect of both the observation 

period and the fraction of sites selected for treatment (the 

higher the critical accident rate, k, the lower that fraction) on 

the magnitude of the bias. It was assumed that all sites had the 

same UTAR, and the selection-fraction was assumed to vary from 1% 

to 50%. It was found that the larger the selection-fraction and 

the observation period, the small~r was the bias. The assumption 

of the same UTAR for all sites may well have lead to 

overestimation of the bias, however, for Abbess, Jarrett and 

Wright (1981) assumed the UTAR varied between sites according to 

a Gamma distribution, and obtaine~ substantially smaller 

estimates of the bias. In addition, whereas Hauer's results 

suggest that the bias using three and five years is 50%-55% and 

about 40% (respectively) of the bias using only one year, the 

results of Abbess et al indicate a much more rapid reduction in 

bias as the observation period is extended (55%-60% and about 40% 

of the bias using only one year, for two and three years, 

respectively). 

In a later paper, Hauer and Persaud (1982) again examined the 

relationship between the magnitude of the regression-to-the-mean 

and the duration of the observation period. An empirical 

approach was employed, with a seven year accident history for 

rural roads in Israel being treated as follows: 

(1) the 7th year was regarded as the "after" period, 

(2) years 6, 5 and 6, etc. were regarded as "before" periods, of 

duration 1, 2, etc. years. 

Comparison of the accident rates (per year) for years 6, 5 and 6, 

etc. with that for year 7 suggested that the regression-to-the­

mean effect did reduce as the duration of the "before" period was 

increased, but not as quickly as the results of Abbess et al 

indicate. 

If the accident rates for the "before" period are compared with 

the overall accident rates for the "before" and "after" periods, 

it can be seen that the effect of increasing the duration of the 

"before" period is very marked (see Table 5) . 



Number Before Accidents Mean Overall A-B 

of Period in 7th Accident Mean B 

sections (yrs) Year Rate Accident 

"Before" Rate 

A B 

337 1 317 530 424 25.1% 

258 2 277 393 354 10.9% 

231 3 250 321 303 5.9% 

191 4 230 292 280 4.4% 

178 5 224 272 264 3.0% 

170 6 222 258 253 2.0% 

Table 5: Regression-to-the-Mean and the Duration Effect. 

DISCUSSION 

In the frequent references to Sir Francis Galton's observations 

of the height of offspring relative to that of their progenitors, 

no mention is made of the ethnic group to which the people 

belonged. clearly, were one to group together the pygmies of 

equatorial Africa with an ethnic group noted for their 

considerable height, then evidence of regression-to-the-mean 

would be difficult to find. In such a case, there would not be 

regression to the overall mean, although there may be regression 

to the ethnic group means. 

Previous discussions of regression-to-the-mean in road safety 

literature have been in the context of accIdents at groups of 

sites, and the grouping together of sites seems to imply that 

there is a relationship between the accident processes at those 

sites. The grouping of sites is often done on an arbitrary 

basis, and there is no basis for supposing that there is a 

relationship between the accident process at the sites so 

grouped, such that there is regresslon to the group mean. 

The classical approach entails looking at data for individual 

sites, with the accident counts varying about the underlying true 

accident rate. In thlS context, an accident count well above or 

below the underlying true accident (or UTAR) is likely to be 



followed by a count that is closer to that UTAR. It follows that 

regression can be upwards or downwards, and the inclusion of 

sites where upwards regression is likely within a control group 

may lead to the appearance of accident migration. 

The consideration of individual sites shows clearly how one may 

improve the precision of the estimate of the UTAR by extending 

the duration of the observation period, thereby reducing the 

impact of the regression-to-the-mean effect on the estimates of 

the UTAR's before and after treatment. The alternative approach, 

involving consideration of groups of sites, also indicates that 

the regression-to-the-mean effect dimishes as the duration of the 

observation period increases. There is, however, some 

discrepancies between the estimates of the effect of increasing 

the observation period, and this matter needs to be resolved. 

Practising traffic safety engineers now seem aware of the 

regression-to-the-mean effect, and the need now is for advice on 

how to take proper account of the effect. If they are evaluating 

a remedial treatment at a site, one option is to simply increase 

the observation period. Alternatively, they may opt for using 

data for a large number of sites. The disadvantage of extending 

the observation period is obvious; the time to detect a change in 

the UTAR is increased, and the corresponding increase in 

statistical reliability seems to count for very little. The 

disadvantage of considering groups of sites is less obvious. The 

results of Hauer (1986) suggest that the error associated with 

the grouping together of sites is the dominant one, and it is not 

one which can be readily quantified by practitioners, who might 

be better off s imply extending the observation period and using 

the classical approach. 

The matter of grouping sites on the basis of their having similar 

characteristics (including similar underlying true accident 

rates) needs attention. There seems to be scope for trying to 

improve the statistical efficiency of the stratification, so that 

the between-group variance of the UTAR is maximised and the 

within-group variance of the UTAR is minimised. The greater the 

ratio of the between-group variance to the within-group variance, 

the greater the statistical efficiency of the stratification. If 



the total number of sites is N and the number of groups is k, 

then the quantity 

[(between-group variance)/(within-group variance)][(N-k)/(k-l)] 

is F-distributed, and one can test whether there is a 

statistically significant relationship between the UTAR and the 
criteria for grouping sites. Anyway, such an approach should 

give a reduced standard error for the estimate of the expected 

annual number of accidents. 

statistical efficiency is, of course, not the only goal. The 

criteria for grouping sites should be readily applicable by 
practitioners (e.g. the form of intersection control, the 

approximate traffic flow), and a compromise is likely to be 

required. 

It has been noted above that the procedure proposed by Hauer 

(1986), for estimating the expected annual number of accidents, 

involves terms that have their equivalents in the standard 
analysis of variance procedures. Given a matrix of accident 

counts, there seems to be potential for using analysis of 

variance in order to separately identify spatial and temporal 

variations in accident occurrence. If the mean accident counts 
and the variance of those counts for individual sites are 

proportional (if the accident counts are Poisson distributed, 

then the mean and variance will be approximately equal), then it 

is necessary to transform each count (by taking the square root 

of the count-plus-one-half), in order to satisfy the assumptions 

upon which standard analysis of variance procedures are based. 

If one is treating an area containing many individual sites (e.g. 

the area studies being undertaken in the UK), then one may be 

content with an estimate of the overall effect, in which case one 

can use either the non-parametric (NP) or empirical Bayes (EB) 

procedure (Persaud and Mauer, 1984). These procedures do not 

provide information about the effect of treatment at individual 

locations . It may well be that a treatment is not uniformly 

effective; its effect may well vary from site to site. If so, 

then it is important that this be known, so that the reasons for 



the variation can be investigated and understood, and the 

knowledge incorporated into the detailed design of future 

applications of the treatment. 

By focussing on the accident counts for individual sites (as the 
classical approach entails), it may be found that a site exhibits 

unusually low or high variance in ~he annual accident counts, in 
which case use of the Poisson distribution will increase the 
probability of mistaking a change ' in the UTAR for a simple 

fluctuation in the accident count$ about a constant UTAR, or vice 

versa. There is some evidence (Nicbolson, 1985) that a 
1l 

sUbstantial proportion of sites ~~ have accident counts not 
well-described by the Poisson distribution. 

Finally, both the classical and alternative approaches have 

strengths and weaknesses. There is further work to do before one 

can clearly identify the circumstances in which one approach will 
be better than the other, and it seems unlikely that one approach 

will be better in all circumstances. 
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APPENDIX 

The expected annual number of accidents at site i is 

where 

= 

= 

J 
E 

j=1 

+ 

x .. /J 
~J 

F 

x(X - x.)/[J(S2_X) + xl 
~ 

F = 

For J = 1, 

F = 

-and for x > 0 and S2 > 0, 

F > 0 

F < 0 

if 

if 

x > x. 
~ -x < x. 
~ 

That is, if the average accident count over J years for site i is 
less than the average for all sites, then E(x.) will be greater 

1 

than xi (and vice versa). The adjustment is zero if x = xi. 

The absolute magnitude of the adjustment F will decrease with 

increasing J if and only if F and aF/aJ are of opposite sign. 

since 

then it follows tha t aF/aJ is 

(1) < 0 

(2) > 0 

if 

if 

- -x > xi and S2 > x -x > x. and S2 < x 
~ 

or x < xi and S2 < x 

or x < xi and S2 > x . 

Hence, the absolute magnitude of F will decrease with increasing 

J if and only if S2 > x. 

If one has a group of sites with very sbn i lar UTAR's and little 



variation in the accident counts about those UTAR's, then it may 

well be that S2 < X, and the adjustment F will not tend to zero 

as J gets large. 

NOw, 

(aFjas 2 ) = - J X (X-X.) j [J (S2_X) + X]2 
1 

and this is, f~r J = 1, 2, ••• , 

(1) < 0 

(2) > 0 

if 

if 

x > X. 
1 

X < X. 
1 

Since F and (aFjas2
) are of opposite sign for both x > xi and 

x < xi ' then the incorporation of data from another site, such 
that the variance S2 is increased will, all other things being 

equal, lead to a decrease in the adjustment F. This is 

consistent with the result that a lack of variance will lead to F 

increasing as J increases. 

In order that the adjustment F be 

(1) > 0 

(2) < 0 

for 

for 

-x > X. 
1 

X < Xi 

it is necessary that 

x j [J (S2_X) + xl > 0 

and for S2 < x this may not hold, especially as J becomes larger. 

It appears that so long as S2 < x , then the estimator of the 

annual number of accidents is well-behaved. 
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INTRODUCTION 

It is well known that the true or long-term mean accident rat~ 

at a b lackspot tends to be less than the observed frequency 

over any given period. lhis apparently contradictory 

statement is explained by the fac.t that, by definition, a 

'blackspot' is a site with a high observed accident frequency 

relative to the rest of the population; the distribution of 

observed accident frequencies for sites as a whole will be 

more widely dispersed than the underlying distribution of true 

means, so, for sites with observed frequencies which are large 

compared with the rest of th~ population, the observed 

frequency is likely to be somewhat greater than the long-term 

mean. 

It is now known that an appreciable proportion uf the apparent 

reduction in accidents at a black spot fOllnwing r~medial 

treatment 1S attributable to the regression - ta - mean effect. 

Several authors have suggested mp.thodc:; for pred i c t i ng t ·hp 

effect 50 that it can be corr~r- ted fo r dlJring th@ evaluation 

process: for example Gipps (1980), Hauer (1981), ann Abbes~ et 

al · (1981). Abbess (1984) has developed a computer program 

PRAVERMATS which proc~~ses befor~ and after data anrl provides 

estimates of the effectiveness of treatment for individual 

blackspots and collectively for a whole Clroup. At· the same 
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time, the results are adju~ted automati ,c.ally fo" tt -end uSing 

control data supplied by the user. 

Most of the ex i st i ng methods re 1 y on one or more assump t ions 

about the nature of the distribution of the long-term mean 

accident rates between sites in the population. Fo, - a brief 

rev iew and compar i son of the methods, the reader is referr ed 

to Wright et al. (1985,1988). One partic\Jlar method. which 

was tentatively suggested by Jarrett et al. (1982), is very 

close in spirit to the original concept of 'regrec:;sion-to­

mean', which was discussed and named as such by Francis Galton 

(1889). This method is based on the simple idea of fitting a 

regression mode 1 to acc i dent frequenc ies for two sepCll -a te time 

per iods. The approach ca lIs for 1 it t 1 R by way of as sump t ions 

about the data, and in principle can be made to yield 

acceptab le resu 1 ts for cac:.es wher8 0 ther methods wOlll d fa i l . 

Because of this, and because it involves the fitting of Cl lIne 

or curve to a scat ter plo t of the da ta, the approach can be 

called an empirical method of estimating the regression 

effect. 

For many underlying distributions of long - term mean aCCident 

frequencies, it turns out that the appropriat~ regression 

model is a straight line (see, Wrlght et al., 198~). However. 

the usua 1 least-squarf's procedure fa r es t ima t i ng the 

parameters of the model is not appropr iat~ fo r acc ident ddt.a 

since the usual assumptions of regression theory are violated. 

The aim of this paper is to sugqest a technique for fittinQ 

the regression functi on and to test it uSing both simulate d 

data and acc ident data from the London arec'l· 1 he suggestect 

method will be compared with existing meth ods of estimating 

the regression effect. 
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IHEOREilCAL BACKGROUND 

rhe approach to estimating the regression-to-mean effect 

~Iggested by Gipps (1980) and developed by Abbess et al. 

(1981) is based on the following three assumptions: 

(i) in a time period of fixed duration (say one year), the 

number of accidents x at a given site has a Poisson 

distribution with mean m, i ndependen t 1 y 0 f 0 ther 

sites; 

( i i> the value of the true mean accident frequency m vari~s 

between sites according to a gamma distribution; 

(iii> the mean accident frequencies for diffen;ont sites are 

the values of independent random variables. 

Under these assumptions, the conditional expectation of m 

given x, E(mt)(), is a linear function of x: if the shape 

parameter of the gamma distribution is denoted by k, and the 

scale parameter by c, then 

E-_(mlx) = k + 1 x 
c+ 1 c+1 

(see Jarrett et al., 1982l. 

This is the regression function of m on x , and thp. 

magnitude of the regression-ta-mean erfect 1S thp. difference 

between x and E(mlxl. The parameters k and c can be 

estimated from accident data for a .,.ample of sites Llsing the 

fact that the distr ibution of acc idents over all si tee:. has C\ 

negative binomial distribution, which Can be flttpd to the 

data by standard method.:;;. Abbess et. al. (1981) gives full 

detai Is of the estimat ion procedlJre; thi s geneT -al aprJ"oa c:h to 

estimating the parameters of an unde r l y ing 'prior' 
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distribution is known as an empirical Saves method (Maritz, 

1970). 

Now suppose that data for two time periods are available; for 

convenience it will be assumed that the periods are of equal 

duration, although the methods proposed can be 

generalised to periods of different duration. 

easily 

f-or 

particular site, let x denote the accident frequency in the 

first «before') period, and y the frequency in the second 

«after') period. Assume that, at this site, x and y have 

independent Poisson distributions with mean m. lhen, as is 

shown in Jarrett et al. (1982), assumptions (il) and (iii) 

above imply the following: 

( iv) the joint distribution of x and y is a bivariate 

negative binomial distribution; 

(v) the conditional distribution of y x is 

negative binomial with mean F.(mlx) 

qiven 

and vear lance 

proportional to E(mlx); in addition. the r_onstant of 

proportionality is equal to t + 1/(c+l). 

Since the regression function is linear, this result suggest ... 

that the regression function can be estimated from thp-

bivariate data using a model of the form 

E(ylx) = A + Bx, var(ylx) 

the constant is known as the scale factor Thp- estimation of 

such a model can be carried out easi ly usinq a statisti aJ 

package such as GLIM (Payne, 1985). 

lhere are some problems in adopting such an approach but also 

a number of advantages. First it should bE' realised that 

ordinary least squares is not an appropr iat.~ method for the 

estimation of the regre~sion coefficients A and s· , since 

the varlance of y is not constant, trle least - square s 
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estimators of A and B will be unblased but not efficient. 

Secondly, if the bivariate negative binnmial model IS 

appropriate, then fully efficient estimates of A and 8 can 

be obtained using the fact that )( + y (the total number of 

accidents over both periods) has a (univariat~) negative 

binomial distribution, while direct e~timation of the 

regression function (even if takinq account of the non­

constant va.riance) will give less efficie.nt estimates of the 

regression coefficients. 

However, the main advantage of using this regression model is 

tha tit can be der i ved under much weaker assump t 1 ons than 

those made above. Most importantly. i t is no longer necessary 

to asSUme that the mean accident frequencies In hav~ been 

drawn independently from a gamma distrihution since the 

"before' data are regarded as fixed; so long as the sites are 

selected purely on the basis of the 'before' data (or mare 

generally on features of the sites In the 'before' period), 

unbiased estimates of A and B will be obtained. In 

addition, it is no longer necessary to assume that the 

accident frequency at a particular site has a Poisson 

distribution; it is suffic.ient to assume that the frequency 

has a distribution with varian~e proportional to thp mean. 

More precisely, we assume the following: 

(C'l) At a particular site, with true mean acr-ident. frequenr-y 

m in the before period. the befo r e freqll~n( :y x and the 

after frequency y are i ndFlpend~nt random var i ab 1 es 

with 

E(><lm) = m, var(xlm) vm 

~(y'm) = rm, var(ylm) = v r m . 
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Here v is a scale 

distribution), and r 

far-tor (equCl 1 to 1 for a Po i sc;on 

represents a multiplicative trend 

in the underlying mean. 

(b) the distribution of m over sitps is such that 

E(mlx) = A + 8x, var(mlx) = h(A + Bx). 

It is straightforward to prove from the~e assumptions that: 

E(ylx) = rA + rBx, var(ylx) = v(l+rB)E(ylx). 

(The parameter h does not appear in this model Sln .. e it can 

be shown that the assumptions imply that h = vB.) 

negative binomial model; mor -eover, as indicated abovl?, 

model is a conditional one - it doec; not matter how the 

(before) values were selected. The method can therefore 

x 

be 

apPlied to data fo r sites wher -e the method of 

will 

se).ec t i on 

suggests that the negative binomial model not be 

appropriate. This a~pect of the method is illustrated in some 

of the examples below. 

APPLICATION OF THE METHOD 

In this section t .he reg Tp-sc;,ion mOdel 1S fitted to four 

different sets of data. fhe first two example ... USR simulated 

data so that the estimates obtained for the regre~sion model 

can be compared wi th those ob ta i ned fr -om the fit t i ng of a 

bivariate negative hinomial dist\- ibution. lhe remaining 

examples use real data. One data set is that for the City o f 

Westminster previously analysed in Jarrett et al. (1982), and 

for which the negative binomial distrihution was found to give 
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a good fi t. The other data set is unusua 1 

to a group of 'candidate' sites which 

selected for remedial treatment, but 

subsequently abandoned or deferred in each 

in that it relates 

at one time were 

the trea tment wds 

case. 

In each example, the regression is fitted to the data usinQ 

GLIM. To take account of the fact that the regression 1S 

linear, with the variance of the response (dependent) variable 

being proportional to its expectation, one dpfines the model 

to have an identity link and a Poisson error term and uses the 

$SCALE directive; Appendix 1 gives an example of a GL.IM 

analysis. (This method of fitting the model can be justified 

by the idea of guasi-l ikel ihood see McCullc:lqh and Nelder. 

1983.) As well as the parameter estimates, GLIM gives 

estimates of the standard errors of the coefficients; these 

can only be regarded as approximations for small sample sizes. 

Note that it is impossible to obtain an estimate of the trend 

factor r from the fit; this is not important if the> 

est imate of the regression effect is required for si tes 

sub ject to the same trend as those si tes used to fi t the 

model. Alternatively, if an independent estimat8 of r is 

available (e.g. as a 'control fac:tor') then this can be uS8d 

to obtain est lmates of the regression coeffic ients A and 8 

which would apply in the absence of trend. 

Examples using simulated data 

Two simulated data sets were used, the first r ep resenting Cl 

sample of 20 sites, the second a sample of 200 . In both case~ 

it is assumed that the before and after frequen c ies x and y 

were Poisson-distributed with mea m, where m v a riFts fro m 

site to site according to a gamma distrlhutl£, l1 with k - 1.~ 

and c = 0 .5. The theoretical regression function is 

therefore 

~(y'x) = k/(c+1) + (l/(c+l»)( = 1 + 0 .66 7 )(. 
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with scale parameter 1 + 0.667 = 1.667. 

Plots of y against )( are shown in Figures 1 and 2, and 

the estimation results are summarised in Table 1. In addition 

to the fitted empiri~al regression model, the tabl~ shows th8 

efficient estimates obtained from fitting thR bivariate 

negative binomial model. For the larger set of data, the 

model is also fitted to two subsets obtained by restricting to 

sites with a limited range of values of )(; this is to 

illustrate the point made above that no bias is introduced by 

selecting sites on the basis of the 'before" values. whereas 

the bivariate negative binomial model would cer "tainly not be 

applicable to these restriced data sets. It will be seen that 

in all cases the estimated coefficients are well within two 

standard errors of both the true values and the efficient 

estimates. The standard errors are, however, reldtively large 

for small sample sizes. 
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FIGURE 1: 20 sites <simulated data) 
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FIGURE 2: 200 sites <simulated data> 
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lA8LE 1: Estimation from simulated data 

Samples of size (i) 20 (ii> 200 with me>ans independently 
drawn from a g~mma distrihution with shape parameter k=1.5 and 
scale parameter c=0.5 

Regression function Scale far tor 
----------------------------- ---- ---- -- -- ---- ---- --- ---

True values 1 + 0 .667 )( 1.66? 

(i> n = 20 

Efficient estimate 
from total 0.734 + 0.662 )( 1.662 

Empirical estimate 0.544 + 0.654 )( 1.303 
(SEs) (0.311 ) (0.173 ) 

( i i> n = 200 

Efficient estimate 0.873 + 0.686 x 1.686 
from total 

Empirical estimate 
(whole sample) 0.916 + 0.71? x 1 .4~2 
(SEs) (0.136) (0.0596) 

Subsample 1 : 2'x(12 

Empirical estimate 1.052 + 0.705 x 1. «;J3" 
(SEs) (0.532) (0.116) 

Subsample 2: _2~ )(t7 

Empirical estimate 0.613 + 0.848 )( 1 .584 
(SEs) (0 ·666) (0 .175) 



Empirical estimation of the regression-ta-mean effect 11 

Westminster data 

This set of data consists of acc ident fre.quenc.ies at C nodes' 

(major junc t ions on the Grea ter London road networ 'k) in the 

City of Westminster, for the years 1976 and 1977. I t was 

investigated in Jarrett F!.t al. (t98R), where the negative 

binomial distribution was found to give a reasonably good fit. 

A plot of the data is shown in Figure 3, and the results af 

the estimation procedure in Table 1; the empirical method is 

again compared with the efficient estimates obtained from the 

negative binomial fit. The fitted negative binomial 

d istr ibut ion was truncated at zero, thus i gnor i ng those si tp-s 

where there were no accidents in either year, since the total 

number of zeros in the data is larger than woulrl be expected 

from the negative binomial. Similarly, thoc;;e sites for which 

the 'before' frequency x was zero were exclurled from the fit 

of the empirical regression function; as explained abOVE?, 

this does not invalidate thE? method. Again l~ should be notp-d 

that the empirical estimates are fairly closp to the effi~ient 

estimates. 

FIGURE 3: Westminster data 
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TABLE 2: Westminster data (n = 470) 

Regression function Scale factor 

Efficient 
estimate 1 .015 + 0.788 )( 1.788 
from total 
(omitting sites 
where x+y = 0; 
n = 307) 

Empirical 
estimate 
(omitting sites 
where )( = 0; 
n = 281> 0.959 + 0.856 )( 2.020 
(SEs) (0.249) (0.0544) 

Candidate sites 

The final ex""mple concerns <'l set of data c.ollected by Viola 

and Wright (1983) for the specific purpose of investigating 

the regression-ta-mean phenomenon for si tes which had been 

selected for remedial treatment but where treatment harj 

subsequently been deferred or abandoned. For the purposes of 

their study it was decided to limit coveraget to a r andom 

sample of 16 of the 32 London boroughs; the data cons i s t of 

accident frequencies for 161 sites, for a 'betfore' per i od 

1975-77 and an ' after' period 1978-80. The magn i tude of the 

regression effect observed for these sites is of spec ial 

interest, since it can be argued that sites wh\ch are selec ted 

for treatment will display a quite different sta t isti c a l 

behaviour from the population as a whole, becau5e thei r 

selection imp lies not only relatively h i gh acc i dent 

frequency, bu t a consistent pattern in the ~ of a.ccldent. 

observed. In 0 ther words, the eng i neer wi 1 1 have taken into 

account some additional information wh i ch c~n be regarded a s 
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evidence that the high accident frequency obc:;ervetJ at the site 

in question is not merely a random fluctuation. 1h@ 

distribution of accident frequencies can therefore be expected 

to be different from that for the population as a whole, and 

very PQssibly not of a negative binomial form. Moreover the 

regression-to-mean effect shou ld be reduced, and provide a 

more satisfactory estimate of the effect for those sites which 

are treated. 

A scatter plot of the datn is shown in Figure 4. It. will be 

noted that, in contrast to the ear 1 ier examp 1 es, there are 

comparatively few sites with small accident frequencies; one 

reason for this is that x and y are now accident 

frequencies over 3-year periods. The empirical m~thod 1s 

particularly appropriate here, because of the way in whi.ch the 

sites were selected, and the results of the estimati.on are 

shown in Table 3. Also shown are th@ roefficients after 

correction for trend: the estimate of the trend term r was 

obta i ned as a contra 1 rat i 0 ob ta i red from t:he numbers of 

accidents in the two periods at all the untreated site, in the 

16 boroughs. The constant term in the regresc;;ion function 1s 

considerably larger than in the other examples. reflecting thp 

absence of low accident frequencies; however, wh8n aCGount is 

tnken of the fact that the accident frequenc ies are 3 - year 

tota 1 s, the resul ts do not appear very d i ffe r ent from those 

for the Westminster data. Thus. perhaps surprisinqly. the data 

do not reveal the different behaviour prediGted above. 
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FIGURE 4: London candidate sites 
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TABLE 3: London candidate sites (n = 167) 

Regression function Scale factor 

Empirical 
estimate 2.827 + 0.8 15 )( 2.322 
(SEs) (0.723) (0.0496) 

Corrected for 
trend (based on 2.887 + 0 .832 )( 

r = 0.9792) 
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CONCLUSION 

In this paper, a new method of 

mean effect has been proposed. 

th is prob lem, the method is 

fitting a straight line to a 

est ima t i ng the 

Unl i ke other-

regression-to­

approache'S to 

based on the simple idea of 

scatter plot of 'before' and 

'after' accident frequencies. Although the method gives less 

efficient estimates of the regression coefficients than 

approaches which require a negative binomial distribution to 

be fitted, it is valid under less restrictive assumptions and 

can therefore be regarded as a more 'robust' estimation 

method. Furthermore, the method gives similar results to the 

negative binomial approach in cases where the latte r is valid. 

However, the standard errors of the regression c:oE"ffic ients 

produced by this method are relati.vely large, even for 

moderate sample sizes; thus considerable unc:prta l nty will 

remain about the size of the regression effect. lhe relative 

efficiency of different methods of estimatinq the regression­

to-mean effect requlres further investigation, as does the 

deve lopment of techniques for determ i n j ng the va 1 id i ty of the 

underlying model. Some progress hac; been made l n ea ch of 

these areas and it is hoped to report on this at a later date . 
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APPENDIX 1: EXAMPLE OF A GLIM ANALYSIS 

[oJ 
[0] 
CiJ 
[iJ 
[i) 
[i] 
[iJ 
[i) 
[iJ 
[i] 
[iJ 
[i) 
CiJ 
[i] 
[iJ 
[0] 
[0) 
[oJ 
[0] 
[0) 
[0] 
[0] 
(0) 
[0) 
[oJ 
[0] 
[oJ 
(0) 
[oJ 
[0] 
[0] 
[0] 
[0] 
[0] 
[oJ 
[oJ 
[0) 
[i] 
[i] 
[i) 
(iJ 
[0] 
[0] 
[0] 

GLIM 3 . 77 update 0 (coP~'right) 1985 Royal 2·tatistical .society , London 

? $INPUI 7$ 
$echo 
$output 6 80 
$0 Empirical estimation of the regression-to-~ean effect : 

simulated data for 20 sites 

$units 20 
$data bef $read 
09311 0 1 6 3 1 0 0 0 7 0 Z 4 2 3 3 
$data aft $read 
0741110 5 100 0 Z 4 1 5 5 130 

$plot aft bef $ 
7 .600 I 
7 . 200 I 
6 . 800 I 
6.400 I 
6.000 I 
5 . 600 I 
5.200 I 
4.800 I 
4 . 400 I 
4.000 I 
3.600 I 
3 . 200 I 
2 .800 I 
2 .400 I 
2 .000 A 
1. 600 I 
1.200 2 2 
0 . 800 I 
0 . 400 I 
0 . 000 3 2 

A 

A 

A 

A 

A 

A 

A 

A 

---------_ ._-------- _._---_ .. - ------ ---:---- _ ... _-_ . ---- -- ... --: -- -- --
0 . 00 z .00 <1 00 

$error p $link i $scale 

$yvar aft $fit $ 
deviance = 48 . 208 at cycle 3 

d .f . = 19 

6 . 00 10 00 
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(i) 
[i] $C Use RECYGLE to giJard aga~nst the possibility :!jf neg·:it~·'e 
(i] fitt9d 'falues 
[i) $recycle $fit + bef $dis me $ 
(oJ deviance = 23.455 (change = -24 .75) at cycle :.: 
(0) d . f. = 18 (change = -1 ) 
[0] 
[0) Current ~odal : 
[oJ 
(oJ number of units is 20 
(0) 
[oJ y-variate AFT 
(0] weight * 
(0] offset * 
[oJ 
[0] probability distribution ~s POISSON 
(0] link function is IDENTITY 
[0] sea. le parameter is to be estimated by the mean deviance 

ter~s = 

1 
2 

[oJ 
[0) 
[oJ 
[0] 
[0] 
[oJ 
[oJ 
[0] 
[i] 

scale 

[iJ $stop 

1 + BEF 

est~mate 

0.5440 
o .6549 

parameter 

s .e . p3.rameter 
o .3112 1 
o .1730 BEF 

taken as 1 303 


