High rate mechanical properties of the Hybrid III and cadaveric lumbar spines in flexion and extension.

Author(s)
Demetropoulos, C.K. Yang, K.H. Grimm, M.J. Artham, K.K. & King, A.I.
Year
Abstract

The purpose of this study was to use a high-rate testing machine to establish the flexion and extension stiffnesses of the human lumbar spine with simulated extensor muscle tone. Two Hybrid III lumbar spines were used to develop the test methodology, and to obtain the response of the Hybrid III lumbar spines. A low-mass, high-frequency response, five-axis load cell was used to measure forces and moments at the inferior end of the spine, and an angular velocity sensor was attached at the superior end of the spine in order to measure angular displacement. When comparing the high rate (4 m/s) and low rate (100 mm/s) loading characteristics of the Hybrid III lumbar spine in flexion, the initial high rate response resembles that at low rate. However, at about six degrees of flexion, the high rate curve takes a sharp rise, having a notable effect on maximum load. Similar results were found for extension tests. Human lumbar spines were tested by adopting the same methodology developed for the Hybrid III Iumbar spines. Results demonstrated that the Hybrid III lumbar spine is stiffer in flexion than in extension. While cadaver tests demonstrated that the cadaveric lumbar spine is stiffer in extension than in flexion when erector muscle tone is not considered, it is less stiff when erector muscle tone is accounted for. See also ITRD E201445.

Request publication

6 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
C 16036 (In: C 16018 S [electronic version only]) /84 / ITRD E203580
Source

In: Proceedings of the 43th Stapp Car Crash conference, San Diego, California, USA, October 25-27, 1999, SAE Technical Paper 99SC18, p. 279-294, 14 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.