A Bayesian hierarchical model for accident and injury surveillance.

Author(s)
MacNab, Y.C.
Year
Abstract

This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based on place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time) of the injury counts, rates and ratios. During the 10-year period, high injury risk ratios evolved from northeast to central-interior and the southwest. (Author/publisher).

Request publication

4 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
I E116607 /80 / ITRD E116607
Source

Accident Analysis & Prevention. 2003 /01. 35(1) Pp91-102 (18 Refs.)

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.