Microsimulation of freeway ramp merging processes under congested traffic conditions.

Author(s)
Sarvi, M. & Kuwahara, M.
Year
Abstract

This paper describes a microsimulation program developed to study freeway ramp merging phenomena under congested traffic conditions. The results of extensive macroscopic and microscopic studies are used to establish a model for the behavior of merging drivers. A theoretical framework for modeling the ramp and freeway lag driver acceleration-deceleration behavior guided the model development. This methodology uses the stimuli-response psychophysical concept as a fundamental rule and is formulated as a modified form of the conventional car-following models. Data collected at the two merging points are used to calibrate the hypothesized ramp and freeway lag vehicle acceleration models. Drawing on this behavioral model, the freeway merging capacity simulation program (FMCSP) is developed to simulate actual traffic conditions. This model evaluates the capacity of a merging section for a given geometric design and flow condition. Validation of FMCSP is performed using the observed flow, vehicle trajectories, and lane-changing maneuvers. The simulation model is applied to investigate a variety of merging strategies. The results indicated that the FMCSP is capable of simulating the actual traffic conditions of congested freeway ramp merging sections and will aid in the development of traffic management strategies for complex freeway ramp merging areas. (Author/publisher)

Request publication

2 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
20080565 ST [electronic version only]
Source

IEEE Transactions on Intelligent Transportation Systems, Vol. 8 (2007), No. 3 (September), p. 470-479, 42 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.