Multivariate exposure modeling of accident risk : insights from Pay-as-you-drive insurance data.

Auteur(s)
Paefgen, J. Staake, T. & Fleisch, E.
Jaar
Samenvatting

The increasing adoption of in-vehicle data recorders (IVDR) for commercial purposes such as Pay-as-you-drive (PAYD) insurance is generating new opportunities for transportation researchers. An important yet currently underrepresented theme of IVDR-based studies is the relationship between the risk of accident involvement and exposure variables that differentiate various driving conditions. Using an extensive commercial data set, the authors develop a methodology for the extraction of exposure metrics from location trajectories and estimate a range of multivariate logistic regression models in a case-control study design. They achieve high model fit (Nagelkerke’s R2 0.646, Hosmer–Lemeshow significance 0.848) and gain insights into the non-linear relationship between mileage and accident risk. They validate our results with official accident statistics and outline further research opportunities. They hope this work provides a blueprint supporting a standardized conceptualization of exposure to accident risk in the transportation research community that improves the comparability of future studies on the subject. (Author/publisher)

Publicatie aanvragen

1 + 2 =
Los deze eenvoudige rekenoefening op en voer het resultaat in. Bijvoorbeeld: voor 1+3, voer 4 in.

Publicatie

Bibliotheeknummer
20210114 ST [electronic version only]
Uitgave

Transportation Research Part A - Policy and Practice, Vol. 61 (March 2014), p. 27-40, ref.

Onze collectie

Deze publicatie behoort tot de overige publicaties die we naast de SWOV-publicaties in onze collectie hebben.