Dynamic Responses of Female and Male Volunteers in Rear Impacts.

Author(s)
Linder, A. Carlsson, A. Svensson, M.Y. & Siegmund, G.P.
Year
Abstract

Whiplash injuries from vehicle collisions are common and costly. These injuries most frequently occur as a result of a rear impact and, compared to males, females have up to twice the risk of whiplash-associated disorders (WAD) resulting from vehicle crashes. The present study focuses on the differences in the dynamic response corridors of males and females in low-severity rear impacts. In this study, analysis of data from volunteer tests of females from previously published data has been performed. Corridors for the average female response were generated based on 12 volunteers exposed to a change of velocity of 4 km/h and 9 volunteers exposed to a change of velocity of 8 km/h. These corridors were compared to corridors for the average male response that were previously generated based on 11 male volunteers exposed to the same test conditions. Comparison between the male and female data showed that the maximum x-acceleration of the head for the females occurred on average 10 ms earlier and was 29% higher during the 4 km/h test and 12 ms earlier and 9% higher during the 8 km/h test. Head-to-head restraint contact for the females occurred 14 ms earlier at 4 km/h and 11 ms earlier at 8 km/h compared to the males. For the same initial head-to-head restraint distance, head restraint contact occurred 11 and 7 ms earlier for the females than the males at 4 and 8 km/h, respectively. Furthermore, the calculated Neck Injury Criteria (NIC) values were similar for males and females at 4 km/h, whereas they were lower for females compared to the males at 8 km/h (3.2 and 4.0 m2/s2, respectively). The results of this study highlight the need to further investigate the differences in dynamic responses between males and females at low-severity impacts. Such data are fundamental for the development of future computer models and dummies for crash safety assessment. These models can be used not only as a tool in the design and development process of protective systems but also in the process of further evaluation and development of injury criteria. (Author/publisher).

Request publication

6 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
I E141186 /80 /84 / ITRD E141186
Source

Traffic Injury Prevention. 2008 /12. 9(6) Pp592-599 (36 Refs.)

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.