Accelerating moving walkways for quality people transport in airports: an assessment of their applicability in Amsterdam Airport Schiphol.

Author(s)
Kusumaningtyas, I. Paro, J.C. & Lodewijiks, G.
Year
Abstract

As a consequence of the massive growth in air travel, the scale of modern airport terminals often exceeds human proportions, resulting in long walking distances within the airport environment. The use of hub-and-spoke configurations by most of the major passenger airlines also lead to increasing terminal sprawl associated with the movement of transfer passengers through the terminals to switch flights. The established minimum connect times (MCTs) should provide domestic and international transfer passengers adequate time to reach their connecting gates at the airports, while in the same time enable airlines to complete the connecting process as quickly as possible to maximize the productivity of their aircraft fleets. Short connection time between flights is one of the key selling points for airlines, and is among the most important criteria that passengers consider when making their choice of which airline to use. In order to achieve acceptable passenger walking distances as well as aircraft-to-aircraft transfer times, more reliance is being placed on transport technology. Some alternatives of transport modes that can be used to assist passengers mobility in airports are buses, automated people movers, courtesy carts, and moving walkways. In the field of moving walkways, new systems with higher transport speed have been developed. These systems, generally known as accelerating moving walkways (AMWs), continuously move passengers by accelerating them from a lower speed of 0.650.75 m/s at the entrance, up to a higher speed of 2.02.5 m/s at the middle section, and then decelerate them again to 0.650.75 m/s at the exit. Compared to conventional moving walkways, which typically operate at 0.650.75 m/s, AMWs can transport people approximately three times faster. This paper presents the findings of a study, which aims to assess the applicability of AMWs to provide quality people transport in airports using Amsterdam Airport Schiphol (AAS) as the specific location for the study. The AAS is one of Europes largest and busiest airports, which also functions as a hub airport. Almost 50% of its passengers use the airport to transfer to a connecting flight to resume their journey. A literature review was conducted to compile the features of AMWs, including their advantages and disadvantages. By understanding their characteristics, the competitiveness and potential application areas of AMWs compared to other transport modes can be evaluated. Data are collected of the present situation in the AAS, which include data on the number of passengers flying through the airport terminal and piers, the schedules of arriving and departing flights, the layout of the airport terminal, the walking routes and distances of transfer and origin-destination passengers, and the currently available travel aids for passengers. With this information, the problems present associated with passengers' mobility within the airport and what requirements must be fulfilled by the selected transport technology are defined. The applicability of AMWs as an alternative to solve the problems and fulfil the requirements is analysed. This includes determining the possible location(s) for the AMWs and the influences they may bring to that/those specific location(s), e.g. in terms of passengers travel time, acceptance by passengers, safety, reliability, integration to existing infrastructures, and operational costs. For the covering abstract see ITRD E137145.

Request publication

3 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
C 42065 (In: C 41981 CD-ROM) /10 /72 / ITRD E136913
Source

In: Proceedings of the European Transport Conference ETC, Noordwijkerhout, near Leiden, The Netherlands, 17-19 October 2007, 13p 18 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.