In Germany the number of casualties in passenger car to pedestrian crashes has been reduced by a considerable amount of 40% as regards fatalities and 25% with regard to seriously injured pedestrians since the year 2001. Similar trends can be seen in other European countries. The reasons for that positive development are still under investigation. As infrastructural or behavioral changes do in general take a longer time to be effective in real world, explanations related to improved active and passive safety of passenger vehicles can be more relevant in providing answers for this trend. The effect of passive pedestrian protection – specified by the European New Car Assessment Programme (EuroNCAP) pedestrian test result – is of particular interest and has already been analyzed by several authors. However, the number of vehicles with some valid Euro NCAP pedestrian score (post 2002 rating) was quite limited in most of those studies. To overcome this problem of small datasets German National Accident Records have been taken to investigate a similar objective but now based on a much bigger dataset. The paper uses German National Accident Records from the years 2009 to 2011. In total 65.140 records of pedestrian to passenger car crashes have been available. Considering crash parameters like accident location (rural / urban areas) etc., 27.143 of those crashes have been classified to be relevant for the analysis of passive pedestrian safety. In those 27.143 records 7.576 Euro NCAP rated vehicles (post 2002 rating) have been identified. In addition it was possible to identify vehicles which comply with pedestrian protection legislation (2003/102/EG) where phase 1 came into force in October 2005. A significant correlation between Euro NCAP pedestrian score and injury outcome in real-life car to pedestrian crashes was found. Comparing a vehicle scoring 5 points and a vehicle scoring 22 points, pedestrians’ conditional probability of getting fatally injured is reduced by 35% (from 0.58% to 0.37%) for the later one. At the same time the probability of serious injuries can be reduced by 16% (from 27.4% to 22.9%). No significant injury reducing effect, associated with the introduction of pedestrian protection legislation (phase 1) was detected. Considerable effects have also been identified comparing diesel and gasoline cars. Higher engine displacements are associated with a lower injury risk for pedestrians. The most relevant parameter has been 'time of accident', whereas pedestrians face a more than 2 times higher probability to be fatally injured during night and darkness as compared to daytime conditions. (Author/publisher)
Samenvatting