Model predictive control approach for recovery from delays in railway systems.

Auteur(s)
Schutter, B. de Boom, T. van den & Hegyi, A.
Jaar
Samenvatting

The model predictive control (MPC) framework, a very popular controller design method in the process industry, is extended to transfer coordination in railway systems. In fact, the proposed approach can also be used for other systems with both hard and soft synchronization constraints, such as logistic operations. The main aim of the control is to optimally recover from delays by breaking connections (at a cost). In general, the MPC control design problem for railway systems leads to a nonlinear, nonconvex optimization problem. Computing an optimal MPC strategy using an extended linear complementarity problem is demonstrated. Also presented is an extension with an extra degree of freedom to recover from delays by letting some trains run faster than usual (again at a cost). The resulting extended MPC railway problem can also be solved using an extended linear complementarity problem.

Publicatie aanvragen

20 + 0 =
Los deze eenvoudige rekenoefening op en voer het resultaat in. Bijvoorbeeld: voor 1+3, voer 4 in.

Publicatie

Bibliotheeknummer
C 29276 (In: C 29273 S [electronic version only]) /72 / ITRD E821874
Uitgave

In: Transit : intermodal facilities, rail transit, commuter rail, light rail transit, maintenance, and ferry transportation, Transportation Research Record TRR 1793, p. 15-20, 13 ref.

Onze collectie

Deze publicatie behoort tot de overige publicaties die we naast de SWOV-publicaties in onze collectie hebben.