Different activation dynamics in multiple neural systems during simulated driving.

Author(s)
Calhoun, V.D. Pekar, J.J. McGinty, V.B. Adali, T. Watson, T.D. & Pearlson, G.D.
Year
Abstract

Driving is a complex behavior that recruits multiple cognitive elements. We report on an imaging study of simulated driving that reveals multiple neural systems, each of which have different activation dynamics. The neural correlates of driving behavior are identified with fMRI and their modulation with speed is investigated. We decompose the activation into interpretable pieces using a novel, generally applicable approach, based upon independent component analysis. Some regions turn on or off, others exhibit a gradual decay, and yet others turn on transiently when starting or stopping driving. Signal in the anterior cingulate cortex, an area often associated with error monitoring and inhibition, decreases exponentially with a rate proportional to driving speed, whereas decreases in frontoparietal regions, implicated in vigilance, correlate with speed. Increases in cerebellar and occipital areas, presumably related to complex visuomotor integration, are activated during driving but not associated with driving speed. (Author/publisher)

Request publication

10 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
C 30494 [electronic version only]
Source

Human Brain Mapping, Vol. 16 (2002), No. 3, p. 158-167, 41 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.