Development of an emissions inventory model for mobile sources.

Author(s)
Reynolds, A.W. & Broderick, B.M.
Year
Abstract

Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using 'passive' data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper, a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter less than 10 microns aerodynamic diameter (PM10), 1,3-butadiene (C4H6) and benzene (C6H6) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions measured simultaneously with on-line air quality monitoring equipment. (Author/publisher).

Request publication

6 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
I E104059 /15 / ITRD E104059
Source

Transportation Research Part D. 2000 /03. 5d(2) Pp77-101 (80 Refs.)

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.