Tensile properties of the human muscular and ligamentous cervical spine.

Author(s)
Ee, C.A. van Nightingale, R.W. Camacho, D.L.A. Chancey, V.C. Knaub, K.E. Sun, E.A. & Myers, B.S.
Year
Abstract

The purpose of this study is to provide previously unavailable kinetic and tolerance data for the ligamentous cervical spine, and to determine the effect of neck muscle on tensile load response and tolerance. Using six male human cadaver specimens, isolated ligamentous cervical spine tests were conducted to quantify the significant differences in kinetics due to head end condition and anteroposterior eccentricity of the tensile load. The spine was then separated into motion segments for tension failure testing. The upper cervical spine tolerance of 2400 +/- 270 N was found to be significantly greater than the lower cervical spine tolerance of 1780 +/- 230 N. Data from these experiments were used to develop and validate a computational model of the ligamentous spine. The model predicted the end condition and eccentricity responses for the tensile force-displacement relationship. Cervical muscular geometry data derived from cadaver dissection and Magnetic Resonance Image (MRI) imaging were used to incorporate a muscular response into the model. The cervical musculature under maximal stimulation increased the tolerance of the cervical spine from 1800 N to 4160 N. In addition, the cervical musculature resulted in a shift in the site of injury from the lower to the upper cervical spine. The results from the study predict a range in tensile tolerance from 1.8-4.2 kN based on the varying role of the cervical musculature.

Request publication

6 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Publication

Library number
C 18823 (In: C 18816 [electronic version only]) /84 / ITRD E203850
Source

In: Stapp car crash journal Volume 44 : papers presented at the 44th Stapp Car Crash conference, Atlanta, Georgia, USA, November 6-8, 2000, SAE Technical Paper 2000-01-SC07, p. 85-102, 58 ref.

Our collection

This publication is one of our other publications, and part of our extensive collection of road safety literature, that also includes the SWOV publications.