Optimal fueling strategies for locomotive fleets in railroad networks.

Author(s)
Nourbakhsh, S.M. & Ouyang, Y.
Year
Abstract

Railroad companies spend billions of dollars each year to purchase fuel for thousands of locomotives across the railroad network. Each fuel stationcharges a site-dependent fuel price, and the railroad companies must pay an additional flat contracting fee in order to use it. This paper presentsa linear mixed-integer mathematical model that integrates not only fuel station location decisions but also locomotive fueling schedule decisions. The proposed model helps railroads decide which fuel stations to contract,and how each locomotive should purchase fuel along its predetermined shipment path, such that no locomotive runs out of fuel while the summation offuel purchasing costs, shipment delay costs (due to fueling), and contracting charges is minimized. A Lagrangian relaxation framework is proposed to decompose the problem into fueling schedule and facility location selection sub-problems. A network shortest path formulation of the fueling schedule sub-problem is developed to obtain an exact optimal solution to the fueling schedule sub-problem. The proposed framework is applied to a large-scale empirical case and is shown to effectively reduce system costs. (A) Reprinted with permission from Elsevier.

Request publication

6 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
I E146953 /72 / ITRD E146953
Source

Transportation Research, Part B. 2010 /09/11. 44(8/9) Pp1104-1114 (21 Refs.)

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.